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1 Introduction

This report presents a substantial catalog of formalisms, modelling languages and tools that are
used in the domain of cyber-physical systems modelling. It is part of the deliverable produced
by the MPM4CPS’s1 Working Group 1 (WG1) on Foundations of MPM4CPS.

Initial WG1 developments prompted the use of ontologies for the analysis of structures and
relations of modelling elements. In particular, ontlologies are well supported by the OWL for-
malism and its Protege tool, which allowed to formally capture these modeling elements and
their relationships, and to reason about them. Such domain analysis allowed to derive a classi-
fication that served as the backbone structure of this catalog.

Figure 1.1: Overview of the structure of the MPM4CPS ontology

In particular, figure 1.1 provides an overview of the MPM4CPS ontology (shown in the first col-
umn). It emphasises the unification of the two domains of Multi-Paradigm Modelling (MPM)
and Cyber-Physical Systems (CPS), which are both foundations for this new emerging domain.

The figure further shows that the catalog (i.e. the contents of this document) is an instanti-
ation of the MPM4CPS domain. The right column of the figure shows few examples of CPS
developments that use multi-paradigm modelling. These examples will not be presented in
this report, but are elaborated on in the Framework to Relate / Combine Modeling Languages
and Techniques (see Deliverable D1.2 Giese and Blouin (2016)).

Automatic Catalog Creation: As stated, the individual formalisms, languages and tools of this
catalog are based upon the MPM4CPS ontology. As one can easily imagine, many of the over
170 individual representatives of these concepts contain numerous connections to other indi-
viduals. In general, a tight network of dependencies, compatibilities and other relations was
discovered. To fully exploit modern technologies, the catalog entries were entered directly into
the ontology, so that the connections could be defined. This catalog is generated directly from
these ontology sources and thus shows one view of this ontology. As an interactive, searchable

1ICT COST Action IC1404 Multi-Paradigm Modelling for Cyber-Physical Systems (MPM4CPS)
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1. Introduction

and visual depiction of this data provides a more comprehensive view than this static genera-
tion, we are in the process of publishing the digital ontology alongside the final report.

Usage of this catalog This catalog serves as a valuable source of information and can be used
as a reference to look up data about a large number of current modelling technologies and
approaches. The authors tried to add further references to each entry, such that formalisms
show scientific references or sources of introduction material, and tool implementations are
annotated with a hyperlink to the tool’s webpage, where it can be downloaded from.

The catalog is structured as follows: Chapter 2 presents the list of identified formalisms (Sec-
tion 2.2), modelling languages (Section 2.3) and modelling tools (Section 2.4). The list items
each have a short description, extended by references and links to further resources to guide
interested readers towards further information.

2



2 Structured Catalog of Modelling Languages and Tools

The MPM4CPS domain merges concepts from multi-paradigm modelling (MPM) and applies
them onto the development of cyber-physical systems. As an extension of the well-known field
of embedded systems development, the CPS discipline emerges from a widely studied field and
thus builds upon its previous insights, development and modelling approaches and languages
and tools.

On the other hand, CPS is a very recent field that embraces new ideas and modern paradigms.
These additions created diverging branches from existing standards and new target audiences
and domain actors adopted multiple approaches: the result is that different stakeholders use
different definitions for their approaches, with an evident dispersion of effort and a significant
introduction of unnecessary conceptual entropy in the field in both literature and practice, that
may be dominated by a substanding unifying approach suitable to keep beneficial diversity.
Consequently, MPM’s aim is to further the diversity of topics by taking a very elastic approach
and supporting generic (informal) definitions and merging the “best formalisms, languages
and tools” for each point of view. This stance however resulted in the creation of tools that were
generated based on different needs and from different points of view, spanning from small-
scale, theoretical and hardware-centric approaches to robust, practical, industrial and large-
scale applications, and numerous other solutions inbetween.

This chaotic richness of tools is further founded by the heterogeneity of users and backgrounds
that are involved in the MPM4CPS processes. MPM4CPS processes mirror the intrinsic com-
plexity of their systems and diversity of their users. These come from and work in different do-
mains, each bringing their specialised point of view, heritage and methods of their respective
domain. Such methods belong to different phases of the design, development and assessment
cycle, and stem from various research fields, with particular perspectives on the same problems
and different views on similar systems. As a result, specifications of tools are often divergent,
even if not contrasting, as they are driven by different purposes, towards different goals, and on
different methodological foundations.

This catalog aims to serve as a small collection of the most commonly employed tools, mod-
elling languages and formalisms in the domain. The catalog’s initial purpose prescribed to cap-
ture current and actively used means to model CPS. However, it quickly became evident that
the domain’s vastness cannot be captured entirely in this document. Too many tools and lan-
guages have been developed and trialed in many experiments and evaluated on numerous case
studies. Instead, the decision was made to initially create a description of the most commonly
known and used representatives of each category, and, in a second iteration, add representative
usage reports and evaluations.

The catalog is by no means attempting to be complete or even exhaustive, as the described
vastness and the speed of development, adaptation and change of the discipline renders such
a goal unreachable. What it does however is to serve as a reference for newcomers who wish
to learn more about a particular formalism, language or tool. The catalog further provides
references to additional information resources such as experience reports, case studies and
analyses.

Catalog entries has been selected by experts in their respective fields and participants of the
MPM4CPS’s WG1 on Foundations. Collectively, they serve as a current snapshot of the main
and most important concepts, but – similar to other lexica and reference sources – has to be
extended, revisited and updated in regular intervals (as intended by the members of WG1).
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2. Structured Catalog of Modelling Languages and Tools

2.1 Catalog Structure

The structure of the catalog is inspired by the framework proposed by Broman et al. (2012),
which distinguishes between viewpoints, formalisms, and languages and tools. It defines that
stakeholders have viewpoints which are expressed using formalisms. As formalisms are mathe-
matical structures (i.e. without a concrete syntax), they require languages and tools that imple-
ment them. Figure 2.1 depicts this framework visually. Evidently, modern tools often support
several languages, and each language can merge several formalisms. For example, Papyrus is
a tool that supports the creation of different Unified Modeling Language (UML) diagram types
such as class diagrams, sequence diagrams, etc. Each diagram is based upon a different formal-
ism.

Figure 2.1: Framework for Viewpoints, Formalisms, Languages and Tools (from Broman et al. (2012))

The catalog lists its entries in a pre-defined order, starting from the most theoretical (for-
malisms) to the most practical (tools). In some situations, the classification of individual en-
tries is not easily possible. For example, Petri nets are a family of formalisms that are well-suited
for the expression of concurrency. There are various “flavours” of Petri nets that allow the ex-
pression of different systems. As they are closely related though, the catalog authors choose
to list them as individual formalisms, even though one might argue that Colored Petri nets are
a formalism by themselves. Another issue arises with the classification of Petri nets, as, when
they were introduced, Petri nets were equipped with a visual notation syntax, which nowadays
is used interchangeably with the mathematical formalism. This catalog thus lists two different
entries for “Petri nets” (i.e. the formalism) and “Petri nets diagram” (i.e. its graphical syntax).
The reason behind this is that there exists for example the PNML (Petri Net Markup Language)
format, which is a common exchange format for Petri net diagrams that can be easily read and
written by tools. It is thus another language (with a concrete, textual syntax) for the Petri nets
formalism. Finally, the tools section (Section 2.4) provides a list of tools that can be used to cre-
ate, edit, and interact with models. For example, the section contains an entry for StrataGEM,
a common tool for the model-checking of concurrent models such as Petri nets.
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2.2 Formalisms

The following subsections present the most commonly used formalisms for cyber-physical sys-
tems development.

2.2.1 Automata-based Formalisms

2.2.1.1 Abstract State Machines

Abstract state machines are a formalism that model the states and their transitions. ASM are
an extension of Finite State Machines (FSM) and allow the representation of states as arbitrary
data types. The formalism aims to bridge the gap between human-readable, easily understand-
able specifications and machine-executable code. Application areas of ASM are for example the
modelling and verification of programming languages, protocols, embedded systems, etc.

Implementing Languages

Abstract State Machines is a formalism for the following languages:

• AADL (see section 2.3.3)

• AsmL (see section 2.3.9)

• AsmetaL (see section 2.3.8)

• Gofer (see section 2.3.21)

References

• Börger, E. and W. Schulte (1999), A Programmer Friendly Modular Definition of the Seman-
tics of Java, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 353–404, ISBN 978-3-540-
48737-1, doi: 10.1007/3-540-48737-9_10.
https://doi.org/10.1007/3-540-48737-9_10

• Borger, E. (2005), Abstract state machines and high-level system design and analysis, The-
oretical Computer Science, 336, 2, pp. 205 – 207, ISSN 0304-3975

• Börger, E. and R. Stärk (2003), Springer Berlin Heidelberg, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-18216-7

2.2.1.2 Cellular Automata

Cellular Automata (CA) is a popular formalism for the idealisation of physical systems. A sys-
tem consists of an n-dimensional lattice of uniform “cells”. Each cell is an automaton, whose
behaviour (discrete state transitions) is defined by its own state, and the states of cells in its
“neighbourhood” (the cells with a certain distance, e.g. direct neighbours). The transitions
of all CA in the system are executed at the same time. By representing automaton behaviour
using relatively simple rules, highly complex system behaviour can be expressed. Since their
introduction in the 1950ies, cellular automata had various waves of popularity. Recently they
are used to model and study emergent behaviour in very large and highly complex systems
consisting of uniform units. One of the most popular CA case studies is Conway’s “Game of
Life”.

Implementing Languages

None

References

• Chopard, B. (2012), Cellular Automata Modeling of Physical Systems, Springer New York,
New York, NY, pp. 407–433, ISBN 978-1-4614-1800-9, doi: 10.1007/978-1-4614-1800-9_27.
https://doi.org/10.1007/978-1-4614-1800-9_27
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2. Structured Catalog of Modelling Languages and Tools

• (2018), Cellular-Automata Website, https://plato.stanford.edu/entries/
cellular-automata/

• Athanassopoulos, S., C. Kaklamanis, G. Kalfountzos and E. Papaioannou (2012), Cellular
Automata for Topology Control in Wireless Sensor Networks Using Matlab, in Proceedings
of the 44th IEEE Conference on Decision and Control, volume 164, volume 164

2.2.1.3 Hybrid Automata-based Formalisms

2.2.1.4 Hybrid Automata

A finite state automaton is a computational abstraction of the transitions of a system between
discrete states or locations (on and off, for instance). A hybrid automaton, additionally, consid-
ers dynamical evolution over time in each location. This dynamical evolution is represented by
a dynamical system. Depending on the nature of the dynamics of this system, different types of
hybrid automata are defined; the main ones are explained as follows. Hybrid automata is one
of the many existing modelling frameworks of hybrid systems.

Implementing Languages

Hybrid Automata is a formalism for the following languages:

• Stateflow Language (see section 2.3.64)

• Scilab Language (see section 2.3.54)

• PyDSTool Language (see section 2.3.50)

• NuSMV Language (see section 2.3.36)

• Ptolemy Language (see section 2.3.49)

• Modelica (see section 2.3.32)

References

• Lygeros, J. and M. Prandini (2010), Stochastic Hybrid Systems: A Powerful Framework for
Complex, Large Scale Applications, European Journal of Control, 16, 6, pp. 583 – 594, ISSN
0947-3580, doi: https://doi.org/10.3166/ejc.16.583-594.
http://www.sciencedirect.com/science/article/pii/S0947358010706889

• Abate, A., J.-P. Katoen, J. Lygeros and M. Prandini (2010), Approximate Model Checking
of Stochastic Hybrid Systems, European Journal of Control, 16, 6, pp. 624 – 641, ISSN
0947-3580, doi: https://doi.org/10.3166/ejc.16.624-641.
http://www.sciencedirect.com/science/article/pii/S0947358010706919

2.2.1.5 I/O Hybrid Automata (Hybrid Input/Output Automata)

I/O hybrid automata are a class of hybrid automata that include asynchronous distributed sys-
tem components. The automaton’s transitions are annotated with input actions and output
actions, which are executed at when triggering a transition.

Implementing Languages

None

References

• Lynch, N. A. and M. R. Tuttle (1989), An introduction to input/output automata, CWI
Quarterly, 2, pp. 219–246

• Lynch, N., R. Segala and F. Vaandrager (2003), Hybrid I/O automata, Information and
Computation, 185, 1, pp. 105 – 157, ISSN 0890-5401, doi: https://doi.org/10.1016/S0890-
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5401(03)00067-1.
http://www.sciencedirect.com/science/article/pii/S0890540103000671

2.2.1.6 Linear Hybrid Automata

A linear hybrid automaton is a hybrid automaton where the dynamical system within each
location or discrete state is linear.

Implementing Languages

Linear Hybrid Automata is a formalism for the following languages:

• Stateflow Language (see section 2.3.64)

• Scilab Language (see section 2.3.54)

• PyDSTool Language (see section 2.3.50)

• NuSMV Language (see section 2.3.36)

• Ptolemy Language (see section 2.3.49)

• Modelica (see section 2.3.32)

References

• Lygeros, J. and M. Prandini (2010), Stochastic Hybrid Systems: A Powerful Framework for
Complex, Large Scale Applications, European Journal of Control, 16, 6, pp. 583 – 594, ISSN
0947-3580, doi: https://doi.org/10.3166/ejc.16.583-594.
http://www.sciencedirect.com/science/article/pii/S0947358010706889

• Abate, A., J.-P. Katoen, J. Lygeros and M. Prandini (2010), Approximate Model Checking
of Stochastic Hybrid Systems, European Journal of Control, 16, 6, pp. 624 – 641, ISSN
0947-3580, doi: https://doi.org/10.3166/ejc.16.624-641.
http://www.sciencedirect.com/science/article/pii/S0947358010706919

2.2.1.7 Non-Linear Hybrid Automata

A nonlinear hybrid automaton is a hybrid automaton where the dynamical system within each
location or discrete state is nonlinear. The studies on nonlinear hybrid automata are much less
than in linear hybrid automata due to the complexity of the dynamical behaviours involved.

Implementing Languages

Non-Linear Hybrid Automata is a formalism for the following languages:

• Stateflow Language (see section 2.3.64)

• Scilab Language (see section 2.3.54)

• PyDSTool Language (see section 2.3.50)

• NuSMV Language (see section 2.3.36)

• Ptolemy Language (see section 2.3.49)

• Modelica (see section 2.3.32)

References

• Lygeros, J. and M. Prandini (2010), Stochastic Hybrid Systems: A Powerful Framework for
Complex, Large Scale Applications, European Journal of Control, 16, 6, pp. 583 – 594, ISSN
0947-3580, doi: https://doi.org/10.3166/ejc.16.583-594.
http://www.sciencedirect.com/science/article/pii/S0947358010706889
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• Abate, A., J.-P. Katoen, J. Lygeros and M. Prandini (2010), Approximate Model Checking
of Stochastic Hybrid Systems, European Journal of Control, 16, 6, pp. 624 – 641, ISSN
0947-3580, doi: https://doi.org/10.3166/ejc.16.624-641.
http://www.sciencedirect.com/science/article/pii/S0947358010706919

2.2.1.8 PTAs (Priced/Probabilistic Timed Automata)

A priced timed automaton is a timed automaton where transitions and locations are annotated
with real-valued costs and cost rates, respectively. The global cost increases according to the
cost rate of the current location and “jumps” when taking a transition (according to the cost
annotation of the transition).

Note, that the cost rate of each location can be different, but cannot be negative.

Implementing Languages

PTAs is a formalism for the following languages:

• PRISM Language (see section 2.3.44)

References

• Behrmann, G., K. G. Larsen and J. I. Rasmussen (2005), Priced Timed Automata: Al-
gorithms and Applications, in Formal Methods for Components and Objects, Eds. F. S.
de Boer, M. M. Bonsangue, S. Graf and W.-P. de Roever, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 162–182, ISBN 978-3-540-31939-9

2.2.1.9 Stochastic Hybrid Automata

A stochastic hybrid automaton is a class of non-deterministic hybrid automaton where uncer-
tainty is introduced in the system evolution and the control inputs. The main differences with
respect to a hybrid automaton are: 1) the initial state (initial discrete location and initial con-
tinuous state vector) is chosen at random, 2) the continuous state evolves following stochastic
differential equations, 3) there are two types of discrete transitions between locations that give
rise to two types of guards conditions: forced transitions and spontaneous transitions; sponta-
neous transitions are triggered by stochastic events.

Implementing Languages

Stochastic Hybrid Automata is a formalism for the following languages:

• Stateflow Language (see section 2.3.64)

• Scilab Language (see section 2.3.54)

• PyDSTool Language (see section 2.3.50)

• Simulink Language (see section 2.3.59)

• Ptolemy Language (see section 2.3.49)

• Modelica (see section 2.3.32)

References

• Lygeros, J. and M. Prandini (2010), Stochastic Hybrid Systems: A Powerful Framework for
Complex, Large Scale Applications, European Journal of Control, 16, 6, pp. 583 – 594, ISSN
0947-3580, doi: https://doi.org/10.3166/ejc.16.583-594.
http://www.sciencedirect.com/science/article/pii/S0947358010706889

• Abate, A., J.-P. Katoen, J. Lygeros and M. Prandini (2010), Approximate Model Checking
of Stochastic Hybrid Systems, European Journal of Control, 16, 6, pp. 624 – 641, ISSN
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0947-3580, doi: https://doi.org/10.3166/ejc.16.624-641.
http://www.sciencedirect.com/science/article/pii/S0947358010706919

2.2.1.10 Stochastic Timed Automata

Stochastic timed automata extend the TA formalism by adding probabilistic concepts, which
allow the stochastic selection of enabled transitions and delays (i.e. time spent within a loca-
tion).

Implementing Languages

Stochastic Timed Automata is a formalism for the following languages:

• UPPAAL SMC Language (see section 2.3.72)

References

• Bertrand, N., P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Groesser and M. Jurdzinski
(2014), Stochastic timed automata, Logical Methods in Computer Science, 10, 4, p. 73, doi:
10.2168/LMCS-10(4:6)2014.
https://hal.inria.fr/hal-01102368

2.2.1.11 Timed Automata

Timed automata (TA) is a formalism that merges the concepts of discrete automata theory with
the continuous evolution of variables (“clocks”). Each clock progressively increases its value at
a constant rate (i.e. 1). Transition guards can be defined by comparing the clocks’ values to
constants. Further, each clock can be reset to zero when firing transitions.

Timed automata can be seen as a specialisation of hybrid automata, where all clock rates are
constant and equal, transition guards only allow linear comparisons of clocks and transitions
(hybrid automata jumps) can only reset clock values to zero.

Many extensions of timed automata have been proposed, such as stopwatch automata (the rate
can be temporarily set to 0), and hourglass automata (the clocks’ rate can be reversed to -1).

Implementing Languages

Timed Automata is a formalism for the following languages:

• HyTech Language (see section 2.3.22)

• Kronos Language (see section 2.3.26)

• UPPAAL Language (see section 2.3.71)

References

• Alur, R. and D. L. Dill (1994), A Theory of Timed Automata, Theor. Comput. Sci., 126, 2, pp.
183–235, ISSN 0304-3975, doi: 10.1016/0304-3975(94)90010-8.
http://dx.doi.org/10.1016/0304-3975(94)90010-8

• Cassez, F. and K. Larsen (2000), The Impressive Power of Stopwatches, in International
Conference on Concurrency Theory, Springer, pp. 138–152

• Bengtsson, J. and W. Yi (2004), Timed Automata: Semantics, Algorithms and Tools, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 87–124, ISBN 978-3-540-27755-2, doi: 10.1007/
978-3-540-27755-2_3.
https://doi.org/10.1007/978-3-540-27755-2_3

• Osada, Y., T. French, M. Reynolds and H. Smallbone (2014), Hourglass Automata, Elec-
tronic Proceedings in Theoretical Computer Science, 161, pp. 175–188, ISSN 2075-2180,
doi: 10.4204/EPTCS.161.16
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2.2.1.12 Timed I/O Automata (Timed Input/Output Automata)

The Timed I/O Automata formalism is an extension of interface automata to include timing
information. The automaton’s transitions are annotated with input actions and output actions,
which are executed at when triggering a transition.

Implementing Languages

None

References

• Kaynar, D. K., N. Lynch, R. Segala and F. Vaandrager (2010), The theory of timed I/O au-
tomata, Synthesis Lectures on Distributed Computing Theory, 1, 1, pp. 1–137

• David, A., K. G. Larsen, A. Legay, U. Nyman and A. Wasowski (2010), Timed I/O Automata:
A Complete Specification Theory for Real-time Systems, in Proceedings of the 13th ACM
International Conference on Hybrid Systems: Computation and Control, ACM, New York,
NY, USA, HSCC ’10, pp. 91–100, ISBN 978-1-60558-955-8, doi: 10.1145/1755952.1755967.
http://doi.acm.org/10.1145/1755952.1755967

2.2.2 Flow-based Formalisms

2.2.2.1 Data Flow

DataFlow describes an computation model that resembles a graph. Each node represents a
function (usually called actor) and each arc represents a communication channel between two
functions. All the inputs of a function must be present to start its execution. In synchronous
dataflow modelling the “synchronous hypothesis” states that the computation of each function
and the communication between two functions is infinitely fast (or instantaneous).

Given this hypothesis, SDF provides a sound model of computation with predictable perfor-
mance, properties verification methods (liveness, deadlock freedom), and predictable buffer-
ing.

The practical approach relies on the fact that the computation of a node starts only when the
execution of all its predecessors is finished. This requires that the graph topology is loop-free.
Since SDF are usually executed in periodic tasks, the synchronous hypothesis is usually con-
sidered to be verified as the worst case response time of the graph is smaller than the task’s
period.

This type of model is well-suited to digital signal processing and communications systems
which often process an endless supply of data. It has been successfully applied in the domain
of safety critical embedded systems. It has also been characterised or extended into homoge-
neous data flow graphs, cyclo-static data flow graphs, scenario-aware data flow graphs, affine
data flow graphs.

Implementing Languages

Data Flow is a formalism for the following languages:

• AADL (see section 2.3.3)

• Zélus (see section 2.3.76)

• Lustre (see section 2.3.28)

• Signal (see section 2.3.55)

References
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• Murthy, P. K. and E. A. Lee (2002), Multidimensional synchronous dataflow, IEEE Transac-
tions on Signal Processing, 50, 8, pp. 2064–2079, ISSN 1053-587X, doi: 10.1109/TSP.2002.
800830

2.2.2.2 HyFlow (Hybrid Flow System Specification)

HyFlow provides a formal description of dynamic topology hybrid systems Barros (2003). This
formalism can model systems that exhibit both continuous and discrete behaviors while re-
lying on a digital computer representation. HyFlow supports multisampling as a first order
operator, enabling both time and component varying sampling, making it suitable for repre-
senting sampled-based systems, like digital controllers and filters. HyFlow provides also an
extrapolation operator that enables an error free representation of continuous signals. Multi-
sampling can be used for achieving an explicit representation of asynchronous adaptive step-
size differential equations integrators Barros (2018). HyFlow provides an integrative framework
for combing models expressed in different modeling paradigms. In particular, fluid stochastic
Petri-nets Barros (2015) and geometric integrators Barros (2018), for example, can be repre-
sented in the HyFlow formalism, enabling its seamless integration with other HyFlow mod-
els. HyFlow sampling provides an expressive operator for making the connection of computer-
based systems with real-time systems, since sampling is, in many cases, the most convenient
operator to interact with continuous signals. HyFlow supports modular and hierarchical mod-
els providing deterministic semantics for model composition and co-simulation Barros (2008).

Implementing Languages

None

References

• Barros, F. J. (2018), Modular representation of asynchronous geometric integrators with
support for dynamic topology, SIMULATION, 94, 3, pp. 259–274

• Barros, F. J. (2008), Semantics of Dynamic Structure Event-based Systems, in Proceedings
of the Second International Conference on Distributed Event-based Systems, ACM, New
York, NY, USA, DEBS ’08, pp. 245–252, ISBN 978-1-60558-090-6, doi: 10.1145/1385989.
1386020.
http://doi.acm.org/10.1145/1385989.1386020

• Barros, F. J. (2003), Dynamic Structure Multiparadigm Modeling and Simulation, ACM
Trans. Model. Comput. Simul., 13, 3, pp. 259–275, ISSN 1049-3301, doi: 10.1145/937332.
937335.
http://doi.acm.org/10.1145/937332.937335

• Barros, F. (2015), A Modular Representation of Fluid Stochastic Petri Nets, in Symposium
on Theory of Modeling and Simulation

2.2.3 Logic-based Formalisms

2.2.3.1 CTL (Computation Tree Logic)

CTL is a branching-time temporal logic that allows the analysis of tree-like structures. It allows
the analysis of various future evolution paths to answer questions whether there is a possibility
that an event might or will happen. Various model checkers exist that allow the verification of
the reachability and liveness of certain events (or event sequences).

Implementing Languages

CTL is a formalism for the following languages:

• NuSMV Language (see section 2.3.36)
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References

• Huth, M. and M. Ryan (2004), Logic in Computer Science: Modelling and Reasoning about
Systems, Cambridge University Press, 2 edition, doi: 10.1017/CBO9780511810275

2.2.3.2 First Order Logic

First-Order Logic (FOL, also “First-Order Predicate Calculus”) is a logical formalism constituted
of terms and formulas. A term is either a variable, a function symbol or a predicate symbol. A
formula is constituted of formulas built over terms combined with the usual Boolean operators
(negation, conjunction and so on) and both existential and universal quantifiers. First-Order
Logic formulas are interpreted on a (finite) domain, and possess a sound and complete calcu-
lus, making it automatable for reasoning Kleene (2002).

Implementing Languages

First Order Logic is a formalism for the following languages:

• SMT-LIB (see section 2.3.61)

References

• Kleene, S. C. (2002), Mathematical Logic, Wiley

2.2.3.3 Linear Temporal Logic

LTL is a representative of the family of temporal logics that analyses the future evolution of
paths. It allows the testing of one individual branch (as opposed to CTL).

Implementing Languages

Linear Temporal Logic is a formalism for the following languages:

• Kronos Language (see section 2.3.26)

• PSC (see section 2.3.47)

References

• Huth, M. and M. Dermot Ryan (2000), Logic in computer science - modelling and reasoning
about systems., ISBN 978-0-521-65602-3

2.2.3.4 Temporal Logic

A temporal logic (also tense logic) system is a formal mathematical system that allows the rea-
soning about terms and their truth value related to time. It is an extension of first-order logic
and allows the expression of statements such as "I always model CPS", "I will eventually model
a CPS’" and "I will not model CPS until I find a good formalism".

Temporal logic is frequently used in formal verification, where it is used to formally express
requirements (e.g. the reaching of a certain state). Popular temporal logic systems are for ex-
ample the linear temporal logic (LTL), computation tree logic (CTL) and Hennessy-Milner logic
(HML).

Implementing Languages

Temporal Logic is a formalism for the following languages:

• NuSMV Language (see section 2.3.36)

References

• Pnueli, A. (1977), The Temporal Logic of Programs, in Proceedings of the 18th Annual Sym-
posium on Foundations of Computer Science, IEEE Computer Society, Washington, DC,
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USA, SFCS ’77, pp. 46–57, doi: 10.1109/SFCS.1977.32.
https://doi.org/10.1109/SFCS.1977.32

2.2.4 Petri Net-based Formalisms

2.2.4.1 High Level Petri Nets

This large class rely on another modeling framework devoted to the description of the data
attached to the tokens, and the expression that must be assigned to arcs describing the com-
putation that must be done for satisfying the pre and post conditions. Among several dialect of
these class we can cite algebraic Petri Nets and coloured Petri Nets.

Implementing Languages

High Level Petri Nets is a formalism for the following languages:

• PNML (see section 2.3.43)

• Petri Net Diagram (see section 2.3.42)

References

2.2.4.2 Petri Net (Place Transition Nets)

A Petri net (also known as a place/transition net or P/T net) is a formalism for the description
of dynamic discrete systems. It is particularly suited to the modeling of systems where distribu-
tion, concurrency and non-determinism is important to discribe and analyze. The mathemat-
ical foundation of Petri nets has led to several development to make possible complex analsis
of systems decribed by Petri nets. A Petri net is a directed bipartite graph, in which the nodes
represent transitions (i.e. events that may occur, represented by bars or black rectangles) and
places (i.e. conditions or ressources, represented by circles). The directed arcs describe which
places are pre- and/or postconditions for which transitions (signified by arrows). Petri nets
were invented, according to some sources, in August 1939 by Carl Adam Petri at the age of 13
for the purpose of describing chemical processes.

Petri nets offer a graphical notation which is of particular interest to the engineer analyzing sys-
tems, natural pattern of design are existing in Petri nets such as causality, choice, independence
and ressource management.

There are attempts for several formalisms Like UML activity diagrams, Business Process Model
and Notation and EPCs to have semantics in term of translation into Petri nets. These transla-
tions have been used to provide a precise semantics to such formalisms as well as to develop
tools for their simulation and analysis.

It has been observed that in practice Petri Nets lack of modeling power for some modeling
dimensions such as: timing aspects, data structures, stochastic processes and event priority.
In general the formal analysis tool need different techniques if new modeling dimensions are
introduced. So tools are generally different and adapted to the specific extensions.

Petri Nets have several extensions which are concretised in the following formalisms, it must be
noted that the computing power of such extensions can change according to the new concepts
introduced in the notations (i.e. time) and then the analysability of the models is sometime
much more difficult or limited to extention with finiteness assumptions (i.e. high level nets):

Implementing Languages

Petri Net is a formalism for the following languages:

• PNML (see section 2.3.43)

• Petri Net Diagram (see section 2.3.42)
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• FIACRE (see section 2.3.18)

References

• CPN preserve useful properties of Petri nets and at the same time extend initial formalism
to allow the distinction between tokens. Coloured Petri Nets allow tokens to have a data
value attached to them. This attached data value is called token color.

https://en.wikipedia.org/wiki/Coloured_Petri_net

2.2.4.3 Petri Nets with Priority

This simple extension bring new semantics to the transition firing in order to solve conflict.
Depending on the variant it can lead to more powerful models which are Turing complete.

Implementing Languages

Petri Nets with Priority is a formalism for the following languages:

• PNML (see section 2.3.43)

• Petri Net Diagram (see section 2.3.42)

References

2.2.4.4 Stochastic Petri Nets

The firing of transitions follows a probabilistic distibution on time duration or frequency of
transitions firing when there is a conflict.

Implementing Languages

Stochastic Petri Nets is a formalism for the following languages:

• PNML (see section 2.3.43)

• Petri Net Diagram (see section 2.3.42)

References

2.2.4.5 Timed Petri Nets

Timed Petri Nets introduce time as a modeling dimension. This is reflected in aspect such as
transition duration or possible interval for firing transitions. Generally these classes bring new
problems for analysing them, in particular the time-line which has no limit in the future and
the density of the time.

Implementing Languages

Timed Petri Nets is a formalism for the following languages:

• PNML (see section 2.3.43)

• Petri Net Diagram (see section 2.3.42)

• FIACRE (see section 2.3.18)

References

• Abdulla, P. A. and A. Nylén (2001), Timed Petri Nets and BQOs, in Applications and Theory
of Petri Nets 2001, Eds. J.-M. Colom and M. Koutny, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 53–70, ISBN 978-3-540-45740-4

• Berthomieu, B. and M. Diaz (1991), Modeling and verification of time dependent systems
using time Petri nets, IEEE Transactions on Software Engineering, 17, 3, pp. 259–273, ISSN
0098-5589, doi: 10.1109/32.75415
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2.2.5 Other Formalisms

2.2.5.1 Bayesian Networks

Bayesian networks are a formalism that establishes a probabilistic graph model. The ver-
tices of the directed acyclic graph represent random variable probabilities and edges between
them represent probabilistic dependencies. Hence each vertex depends on its predecessors.
Bayesian networks are well-suited to create simple computations for models with many vari-
ables. They can further be used to encode hypotheses, hypotheses, beliefs, and latent variables.

Implementing Languages

None

References

• Niedermayer, D. (2008), An Introduction to Bayesian Networks and Their Contemporary
Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 117–130, ISBN 978-3-
540-85066-3, doi: 10.1007/978-3-540-85066-3_5.
https://doi.org/10.1007/978-3-540-85066-3_5

2.2.5.2 Bond Graphs

Bond graphs focus on the modelling of energy flows. The formalism recognises that different
energy domains (electrical, hydraulic, mechanical) can be similarly represented and that the
dual forces of "flow" (e.g. current, velocity) and “effort” (e.g. voltage, force) in combination cre-
ate power. Bond graphs models represent idealised energy flows. Usually the same notation is
used for all energy domains and domains switches are modelled using e.g. gyrators and trans-
formers. The formalism is actively used in engineering domains where it serves good purpose
of prototyping the energy flow within a system.

Implementing Languages

Bond Graphs is a formalism for the following languages:

• 20-sim Bond Graph (see section 2.3.2)

References

• Paynter, H. M. (1961), Analysis and Design of Engineering Systems, MIT Press, Cambridge,
MA

• Broenink, J. F. (1999), Introduction to Physical Systems Modelling with Bond Graphs, in in
the SiE whitebook on Simulation Methodologies, p. 31

2.2.5.3 Causal Block Diagrams

Causal block diagrams are a visual modelling formalism that connects operation blocks in a
graph structure. The graph’s operation block nodes represent computations or transforma-
tions of signals, edges model the signals themselves. Typical operation blocks are algebraic
functions (e.g. sum, product) but can also represent timed functionality (e.g. delays, integra-
tion or derivatives). The formalism is used in many visual modelling tools (e.g. Simulink) and
graphical programming languages (e.g. LabVIEW).

Implementing Languages

Causal Block Diagrams is a formalism for the following languages:

• LabVIEW Language (see section 2.3.27)

• Simulink Language (see section 2.3.59)

References
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• Gomes, C., J. Denil and H. Vangheluwe (2016), Causal-Block Diagrams, Technical report.
http://msdl.cs.mcgill.ca/people/claudio/pub/Gomes2016a.pdf

• Denckla, B. and P. J. Mosterman (2005), Formalizing Causal Block Diagrams for Modeling a
Class of Hybrid Dynamic Systems, in Proceedings of the 44th IEEE Conference on Decision
and Control, pp. 4193–4198, ISSN 0191-2216, doi: 10.1109/CDC.2005.1582820

2.2.5.4 Complex Networks

A complex network is a large number of interdependent systems connected in a nontrivial and
non-regular manner. The interconnection of these systems produces emergent properties or
behaviours which are not present in the isolated systems: this is called self-organisation, col-
lective behaviour. There are different representations for complex networks. These models are
typically based on graph theory (nodes connected with links). The main models for complex
networks are: random-graph networks, small-world networks, scale-free networks. Each of
these models have different topological (structural) features, analysed with tools from statisti-
cal physics.

Implementing Languages

Complex Networks is a formalism for the following languages:

• Visone Language (see section 2.3.74)

• Small-World Networks (see section 2.3.60)

• NetworkX Language (see section 2.3.35)

• Pajek Language (see section 2.3.40)

• Random-Graph Networks (see section 2.3.51)

• iGraph Language (see section 2.3.23)

• Mathematica Language (see section 2.3.30)

• Cytoscape Language (see section 2.3.13)

• Network Workbench Language (see section 2.3.34)

References

• Navarro-Lopez, E. (2013), DYVERSE: From formal verification to biologically-inspired real-
time self-organizing systems, pp. pp. 301–346, ISBN ISBN-10:1439883270

• H. Strogatz, S. (2001), Exploring Complex Networks, Nature, 410, doi: 10.1038/410268a0.
http://www.nature.com/nature/journal/v410/n6825/pdf/410268a0.
pdf

• Barrat, A., M. Barthelemy and A. Vespignani (2008), Dynamical Processes on Complex Net-
works, Cambridge University Press, doi: 10.1017/CBO9780511791383

• Barabási, A.-L. and R. Albert (1999), Emergence of Scaling in Random Networks, Science,
286, 5439, pp. 509–512, ISSN 0036-8075, doi: 10.1126/science.286.5439.509.
http://science.sciencemag.org/content/286/5439/509

• Albert, R. and A.-L. Barabási (2002), Statistical mechanics of complex networks, Rev. Mod.
Phys., 74, pp. 47–97, doi: 10.1103/RevModPhys.74.47.
https://link.aps.org/doi/10.1103/RevModPhys.74.47

• Newman, M. (2003), The Structure and Function of Complex Networks, SIAM Review, 45,
2, pp. 167–256, doi: 10.1137/S003614450342480

• Boccaletti, S. and V. Latora (2006), The Structure and Dynamics of Complex Networks
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• Wang, X. F. and G. Chen (2003), Complex networks: small-world, scale-free and beyond,
IEEE Circuits and Systems Magazine, 3, 1, pp. 6–20, ISSN 1531-636X, doi: 10.1109/MCAS.
2003.1228503

• Watts, D. and S. H. Strogatz (1998), Collective Dynamics of Small World Networks, Nature,
393, pp. 440–2, doi: 10.1038/30918

2.2.5.5 Differential Equations

Differential equations are frequently used to model the physical phenomena of CPS and in par-
ticular the plant of CPSs. They are mathematical equations, consisting of derivatives and func-
tions. Differential equations can be classified into ordinary differential equations (ODE), which
have a single independent variable, differential-algebraic equations (DAE), which make use
of algebraic equations and partial differential equations (PDE), which involve multi-variable
functions and partial derivatives.

Implementing Languages

Differential Equations is a formalism for the following languages:

• Zélus (see section 2.3.76)

• Scilab Language (see section 2.3.54)

• XPPAUT Language (see section 2.3.75)

• PyDSTool Language (see section 2.3.50)

• Simulink Language (see section 2.3.59)

• Mathematica Language (see section 2.3.30)

• Modelica (see section 2.3.32)

References

• Winkel, B. (2016), Nagy, G. 2015. Ordinary Differential Equations.
https://www.simiode.org/resources/2681

2.2.5.6 Discontinuous Systems

Discontinuous or non-smooth systems are a subclass of hybrid systems. There are several
types, depending on the type of discontinuity in the model representing the system. Two main
classes of discontinuous systems are observable: switching or variable structure systems, and
jump or reset systems. Switching or variable structure systems are typically studied through the
formalism of sliding motions (dynamics on the discontinuity surface) or sliding-mode-based
control systems.

Implementing Languages

Discontinuous Systems is a formalism for the following languages:

• Stateflow Language (see section 2.3.64)

• Scilab Language (see section 2.3.54)

• XPPAUT Language (see section 2.3.75)

• PyDSTool Language (see section 2.3.50)

• Simulink Language (see section 2.3.59)

• Ptolemy Language (see section 2.3.49)

• Modelica (see section 2.3.32)
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References

• I. Utkin, V. (1992), Sliding Modes in Control Optimization, pp. 12–28, ISBN 978-3-642-
84381-5, doi: 10.1007/978-3-642-84379-2_2

• Navarro-Lopez, E. M. (2009a), Hybrid-automaton models for simulating systems with
sliding motion: still a challenge, IFAC Proceedings Volumes, 42, 17, pp. 322 – 327, ISSN
1474-6670, doi: https://doi.org/10.3182/20090916-3-ES-3003.00056, 3rd IFAC Confer-
ence on Analysis and Design of Hybrid Systems.
http://www.sciencedirect.com/science/article/pii/S1474667015307825

• Filippov, A. F. (1990), Differential Equations with Discontinuous Righthand Sides, SIAM
Review, 32, 2, pp. 312–315, doi: 10.1137/1032060.
https://doi.org/10.1137/1032060

• Navarro-Lopez, E. M. (2009b), Hybrid modelling of a discontinuous dynamical system
including switching control, IFAC Proceedings Volumes, 42, 7, pp. 87 – 92, ISSN 1474-6670,
doi: https://doi.org/10.3182/20090622-3-UK-3004.00019, 2nd IFAC Conference on Anal-
ysis and Control of Chaotic Systems.
http://www.sciencedirect.com/science/article/pii/S1474667015367458

2.2.5.7 Discrete Event

The discrete event (DE) paradigm provides a representation of systems based on piecewise
constant state variables. Contrarily to continuous systems, where variables change continu-
ously in time, DE systems can only change at a finite number of instants during a finite time
interval. The actions causing these changes are commonly called by events. Contrarily to dis-
crete time models, where changes are periodic, in DE systems changes can occur randomly,
i.e., without any following any periodicity.

Several strategies for organising DE systems have been developed. These descriptions are com-
monly termed by world views and provide different organisations for modelling DE systems.
Common world views include event scanning Kiviat (1968), activity scanning Buxton and Laski
(1962), and process interaction Dahl and Nygaard (1966).

The DEVS formalism Zeigler (1976), provides a formal description of modular DE systems, ab-
stracting and unifying many of the concepts required for characterising DE systems. The co-
simulation of DE systems was introduced in Zeigler (1984) that has established the separation
between models and their simulators, enabling the interoperability of hierarchical and modu-
lar DE models.

Implementing Languages

Discrete Event is a formalism for the following languages:

• SIMUL8 Language (see section 2.3.58)

• Simio Language (see section 2.3.57)

• ARENA Language (see section 2.3.7)

• OMNet++ Language (see section 2.3.39)

• MS4 Me Language (see section 2.3.33)

• SimEvents Language (see section 2.3.56)

• FlexSim Language (see section 2.3.19)

References
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• Kiviat, P. J. (1968), Introduction to the SIMSCRIPT II Programming Language, in Proceed-
ings of the Second Conference on Applications of Simulations, Winter Simulation Confer-
ence, pp. 32–36.
http://dl.acm.org/citation.cfm?id=800166.805259

• Buxton, J. and J. Laski (1962), Control and Simulation Language, Computer Journal, , 5,
pp. 194–199

• Zeigler, B. (1984), Multifaceted Modelling and Discrete Event Simulation, Academic Press,
San Diego

• Zeigler, B. (1976), Theory of Modelling and Simulation, Wiley

2.2.5.8 Electrical Linear Networks

Electrical linear networks (ELN) consist of linear electrical components that are interconnected
to form a circuit. The electrical components considered are linear, such as: voltage/current
sources, resistors, capacitors, inductors and transmission lines. Circuits falling within the ELN
category are analysed with well-known linear methods, typically, frequency-domain methods.

Implementing Languages

Electrical Linear Networks is a formalism for the following languages:

• SystemC (see section 2.3.67)

• XPPAUT Language (see section 2.3.75)

• PyDSTool Language (see section 2.3.50)

• Simulink Language (see section 2.3.59)

• SPICE Language (see section 2.3.63)

References

• Banerjee, A. and B. Sur (2014), Electrical Linear Networks in Practice and Theory, Springer
International Publishing, Cham, pp. 411–426, ISBN 978-3-319-01147-9, doi: 10.1007/978-
3-319-01147-9_15.
https://doi.org/10.1007/978-3-319-01147-9_15

2.2.5.9 Entity Relationship

The entity-relationship model (ER) consists of entity types with relationships that can exist be-
tween instances of those types. Originating from the databases domain, ER defines informa-
tion structures which can be implemented in a database. Some enhanced ER formalisms also
include generalization-specialization relationships so that it can be used for the specification
of domain ontologies.

Implementing Languages

Entity Relationship is a formalism for the following languages:

• UML (see section 2.3.69)

• AADL (see section 2.3.3)

• Entity Relationship Diagram (see section 2.3.16)

• AUTOSAR Language (see section 2.3.10)

• MetaH (see section 2.3.31)

• MARTE (see section 2.3.29)
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References

• Chen, P. P.-S. (2001), The Entity Relationship Model — Toward a Unified View of Data,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 205–234, ISBN 978-3-642-48354-7, doi:
10.1007/978-3-642-48354-7_7.
https://doi.org/10.1007/978-3-642-48354-7_7

• (2018), Entity Relationship Website, https://www.smartdraw.com/entity-
relationship-diagram/

2.2.5.10 Fault Trees

Fault Trees is a formal model designed to analyze and evaluate the origin and the effects of
faults in the components of an architecture at its subsystem or system level. The graphs repre-
sent the probability of component faults on the edges between nodes, allowing the quick calcu-
lation of risks by following the paths of the tree. Many variants have been proposed that extend
the basic combinatorial nature of this formalism to include time, repairable components or
repairing actions.

Implementing Languages

None

References

• Ruijters, E. and M. Stoelinga (2015), Fault tree analysis: A survey of the state-of-the-art
in modeling, analysis and tools, Computer Science Review, 15-16, pp. 29 – 62, ISSN 1574-
0137, doi: https://doi.org/10.1016/j.cosrev.2015.03.001.
http://www.sciencedirect.com/science/article/pii/S1574013715000027

2.2.5.11 Markov Chains

Markov chains are a probabilistic model of event sequences. When depicted as graph, each
node in a Markov chain represents an event type (e.g. “rolling a die”) and the edges to other
nodes represent the outcomes of the event (e.g. the probability of each side). The events need
to support the Markov property. This means that predictions on the future evolution of the
chain can be made based on the current state, and knowledge of previous evolutions has no
influence on this prediction. Markov chains models can be built for discrete events as well as
for continuous state space.

Implementing Languages

Markov Chains is a formalism for the following languages:

• PRISM Language (see section 2.3.44)

References

• Sigman, K. (2009), 1 IEOR 6711 : Continuous-Time Markov Chains

• Freedman, D. (1983), Markov chains, Springer-Verlag, New York-Berlin, ISBN 0-387-
90808-0, corrected reprint of the 1971 original

2.2.5.12 Process Algebras

Process algebra refer to a group of different calculi that are used to study the evolution of con-
current processes and their relations, including communication, synchronisation and interac-
tions. Individual processes are seen as agents that continuously interact with each other and
the environment. Their well-defined semantics allow for the analysis and verification of highly
complex systems. Common process algebras include the Calculus of Communicating Systems
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(CCS), Communicating Sequential Processes (CSP) and the Algebra of Communicating Pro-
cesses (ACP).

Implementing Languages

None

References

• van Glabbeek, R. J. (1987), Bounded nondeterminism and the approximation induction
principle in process algebra, in STACS 87, Eds. F. J. Brandenburg, G. Vidal-Naquet and
M. Wirsing, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 336–347, ISBN 978-3-540-
47419-7

• Nicola, R. D. (2013), A gentle introduction to Process Algebras

• Fokkink, W. (2000), Introduction to Process Algebra, Springer-Verlag, Berlin, Heidelberg,
1st edition, ISBN 354066579X

2.2.5.13 TFPG (Timed Failure Propagation Graph)

A TFPG model is a relatively simple directed graph structure which identifies the paths along
which failures are expected to propagate in the system. Nodes of a TFPG represent failure
modes or discrepancies, and arcs represent failure propagation paths with a time interval rep-
resenting the lower and upper bound of the failure propagation time. Logical operators AND
and OR are used to represent logical combinations of failures to reach a mode and/or a discrep-
ancy. TFPG can be used at design time to analyse faults propagation and their consequences.
It can also be used at runtime to provide potential explanations to a fault signature that is ob-
served during the system execution since consistency checking can be used to eliminate path
on which timing constraints are not verified.

Implementing Languages

None

References

• Ofsthun, S. C. and S. Abdelwahed (2007), Practical applications of timed failure propaga-
tion graphs for vehicle diagnosis, in 2007 IEEE Autotestcon, pp. 250–259, ISSN 1088-7725,
doi: 10.1109/AUTEST.2007.4374226

• Misra, A. (1999), Robust diagnostic system : structural redundancy approach

• Bozzano, M., A. Cimatti, M. Gario and A. Micheli (2015), SMT-based Validation of Timed
Failure Propagation Graphs, in Proceedings of the Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence, AAAI Press, AAAI’15, pp. 3724–3730, ISBN 0-262-51129-0.
http://dl.acm.org/citation.cfm?id=2888116.2888233

2.2.5.14 VDM (Vienna Development Method)

VDM is a formal description method for e.g. critical and concurrent systems, and compilers.
It was developed in the 1970s and has seen significant industry usage. Its successor version
VDM++ extends the modelling language to also support object-oriented systems.

Implementing Languages

None

References

• Bjørner, D. and C. B. Jones (Eds.) (1978), The Vienna Development Method: The Meta-
Language, Springer-Verlag, Berlin, Heidelberg, ISBN 3-540-08766-4
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2.3 Languages

The following subsections present the most commonly used languages for CPS development.

2.3.1 20-sim Block Diagrams

Block diagrams are a graphical programming and modelling language that is used to model
within the 20-sim tool. They are similar to block diagrams in other languages and tools (e.g.
Simulink).

Supported Formalisms

20-sim Block Diagrams is based on the following formalisms:

• Causal Block Diagrams (see section 2.2.5.3)

Supporting Tools

20-sim Block Diagrams is implemented by the following tools:

• 20-sim (see section 2.4.1)

References

• (2018), 20-sim Website, http://20sim.com/

2.3.2 20-sim Bond Graph

Bond graphs model idealized physical processes as graphs and graph networks. The language
is implemented in 20-sim and allows the initial modelling of a-causal systems and performing
causality analyses.

Supported Formalisms

20-sim Bond Graph is based on the following formalisms:

• Bond Graphs (see section 2.2.5.2)

Supporting Tools

20-sim Bond Graph is implemented by the following tools:

• 20-sim (see section 2.4.1)

References

• (2018), 20-sim Website, http://20sim.com/

2.3.3 AADL (Architecture Analysis and Design Language)

The Architecture Design & Analysis Language (AADL) is an architecture description language
for the modeling of safety-critical real-time embedded systems. It allows the specification,
analysis and code generation of these systems. It is standardized SAE as the As the AS5506C
aerospace standard.

AADL allows modeling both the hardware and software parts of a system thus taking into ac-
count the deployment of a software application onto an execution platform. Many analysis and
code generation tool are provided for AADL.

AADL is extensible and several annex languages have been proposed as described below:

Supported Formalisms

AADL is based on the following formalisms:

• Entity Relationship (see section 2.2.5.9)
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• Data Flow (see section 2.2.2.1)

• Abstract State Machines (see section 2.2.1.1)

Supporting Tools

AADL is implemented by the following tools:

• AADL Inspector (see section 2.4.2)

• STOOD (see section 2.4.71)

• OSATE (see section 2.4.43)

• Ocarina (see section 2.4.39)

• MASIW (see section 2.4.30)

• Polychrony (see section 2.4.49)

References

• (2018b), AADL Website, http://www.aadl.info/

• (2018c), SAE AADL Specification, http://standards.sae.org/as5506b/

2.3.4 ACME

While most Architectural Description Languages (ADLs) considerably overlap on their core fea-
tures, each ADL focuses on different aspects of the software architecture and problem cate-
gories. The creation of a global ADL would be impractical and developing mappings among
each pair of languages would require an excessive amount of effort. Nevertheless, this diver-
sity raises difficulties in transferring information among different ADLs. Acme was proposed as
common representation of architectural concepts and to support the interchange of informa-
tion using a generic language. This reduces the number of required transformations to those
to and from ACME.

Language Features:

• an architectural ontology consisting of seven basic architectural design elements;

• a flexible annotation mechanism supporting association of non-structural information
using externally defined sublanguages;

• a type mechanism for abstracting common, reusable architectural idioms and styles; and

• an open semantic framework for reasoning about architectural descriptions.

Supported Formalisms

None

Supporting Tools

ACME is implemented by the following tools:

• ACME Studio (see section 2.4.3)

References

• Garlan, D., R. T. Monroe and D. Wile (2000), Acme: Architectural description of
component-based systems, in Foundations of component-based systems, Eds. G. T. Leav-
ens and M. Sitaraman, pp. 47–68

• Wile, D. (1996), Semantics for the Architecture Interchange Language, ACME, in Joint Pro-
ceedings of the Second International Software Architecture Workshop (ISAW-2) and Inter-
national Workshop on Multiple Perspectives in Software Development (Viewpoints ’96) on
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SIGSOFT ’96 Workshops, ACM, New York, NY, USA, ISAW ’96, pp. 28–30, ISBN 0-89791-867-
3, doi: 10.1145/243327.243341.
http://doi.acm.org/10.1145/243327.243341

• Garlan, D., R. Monroe and D. Wile (1997), Acme: An architecture description interchange
language, in Proceedings of the 1997 conference of the Centre for Advanced Studies on Col-
laborative research, IBM Press, p. 7

2.3.5 AF3 Language (AutoFOCUS 3 Language)

This is the set of input languages of the AF3 tool.

Supported Formalisms

None

Supporting Tools

AF3 Language is implemented by the following tools:

• AF3 (see section 2.4.4)

References

• (2018), AF3 Website, http://af3.fortiss.org/

2.3.6 Alloy

Alloy is a specification language that allows the description of relations within a model. It is
declarative in nature and allows checking of systems for correctness. It is accompanied by a
tool implementation, the Alloy Analyzer.

Supported Formalisms

None

Supporting Tools

Alloy is implemented by the following tools:

• Alloy Analyzer (see section 2.4.5)

References

• (2018), Alloy Website, http://alloy.lcs.mit.edu/alloy/

2.3.7 ARENA Language

This is the input anguage of the ARENA simulation tool for discrete events.

Supported Formalisms

ARENA Language is based on the following formalisms:

• Discrete Event (see section 2.2.5.7)

Supporting Tools

ARENA Language is implemented by the following tools:

• ARENA (see section 2.4.9)

References

• (2018), Arena Website, https://www.arenasimulation.com/
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2.3.8 AsmetaL

AsmetaL is the language used for the creation of models in the Asmeta toolset.

Supported Formalisms

AsmetaL is based on the following formalisms:

• Abstract State Machines (see section 2.2.1.1)

Supporting Tools

AsmetaL is implemented by the following tools:

• Asmeta Tools (see section 2.4.10)

References

• (2018a), Asmeta Website, http://asmeta.sourceforge.net/

2.3.9 AsmL (Abstract State Machine Language)

AsmL is a language implementation of the Abstract State Machine (ASM) formalism. It runs on
the .NET platform and allows modelling, coding and testing.

Supported Formalisms

AsmL is based on the following formalisms:

• Abstract State Machines (see section 2.2.1.1)

Supporting Tools

None

References

• (2018c), AsmL Website, https://www.microsoft.com/en-us/research/
project/asml-abstract-state-machine-language/

2.3.10 AUTOSAR Language (AUTomotive Open System ARchitecture)

AUTOSAR is a partnership of automotive stakeholders (vehicle manufacturers, suppliers, ser-
vice providers and companies) working on establishing an open and standardized software ar-
chitecture for automotive electronic control units (ECUs). AUTOSAR includes an architecture
description language for the design of vehicular systems. Application software components are
linked through abstract virtual function buses, which represent all hardware and system ser-
vices offered by a vehicular system. This allows designers to focus on the application instead of
the infrastructure software.

Supported Formalisms

AUTOSAR Language is based on the following formalisms:

• Entity Relationship (see section 2.2.5.9)

Supporting Tools

AUTOSAR Language is implemented by the following tools:

• System Desk (see section 2.4.73)

References

• (2018), AUTOSAR Website, https://www.autosar.org/
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2.3.11 CCSL (Clock Constraint Specification Language)

The CCSL is a language that introduces is the modelling of relations between clocks into the
MARTE UML Profile.

Supported Formalisms

None

Supporting Tools

CCSL is implemented by the following tools:

• Time Square (see section 2.4.76)

References

• André, C. and F. Mallet (2008), Clock Constraints in UML/MARTE CCSL, Research Report
RR-6540, INRIA.
https://hal.inria.fr/inria-00280941

2.3.12 CDL (Context Description Language)

CDL is a language that uses UML Activity and Sequence diagrams to model a system’s context
and environment. It is implemented in OBP toolset, which allows properties to be checked.

Supported Formalisms

None

Supporting Tools

CDL is implemented by the following tools:

• OBP Explorer (see section 2.4.38)

• TINA (see section 2.4.77)

References

• Dhaussy, P., J. Auvray, S. de Belloy, F. Boniol and E. Landel (2008), Using context descrip-
tions and property definition patterns for software formal verification, in 2008 IEEE Inter-
national Conference on Software Testing Verification and Validation Workshop, pp. 89–96,
doi: 10.1109/ICSTW.2008.52

• (2018), OBPCDL Website, http://www.obpcdl.org/

2.3.13 Cytoscape Language

This is the input language of the Cytoscape tool for biological networks.

Supported Formalisms

Cytoscape Language is based on the following formalisms:

• Complex Networks (see section 2.2.5.4)

Supporting Tools

Cytoscape Language is implemented by the following tools:

• Cytoscape (see section 2.4.16)

References

• (2018), Cytoscape Website, https://cytoscape.org/
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2.3.14 DEECo (Dependable Emergent Ensembles of Component)

DEECo is an architecture description language with a computational model that is used to de-
sign autonomous components. It is part of ASCENS project. More specifically, it captures the
self-adaptation in the components and implicit exchanging of information in a dynamically
formed group of components (i.e. ensemble). The formation of the ensemble is impacted
by changes in the environment. The concepts presented in this computational model follows
SCEL (see section 2.3.53) That is based on (see section 2.3.53).

From implementation perspective, the user uses java and follows a specific structure in writing
the components and the ensembles, which conceptually matches the DSL presented in the
papers. Multiple java annotations are employed to capture the structure.

Supported Formalisms

None

Supporting Tools

DEECo is implemented by the following tools:

• jDEECo (see section 2.4.26)

References

• Bures, T., I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit and F. Plasil (2013), DEECO:
An Ensemble-based Component System, in Proceedings of the 16th International ACM
Sigsoft Symposium on Component-based Software Engineering, ACM, New York, NY, USA,
CBSE ’13, pp. 81–90, ISBN 978-1-4503-2122-8, doi: 10.1145/2465449.2465462.
http://doi.acm.org/10.1145/2465449.2465462

• Keznikl, J., T. Bures, F. Plasil and M. Kit (2012), Towards Dependable Emergent Ensembles
of Components: The DEECo Component Model, in 2012 Joint Working IEEE/IFIP Con-
ference on Software Architecture and European Conference on Software Architecture, pp.
249–252, doi: 10.1109/WICSA-ECSA.212.39

•

•

2.3.15 EAST-ADL

EAST-ADL is an ADL for the automotive embedded domain. It ties concepts from UML, SysML
and AADL to the AUTOSAR environment.

Supported Formalisms

None

Supporting Tools

EAST-ADL is implemented by the following tools:

• Papyrus (see section 2.4.47)

References

• (2018), EAST-ADL Website, http://www.east-adl.info

2.3.16 Entity Relationship Diagram

Entity relationship diagrams are a visual, graphical modelling language for specifying relations
within a domain. The language is primarily used to create models of relational databases.

Supported Formalisms
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Entity Relationship Diagram is based on the following formalisms:

• Entity Relationship (see section 2.2.5.9)

Supporting Tools

None

References

• (2018), Entity Relationship Website, https://www.smartdraw.com/entity-
relationship-diagram/

2.3.17 FCM (Flex-eWare Component Model)

FCM is an extension of the CORBA Component Model (CCM) in the aim of providing a com-
mon meta-model for component-oriented software modelling. The targeted domain of FCM
modes are embedded and real-time systems. FCM notably offers flexible interaction through
connectors and user defined port-types.

Supported Formalisms

None

Supporting Tools

None

References

• (2018), FCM Website, http://www.ec3m.net/

• Jan, M., C. Jouvray, F. Kordon, A. Kung, J. Lalande, F. Loiret, J. Navas, L. Pautet, J. Pulou,
A. Radermacher and L. Seinturier (2012), Flex-eWare: a Flexible MDE-based Solution for
Designing and Implementing Embedded Distributed Systems, Software: Practice and Ex-
perience, 42, 12, pp. 1467–1494, doi: 10.1002/spe.1143.
https://hal.inria.fr/inria-00628310

2.3.18 FIACRE (Intermediate Format for the Embedded Distributed Component Architec-
tures)

FIACRE is a formally defined language for representing compositionaly of component archi-
tectures. It supports the expression of embedded and distributed systems aspects (behaviour,
timing) for formal verification and simulation.

Supported Formalisms

FIACRE is based on the following formalisms:

• Petri Net (see section 2.2.4.2)

• Timed Petri Nets (see section 2.2.4.5)

Supporting Tools

FIACRE is implemented by the following tools:

• OBP Explorer (see section 2.4.38)

• TINA (see section 2.4.77)

References

• (2018), FIACRE Website, http://projects.laas.fr/fiacre/
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2.3.19 FlexSim Language

This is the input language of the FlexSim tool for discrete events simulation.

Supported Formalisms

FlexSim Language is based on the following formalisms:

• Discrete Event (see section 2.2.5.7)

Supporting Tools

FlexSim Language is implemented by the following tools:

• FlexSim (see section 2.4.20)

References

• (2018), Flexsim Website, https://www.flexsim.com/flexsim

2.3.20 FUML (Foundational Subset for Executable UML Models)

FUML is a subset of UML 2 that allows the structural and behavioural semantic description of
systems. The models are analysable and executable.

Supported Formalisms

None

Supporting Tools

None

References

• (2018), FUML Website, https://www.omg.org/spec/FUML/

2.3.21 Gofer

Gofer is functional programming language that is a subset of Haskell and used to specify ab-
stract state machines. It is used as input specification for the AsmGofer tool.

Supported Formalisms

Gofer is based on the following formalisms:

• Abstract State Machines (see section 2.2.1.1)

Supporting Tools

Gofer is implemented by the following tools:

• AsmGofer (see section 2.4.11)

References

• (2018b), AsmGofer Website, https://tydo.eu/AsmGofer/

2.3.22 HyTech Language

This is the input language of the HyTech model checker.

Supported Formalisms

HyTech Language is based on the following formalisms:

• Timed Automata (see section 2.2.1.11)

Supporting Tools
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HyTech Language is implemented by the following tools:

• HyTech (see section 2.4.23)

References

• Henzinger, T. A., P.-H. Ho and H. Wong-Toi (1997), HyTech: A model checker for hybrid
systems, in Computer Aided Verification, Ed. O. Grumberg, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 460–463, ISBN 978-3-540-69195-2

• (2018), HyTech Website, https://ptolemy.berkeley.edu/projects/
embedded/research/hytech/

2.3.23 iGraph Language

This is the input language of the iGraph tool for complex networks analysis.

Supported Formalisms

iGraph Language is based on the following formalisms:

• Complex Networks (see section 2.2.5.4)

Supporting Tools

iGraph Language is implemented by the following tools:

• iGraph (see section 2.4.24)

References

• (2018), iGraph Website, https://igraph.org/

2.3.24 IRM (Invariant Refinement Method)

IRM provides the developer with a way to design Cyber-Physical Systems (CPS). The designed
system follows the concepts presented in SCEL, which includes systems consisting of ensem-
bles of components (e.g. DEECo-based systems). It is a method to map invariants from re-
quirements level with parts of the system architecture.

Supported Formalisms

None

Supporting Tools

None

References

• (2018), IRM Website, http://d3s.mff.cuni.cz/software/irm/

2.3.25 IRM SA Language

IRM-SA (IRM for Self-Adaptation), which is an extension to IRM, provides developers with the
ability to express alternative decompositions, which become as a part of self-adaptation during
the runtime. The alternatives are associated with a set of assumptions related to the environ-
ment, so the choice of the alternatives should preserve the invariants under their associated
assumptions.

Supported Formalisms

None

Supporting Tools

IRM SA Language is implemented by the following tools:
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• IRM SA (see section 2.4.25)

References

• (2018), IRM Website, http://d3s.mff.cuni.cz/software/irm/

2.3.26 Kronos Language

This is the input language of the Kronos tool for timed automata.

Supported Formalisms

Kronos Language is based on the following formalisms:

• Linear Temporal Logic (see section 2.2.3.3)

• Timed Automata (see section 2.2.1.11)

Supporting Tools

Kronos Language is implemented by the following tools:

• Kronos (see section 2.4.27)

References

• Bérard, B., M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Schnoebelen and
P. Mckenzie (2001), KRONOS — Model Checking of Real-time Systems, Springer Berlin Hei-
delberg, Berlin, Heidelberg, pp. 161–168, ISBN 978-3-662-04558-9, doi: 10.1007/978-3-
662-04558-9_16.
https://doi.org/10.1007/978-3-662-04558-9_16

• Bozga, M., C. Daws, O. Maler, A. Olivero, S. Tripakis and S. Yovine (1998), Kronos: A model-
checking tool for real-time systems, in Formal Techniques in Real-Time and Fault-Tolerant
Systems, Eds. A. P. Ravn and H. Rischel, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
298–302, ISBN 978-3-540-49792-9

• (2018), Kronos Website,http://www-verimag.imag.fr/~tripakis/openkronos.
html

2.3.27 LabVIEW Language

This is the input language of the LabVIEW tool.

Supported Formalisms

LabVIEW Language is based on the following formalisms:

• Causal Block Diagrams (see section 2.2.5.3)

Supporting Tools

LabVIEW Language is implemented by the following tools:

• LabVIEW (see section 2.4.28)

References

• (2018), LabVIEW Website, http://www.ni.com/en-us/shop/labview/
labview-details.html

2.3.28 Lustre

Lustre is a declarative, synchronous language. It provides a sound model of computation with
predictable performance, properties verification methods (liveness, deadlock freedom).

Supported Formalisms
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Lustre is based on the following formalisms:

• Data Flow (see section 2.2.2.1)

Supporting Tools

Lustre is implemented by the following tools:

• Scade Suite (see section 2.4.62)

References

• (2018), SCADE Website, https://www.ansys.com/products/embedded-
software/ansys-scade-suite

2.3.29 MARTE (Modeling and Analysis of Real-Time and Embedded systems)

The UML profile for MARTE is an extension of UML that adds missing aspects of the real time
and embedded systems domain. The profile supports the modelling and analysis of schedula-
bility, performance and time.

Supported Formalisms

MARTE is based on the following formalisms:

• Entity Relationship (see section 2.2.5.9)

Supporting Tools

MARTE is implemented by the following tools:

• Papyrus (see section 2.4.47)

References

• (2018), MARTE Website, http://www.omg.org/spec/MARTE/

2.3.30 Mathematica Language

This is the input language of the Mathematica tool.

Supported Formalisms

Mathematica Language is based on the following formalisms:

• Differential Equations (see section 2.2.5.5)

• Complex Networks (see section 2.2.5.4)

Supporting Tools

Mathematica Language is implemented by the following tools:

• Mathematica (see section 2.4.33)

References

• (2018a), Mathematica-Complex-Networks Website, http://www.wolfram.com/
mathematica/

• (2018b), Mathematica Website, http://www.wolfram.com/mathematica/

2.3.31 MetaH

MetaH is a language for the modeling of reliable, real-time multiprocessor avionics system ar-
chitectures that was developed in 1988 at Honeywell. It is the ancestor of the AADL language.
See section 2.3.3.
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Supported Formalisms

MetaH is based on the following formalisms:

• Entity Relationship (see section 2.2.5.9)

Supporting Tools

None

References

• (2018), MetaH Website, http://hopl.info/showlanguage.prx?exp=7769

2.3.32 Modelica

Modelica is a multi-domain modelling language for complex systems modelling and simula-
tion. Its tool-implementations are wide spread and offer support for many different engineer-
ing domains (e.g. hydraulic, electric and mechanical).

Supported Formalisms

Modelica is based on the following formalisms:

• Non-Linear Hybrid Automata (see section 2.2.1.7)

• Differential Equations (see section 2.2.5.5)

• Stochastic Hybrid Automata (see section 2.2.1.9)

• Hybrid Automata (see section 2.2.1.4)

• Discontinuous Systems (see section 2.2.5.6)

• Linear Hybrid Automata (see section 2.2.1.6)

Supporting Tools

Modelica is implemented by the following tools:

• Dymola (see section 2.4.17)

• AMESim (see section 2.4.7)

• Open Modelica (see section 2.4.41)

References

• (2018), MODELICA Website, https://www.modelica.org/

2.3.33 MS4 Me Language

Supported Formalisms

MS4 Me Language is based on the following formalisms:

• Discrete Event (see section 2.2.5.7)

Supporting Tools

MS4 Me Language is implemented by the following tools:

• MS4 Me (see section 2.4.34)

References

• (2018), MS4 Website, http://www.ms4systems.com/
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2.3.34 Network Workbench Language

This is the input language of the Network Workbench tool for complex networks.

Supported Formalisms

Network Workbench Language is based on the following formalisms:

• Complex Networks (see section 2.2.5.4)

Supporting Tools

Network Workbench Language is implemented by the following tools:

• Network Workbench (see section 2.4.35)

References

• (2018a), NetworkWorkbench Website, http://nwb.cns.iu.edu/

2.3.35 NetworkX Language

This is the input language of the NetworkX tool for complex networks.

Supported Formalisms

NetworkX Language is based on the following formalisms:

• Complex Networks (see section 2.2.5.4)

Supporting Tools

NetworkX Language is implemented by the following tools:

• NetworkX (see section 2.4.36)

References

• (2018b), NetworkX Website, https://networkx.github.io/

2.3.36 NuSMV Language

NuSMV is a symbolic model checker for the verification of industrial designs. It has its own
input specification language (the NuSMV Language) that allows specifying the designs to be
verified. The language syntax and semantics are described in the nuSMV user manual.

Supported Formalisms

NuSMV Language is based on the following formalisms:

• Non-Linear Hybrid Automata (see section 2.2.1.7)

• Hybrid Automata (see section 2.2.1.4)

• CTL (see section 2.2.3.1)

• Temporal Logic (see section 2.2.3.4)

• Linear Hybrid Automata (see section 2.2.1.6)

Supporting Tools

NuSMV Language is implemented by the following tools:

• NuSMV (see section 2.4.37)

References

• (2018), NuSMV Website, http://nusmv.fbk.eu/
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2.3.37 OCL (Object Constraint Language)

OCL is a declarative constraint language for UML models. It is standardized by the Object Man-
agement Group (OMG). A version exists for being used with Ecore models of the Eclipse Mod-
eling Framework (EMF).

Supported Formalisms

None

Supporting Tools

OCL is implemented by the following tools:

• Papyrus (see section 2.4.47)

References

• (2018), OCL Website, https://www.omg.org/spec/OCL

2.3.38 OMEGA2

OMEGA2 is an extension of UML for the formal specification and validation of real-time sys-
tems.

Supported Formalisms

None

Supporting Tools

None

References

• Ober, I. and I. Dragomir (2010), OMEGA2: A New Version of the Profile and the Tools, in
2010 15th IEEE International Conference on Engineering of Complex Computer Systems,
pp. 373–378, doi: 10.1109/ICECCS.2010.41

2.3.39 OMNet++ Language

Supported Formalisms

OMNet++ Language is based on the following formalisms:

• Discrete Event (see section 2.2.5.7)

Supporting Tools

OMNet++ Language is implemented by the following tools:

• OMNeT++ (see section 2.4.40)

References

• (2018), OMNetPP Website, https://www.omnetpp.org/

2.3.40 Pajek Language

This is the input language of the Pajek tool for complex networks.

Supported Formalisms

Pajek Language is based on the following formalisms:

• Complex Networks (see section 2.2.5.4)

Supporting Tools
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Pajek Language is implemented by the following tools:

• Pajek (see section 2.4.45)

References

• (2018), Pajek Website, http://mrvar.fdv.uni-lj.si/pajek/

2.3.41 Palladio Component Model

The Palladio Component model builds the foundation of the Palladio software approach. Its
modularity takes user interaction with the system, and control and data flows into account
and thereby generates a dynamic, adaptable quality-of-service model for early performance,
reliability, maintainability, and cost predictions for software architectures.

Supported Formalisms

None

Supporting Tools

Palladio Component Model is implemented by the following tools:

• Palladio (see section 2.4.46)

References

• (2018), Palladio Website, https://www.palladio-simulator.com/home/

2.3.42 Petri Net Diagram

A representation of Petri nets as bi-partite graphs. Places are drawn as circles, transitions as
rectangles and pre- and post-conditions as annotated, directed arcs. Tokens are drawn as black
dots for Place-Transition nets, high level Petri nets might use other encoding for tokens of dif-
ferent types.

Supported Formalisms

Petri Net Diagram is based on the following formalisms:

• Petri Net (see section 2.2.4.2)

• Petri Nets with Priority (see section 2.2.4.3)

• Stochastic Petri Nets (see section 2.2.4.4)

• High Level Petri Nets (see section 2.2.4.1)

• Timed Petri Nets (see section 2.2.4.5)

Supporting Tools

Petri Net Diagram is implemented by the following tools:

• StrataGEM (see section 2.4.72)

• Alpina (see section 2.4.6)

References

• Ghezzi, C., D. Mandrioli, S. Morasca and M. Pezze (1991), A unified high-level Petri net
formalism for time-critical systems, IEEE Transactions on Software Engineering, 17, 2, pp.
160–172, ISSN 0098-5589, doi: 10.1109/32.67597

• Chachkov, S. and D. Buchs (2001), From formal specifications to ready-to-use software
components: the concurrent object oriented Petri net approach, in Proceedings Second
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International Conference on Application of Concurrency to System Design, pp. 99–110, doi:
10.1109/CSD.2001.981768

• Seiger, R., C. Keller, F. Niebling and T. Schlegel (2015), Modelling complex and flexible
processes for smart cyber-physical environments, Journal of Computational Science, 10,
pp. 137 – 148, ISSN 1877-7503, doi: https://doi.org/10.1016/j.jocs.2014.07.001.
http://www.sciencedirect.com/science/article/pii/S1877750314000970

2.3.43 PNML (Petri Net Markup Language)

PNML is an XML-based encoding of Petri nets and Petri net diagrams.

Supported Formalisms

PNML is based on the following formalisms:

• Petri Net (see section 2.2.4.2)

• Petri Nets with Priority (see section 2.2.4.3)

• Stochastic Petri Nets (see section 2.2.4.4)

• Timed Petri Nets (see section 2.2.4.5)

• High Level Petri Nets (see section 2.2.4.1)

Supporting Tools

PNML is implemented by the following tools:

• StrataGEM (see section 2.4.72)

• ePNK (see section 2.4.18)

References

• (2018), PNML Website, http://www.pnml.org/

2.3.44 PRISM Language

The PRISM input language allows the specification of models within the PRISM tool, such as
discrete-time Markov chains (DTMCs), continuous-time Markov chains (CTMCs), Markov de-
cision processes (MDPs) and probabilistic timed automata (PTAs).

Supported Formalisms

PRISM Language is based on the following formalisms:

• Markov Chains (see section 2.2.5.11)

• PTAs (see section 2.2.1.8)

Supporting Tools

PRISM Language is implemented by the following tools:

• PRISM (see section 2.4.51)

References

• (2018), PRISM Website, http://www.prismmodelchecker.org

2.3.45 Promela

Promela is a language for the modelling of distributed systems and concurrent processes. The
language supports expression of synchronisation points and communication means (both syn-

37

http://www.sciencedirect.com/science/article/pii/S1877750314000970
http://www.pnml.org/
http://www.prismmodelchecker.org


2. Structured Catalog of Modelling Languages and Tools

chronous and asynchronous). Promela models can be analysed with the SPIN model checker,
although many other tools also offer support for Promela models.

Supported Formalisms

None

Supporting Tools

Promela is implemented by the following tools:

• Spin (see section 2.4.69)

References

• Neumann, R. (2014), Using Promela in a Fully Verified Executable LTL Model Checker, in
Verified Software: Theories, Tools and Experiments, Eds. D. Giannakopoulou and D. Kroen-
ing, Springer International Publishing, Cham, pp. 105–114, ISBN 978-3-319-12154-3

2.3.46 PROMISE Language (simPle RObot Mission SpEcification Language)

PROMISE is a Domain Specific Language (DSL) that supports non-technical end users, i.e.
users that do not necessarily have technical knowledge in mission specification. The DSL sup-
ports the specification of complex missions through tasks and operators. Tasks allow the spec-
ification of high-level actions that can be performed by a single robot. Specifically, tasks are
specified by exploiting the PsALM specification patterns for robotic missions. Operators allow
the composition of these tasks into complex missions.

Supported Formalisms

PROMISE Language is based on the following formalisms:

• Linear Temporal Logic (see section 2.2.3.3)

Supporting Tools

PROMISE Language is implemented by the following tools:

• PsALM (see section 2.4.53)

• PROMISE (see section 2.4.52)

References

• (2018), PROMISE Website, https://sergiogarcia6.wixsite.com/promise

2.3.47 PSC (Property Sequence Chart)

PSC is a simple but expressive language for specifying temporal properties. Two are the main
requirements of PSC, simplicity and expressiveness. Remaining close to the graphical nota-
tion of UML2.0 Sequence Diagrams and Message Sequence Charts (MSC), the requirement of
simplicity is satisfied. The PSC expressiveness is measured with the property specification pat-
terns.

Supported Formalisms

PSC is based on the following formalisms:

• Linear Temporal Logic (see section 2.2.3.3)

Supporting Tools

PSC is implemented by the following tools:

• PragmaDevTracer (see section 2.4.50)
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References

• (2018), PSC Website, http://www.di.univaq.it/psc2ba/index.html

• Autili, M., P. Inverardi and P. Pelliccione (2007), Graphical scenarios for specifying tempo-
ral properties: an automated approach, Automated Software Engineering, 14, 3, pp. 293–
340, ISSN 1573-7535, doi: 10.1007/s10515-007-0012-6.
https://doi.org/10.1007/s10515-007-0012-6

2.3.48 PSPF Language

PSPF provides a natural language interface based on a Structured English Grammar, an English-
like specification scheme to capture pattern-based system properties, to specify temporal
properties. It supports also the translation towards temporal logic via a collection of mappings
from English to suitable logic formalisms, including LTL, CTL, MTL, TCTL, CSL, and PLTL.

Supported Formalisms

PSPF Language is based on the following formalisms:

• Temporal Logic (see section 2.2.3.4)

Supporting Tools

PSPF Language is implemented by the following tools:

• PSPWizard (see section 2.4.54)

References

• (2018b), PSPWizard Website, http://www.ict.swin.edu.au/personal/
mlumpe/PSPWizard/

2.3.49 Ptolemy Language

This is the input language of the Ptolemy tool.

Supported Formalisms

Ptolemy Language is based on the following formalisms:

• Non-Linear Hybrid Automata (see section 2.2.1.7)

• Hybrid Automata (see section 2.2.1.4)

• Stochastic Hybrid Automata (see section 2.2.1.9)

• Discontinuous Systems (see section 2.2.5.6)

• Linear Hybrid Automata (see section 2.2.1.6)

Supporting Tools

Ptolemy Language is implemented by the following tools:

• Ptolemy (see section 2.4.56)

• CyPhySim (see section 2.4.15)

References

• (2018), Ptolemy Website, http://ptolemy.eecs.berkeley.edu/

2.3.50 PyDSTool Language

This is the input language of the PyDSTool for the simulation and analysis of dynamical systems
models of physical system.

39

http://www.di.univaq.it/psc2ba/index.html
https://doi.org/10.1007/s10515-007-0012-6
http://www.ict.swin.edu.au/personal/mlumpe/PSPWizard/
http://www.ict.swin.edu.au/personal/mlumpe/PSPWizard/
http://ptolemy.eecs.berkeley.edu/


2. Structured Catalog of Modelling Languages and Tools

Supported Formalisms

PyDSTool Language is based on the following formalisms:

• Electrical Linear Networks (see section 2.2.5.8)

• Non-Linear Hybrid Automata (see section 2.2.1.7)

• Differential Equations (see section 2.2.5.5)

• Hybrid Automata (see section 2.2.1.4)

• Stochastic Hybrid Automata (see section 2.2.1.9)

• Discontinuous Systems (see section 2.2.5.6)

• Linear Hybrid Automata (see section 2.2.1.6)

Supporting Tools

PyDSTool Language is implemented by the following tools:

• PyDSTool (see section 2.4.57)

References

• (2018), PyDSTool Website, http://www2.gsu.edu/~matrhc/PyDSTool.htm

2.3.51 Random-Graph Networks

Supported Formalisms

Random-Graph Networks is based on the following formalisms:

• Complex Networks (see section 2.2.5.4)

Supporting Tools

Random-Graph Networks is implemented by the following tools:

• NetworkX (see section 2.4.36)

References

2.3.52 Scale-Free Networks

Supported Formalisms

Scale-Free Networks is based on the following formalisms:

• Complex Networks (see section 2.2.5.4)

Supporting Tools

Scale-Free Networks is implemented by the following tools:

• NetworkX (see section 2.4.36)

References

2.3.53 SCEL

SCEL is a specification language for dynamic distributed systems with collective behavior. It
was represented in ASCENS project. More specifically, the components in the system exchange
data implicitly (i.e. not by explicit calling of methods in other component), so the components
are able to collaborate to achieve a common goal. This method increases the rubostness in the
system and fits to cases of continously changing environments.

Supported Formalisms
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None

Supporting Tools

None

References

• De Nicola, R., D. Latella, A. L. Lafuente, M. Loreti, A. Margheri, M. Massink, A. Morichetta,
R. Pugliese, F. Tiezzi and A. Vandin (2015), The SCEL Language: Design, Implementation,
Verification, Springer International Publishing, Cham, pp. 3–71, ISBN 978-3-319-16310-9,
doi: 10.1007/978-3-319-16310-9_1.
https://doi.org/10.1007/978-3-319-16310-9_1

• (2018), ASCENS Website, http://www.ascens-ist.eu/

2.3.54 Scilab Language

This is the input language of the Scilab tool.

Supported Formalisms

Scilab Language is based on the following formalisms:

• Non-Linear Hybrid Automata (see section 2.2.1.7)

• Differential Equations (see section 2.2.5.5)

• Hybrid Automata (see section 2.2.1.4)

• Stochastic Hybrid Automata (see section 2.2.1.9)

• Discontinuous Systems (see section 2.2.5.6)

• Linear Hybrid Automata (see section 2.2.1.6)

Supporting Tools

Scilab Language is implemented by the following tools:

• Scilab (see section 2.4.63)

References

• (2018), Scilab Website, https://www.scilab.org/

2.3.55 Signal

Signal is a synchronous language aiming at implementing applications with several clocks. Ini-
tially developed for signal processing applications, it was then studied in the context of real-
time systems where functions are often executed with different activation rates. Several exten-
sion of the language have been proposed since its first definition in 1982, including various
extensions of synchronous data flow graphs.

Supported Formalisms

Signal is based on the following formalisms:

• Data Flow (see section 2.2.2.1)

Supporting Tools

Signal is implemented by the following tools:

• Polychrony (see section 2.4.49)

References
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• (2018), Polychrony Website, http://www.irisa.fr/espresso/Polychrony/

2.3.56 SimEvents Language

This is the input language of the SimEvents simulation tool.

Supported Formalisms

SimEvents Language is based on the following formalisms:

• Discrete Event (see section 2.2.5.7)

Supporting Tools

SimEvents Language is implemented by the following tools:

• SimEvents (see section 2.4.64)

References

• (2018a), SimEvents Website, https://www.mathworks.com/products/
simevents.html

2.3.57 Simio Language

This is the input language of the Simio simulation tool.

Supported Formalisms

Simio Language is based on the following formalisms:

• Discrete Event (see section 2.2.5.7)

Supporting Tools

Simio Language is implemented by the following tools:

• Simio (see section 2.4.65)

References

• (2018b), Simio Website, https://www.simio.com/products/simulation-
software.php

2.3.58 SIMUL8 Language

Supported Formalisms

SIMUL8 Language is based on the following formalisms:

• Discrete Event (see section 2.2.5.7)

Supporting Tools

SIMUL8 Language is implemented by the following tools:

• SIMUL8 (see section 2.4.66)

References

• (2018), SIMUL8 Website, https://www.simul8.com/

2.3.59 Simulink Language

The Simulink tool provides a language that allows the modelling of multi-domain systems. The
language has both graphical and textual features that model the signal flow between computa-
tion blocks.
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Supported Formalisms

Simulink Language is based on the following formalisms:

• Electrical Linear Networks (see section 2.2.5.8)

• Differential Equations (see section 2.2.5.5)

• Causal Block Diagrams (see section 2.2.5.3)

• Stochastic Hybrid Automata (see section 2.2.1.9)

• Discontinuous Systems (see section 2.2.5.6)

Supporting Tools

Simulink Language is implemented by the following tools:

• Simulink (see section 2.4.67)

References

• (2018), Simulink Website, https://ch.mathworks.com/de/products/
simulink.html

2.3.60 Small-World Networks

Supported Formalisms

Small-World Networks is based on the following formalisms:

• Complex Networks (see section 2.2.5.4)

Supporting Tools

Small-World Networks is implemented by the following tools:

• NetworkX (see section 2.4.36)

References

2.3.61 SMT-LIB

SMT-LIB is a language designed to aid the development and exchange of Satisfiability Modulo
Theories tools. SMT-LIB defines a language format for the description of theories and models.

Supported Formalisms

SMT-LIB is based on the following formalisms:

• First Order Logic (see section 2.2.3.2)

Supporting Tools

None

References

• (2018), SMT-LIB Website, http://smtlib.cs.uiowa.edu/

2.3.62 Spatio-Temporal UML Statechart

STUML statechart is an extension of UML MARTE statechart based on hybrid automata. Hybrid
automata bring a set of differential equations into MARTE to represent the continuous dynamic
behavior of the system.

Supported Formalisms

None
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Supporting Tools

None

References

• Liu, Z., J. Liu, J. He and Z. Ding (2012), Spatio-temporal UML Statechart for Cyber-Physical
Systems, in 2012 IEEE 17th International Conference on Engineering of Complex Computer
Systems, pp. 137–146

2.3.63 SPICE Language (Simulation Program with Integrated Circuit Emphasis Language)

Supported Formalisms

SPICE Language is based on the following formalisms:

• Electrical Linear Networks (see section 2.2.5.8)

Supporting Tools

SPICE Language is implemented by the following tools:

• SPICE (see section 2.4.68)

References

2.3.64 Stateflow Language

This is the input language of the Mathworks Stateflow tool.

Supported Formalisms

Stateflow Language is based on the following formalisms:

• Non-Linear Hybrid Automata (see section 2.2.1.7)

• Hybrid Automata (see section 2.2.1.4)

• Stochastic Hybrid Automata (see section 2.2.1.9)

• Discontinuous Systems (see section 2.2.5.6)

• Linear Hybrid Automata (see section 2.2.1.6)

Supporting Tools

Stateflow Language is implemented by the following tools:

• Stateflow (see section 2.4.70)

References

• (2018), Stateflow Website,https://www.mathworks.com/products/stateflow.
html

2.3.65 Stitch

Stitch is a language for describing strategies and tactics in self-adaptive systems at the architec-
tural level. It allows representing the relation between decision trees and business objectives
to be used in self-adaptation processes. It also provides the ability to express delays and uncer-
tainties.

Supported Formalisms

None

Supporting Tools

Stitch is implemented by the following tools:
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• Rainbow (see section 2.4.58)

References

• Cheng, S.-W. and D. Garlan (2012), Stitch: A language for architecture-based self-
adaptation, Journal of Systems and Software, 85, 12, pp. 2860 – 2875, ISSN 0164-1212,
doi: https://doi.org/10.1016/j.jss.2012.02.060, self-Adaptive Systems.
http://www.sciencedirect.com/science/article/pii/S0164121212000714

2.3.66 SysML (Systems Modeling Language)

SysML is a modeling language for systems engineering supporting the specification, analysis,
design, verification and validation of systems and systems-of-systems. It is an extension and
adaptation of UML.. SysML simplifies UML by removing some of ist software constructs, reuse
7diagrams from UML and introduces two new diagrams for requirement engineering and for
quantitative analysis (parametric diagram).

Supported Formalisms

None

Supporting Tools

SysML is implemented by the following tools:

• PTC MBSE (see section 2.4.55)

• Papyrus (see section 2.4.47)

• TTool (see section 2.4.78)

References

• (2018a), SysML Website, http://sysml.org/

2.3.67 SystemC

SystemC is an IEEE standardized Hardware Description Language (HDL) language. Contrary
to other HDLs (e.g. VHDL, Verilog), SystemC is not a complete language by itself, but rather
a set of C++ classes and macros, that allow the representation of HDL-concepts. SystemC in-
cludes built-in support for embedded concepts (e.g. mutex, semaphores, four-valued logic)
and measures time in sub-second granularity (e.g. picosecond).

The use of C++ as a basis provides SystemC with flexibility and adaptability so that models
are written just as any other C++ code, specifying ports, signals and channels. Functionality is
modelled using methods, which execute at predefined events and threads, which run contin-
uously until they finish or temporarily seize execution (SystemC provides a simulation kernel
that prescribes cooperative multi-threading).

Most functional tooling and verification support focuses on the generation and verification
of Transaction-Level Modelling and Register-Transfer Level designs, which is too low-level for
large CPS purposes that focus on the combination of many components.

Supported Formalisms

SystemC is based on the following formalisms:

• Electrical Linear Networks (see section 2.2.5.8)

Supporting Tools

None

References

45

http://www.sciencedirect.com/science/article/pii/S0164121212000714
http://sysml.org/


2. Structured Catalog of Modelling Languages and Tools

• Ruf, J., D. W. Hoffmann, J. Gerlach, T. Kropf, W. Rosenstiel and W. Müller (2001), The sim-
ulation semantics of systemC, in DATE

• (2018c), SystemC Website, http://accellera.org/downloads/standards/
systemc

• Zhang, T., K. Chakrabarty and R. Fair (2002), Microelectrofluidic Systems: Modeling and
Simulation, Nano- and Microscience, Engineering, Technology and Medicine, CRC Press,
ISBN 978-1-4200-4049-4

• Herber, P. and S. Glesner (2015), Verification of Embedded Real-time Systems, in Formal
Modeling and Verification of Cyber-Physical Systems, 1st International Summer School on
Methods and Tools for the Design of Digital Systems, Bremen, Germany, September 2015,
pp. 1–25, doi: 10.1007/978-3-658-09994-7_1.
https://doi.org/10.1007/978-3-658-09994-7_1

• Salem, A. (2003), Formal Semantics of Synchronous SystemC, in Automation and Test
in Europe Conference and Exhibition 2003 Design, pp. 376–381, doi: 10.1109/DATE.2003.
1253637

• Black, D. C., J. Donovan, B. Bunton and A. Keist (2010), SystemC: From the Ground Up,
Springer-Verlag New York, Inc., Secaucus, NJ, USA, ISBN 0-387-29240-3

2.3.68 TEPE (Temporal Property Expression Language)

TEPE is a graphical TEmporal Property Expression language based on SysML parametric dia-
grams. TEPE enriches the expressiveness of other common property languages in particular
with the notion of physical time and unordered signal reception.

Supported Formalisms

None

Supporting Tools

TEPE is implemented by the following tools:

• TTool (see section 2.4.78)

References

• Knorreck, D., L. Apvrille and P. D. Saqui-Sannes (2010), TEPE: A SysML language for
timed-constrained property modeling and formal verification, in Proceedings of the
UML&Formal Methods Workshop (UML&FM), November 2010, pp. 17–47

2.3.69 UML (Unified Modeling Language)

UML is a set of graphical diagrams that allow the specification of a system’s structure and be-
haviour. It is standardised by the Object Modeling Group (OMG). The language is flexible and
can be adapted using UML Profiles.

Supported Formalisms

UML is based on the following formalisms:

• Entity Relationship (see section 2.2.5.9)

Supporting Tools

UML is implemented by the following tools:

• Papyrus (see section 2.4.47)

• TTool (see section 2.4.78)
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• UML Analyzer (see section 2.4.79)

References

• (2018b), UML Website, http://www.uml.org/

2.3.70 UML-RT

UML-RT is an extension of UML for the modelling of real-time systems.

Supported Formalisms

None

Supporting Tools

None

References

• Grosu, R., M. Broy, B. Selic and G. Stefănescu (1999), What is Behind UML-RT?, Springer
US, Boston, MA, pp. 75–90, ISBN 978-1-4615-5229-1, doi: 10.1007/978-1-4615-5229-1_6.
https://doi.org/10.1007/978-1-4615-5229-1_6

2.3.71 UPPAAL Language

The UPPAAAL language is based on three language references for model definition, require-
ments specification and an expression language. In combination, they can be used to simulate,
analyse and verify extended timed automata.

Supported Formalisms

UPPAAL Language is based on the following formalisms:

• Timed Automata (see section 2.2.1.11)

Supporting Tools

UPPAAL Language is implemented by the following tools:

• UPPAAL (see section 2.4.80)

References

• (2018b), UPPAAL Website, http://www.uppaal.com/

2.3.72 UPPAAL SMC Language

This is the input language of UPPAAL SMC, which is a tool that allows the statistical model
checking for probabilistic performance checking. The goal is to use statistical tools to give
probabilities on whether a tool contains a property or not.

Supported Formalisms

UPPAAL SMC Language is based on the following formalisms:

• Stochastic Timed Automata (see section 2.2.1.10)

Supporting Tools

None

References

• (2018a), UPPAAL-SMC Website, http://people.cs.aau.dk/~kgl/SSFT2015/
SMC/
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2.3.73 VDM-SL (Vienna Development Method Specification Language)

VDM-SL is the formal specification language of the Vienna Development Method. It supports
the description of data and functionality in textual form.

Supported Formalisms

None

Supporting Tools

VDM-SL is implemented by the following tools:

• Overture (see section 2.4.44)

• Crescendo (see section 2.4.14)

References

2.3.74 Visone Language

This is the input language of the Visone tool for social networks.

Supported Formalisms

Visone Language is based on the following formalisms:

• Complex Networks (see section 2.2.5.4)

Supporting Tools

Visone Language is implemented by the following tools:

• Visone (see section 2.4.81)

References

• (2018), Visone Website, https://visone.info/

2.3.75 XPPAUT Language

This is the input language of the XPPAUT tool for solving various mathematical equations.

Supported Formalisms

XPPAUT Language is based on the following formalisms:

• Electrical Linear Networks (see section 2.2.5.8)

• Differential Equations (see section 2.2.5.5)

• Discontinuous Systems (see section 2.2.5.6)

Supporting Tools

XPPAUT Language is implemented by the following tools:

• XPPAUT (see section 2.4.82)

References

• (2018), XPPAUT Website, http://www.math.pitt.edu/~bard/xpp/xpp.html

2.3.76 Zélus

Zélus is a Lustre-inspired, synchronous language. It aims to extend classical synchronous lan-
guages by adding support for ordinary differential equations. Thus it is possible to model con-
tinuous behaviour.

Supported Formalisms
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Zélus is based on the following formalisms:

• Differential Equations (see section 2.2.5.5)

• Data Flow (see section 2.2.2.1)

Supporting Tools

None

References

• Bourke, T. and M. Pouzet (2013), Zélus: A Synchronous Language with ODEs, in 16th In-
ternational Conference on Hybrid Systems: Computation and Control

• Benveniste, A., T. Bourke, B. Caillaud and M. Pouzet (2011), Divide and recycle: types
and compilation for a hybrid synchronous language, in Proceedings of the ACM SIG-
PLAN/SIGBED 2011 conference on Languages, compilers, and tools for embedded systems,
LCTES 2011, Chicago, IL, United States, doi: 10.1145/1967677.1967687.
https://hal.inria.fr/hal-00654112

2.4 Tools

The following subsections present the most commonly used tools for CPS development.

2.4.1 20-sim

20-sim is a multi-domain modeling and simulation platform. It allows the specification of mod-
els using various formalisms (e.g. block diagrams, bond graphs, ODEs). 20-sim can be used for
simulation, analysis and state space exploration of model designs. The tool further supports
the generation of controller codes.

Supported Languages

20-sim is a tool for the following languages:

• 20-sim Block Diagrams (see section 2.3.1)

• 20-sim Bond Graph (see section 2.3.2)

References

• (2018), 20-sim Website, http://20sim.com/

2.4.2 AADL Inspector

AADL Inspector is an analysis tool for AADL. It can be used to perform static and dynamic
analysis of AADL models by ntegrating other AADL-compliant tools thus making the integrated
tools more usable. For instance, scheduling analysis, multi-agent simulation and code genera-
tion.can be performed.

Supported Languages

AADL Inspector is a tool for the following languages:

• AADL (see section 2.3.3)

References

• (2018a), AADL-Inspector Website, http://www.ellidiss.com/products/
aadl-inspector/
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2.4.3 ACME Studio

ACME Studio is a graphical editor for models created in the Acme architecture description lan-
guage. It is developed as a plugin for the Eclipse IDE and is adaptable, expansible and cus-
tomizable using the Eclipse plugin features.

Supported Languages

ACME Studio is a tool for the following languages:

• ACME (see section 2.3.4)

References

• (2018), ACME-Studio Website, http://www.cs.cmu.edu/~acme/AcmeStudio/

2.4.4 AF3 (AutoFOCUS 3)

AF3 is an open-source modeling tool developed by Fortiss. AF3 drives the MDE approach by
supporting requirements modelling, simulation, code generation, formal verification and sim-
ilar types of modelling tasks.

Supported Languages

AF3 is a tool for the following languages:

• AF3 Language (see section 2.3.5)

References

• (2018), AF3 Website, http://af3.fortiss.org/

2.4.5 Alloy Analyzer

The Alloy Analyzer is a tool developed alongside the Alloy language. It can be used to find in-
consistencies and check properties of the declarative Alloy models. Similar to many popular
model checkers, it can generate counter examples and graphically visualise the model struc-
tures.

Supported Languages

Alloy Analyzer is a tool for the following languages:

• Alloy (see section 2.3.6)

References

• (2018), Alloy Website, http://alloy.lcs.mit.edu/alloy/

2.4.6 Alpina

Supported Languages

Alpina is a tool for the following languages:

• Petri Net Diagram (see section 2.3.42)

References

2.4.7 AMESim (Advanced Modeling Environment for Simulations)

AMESim stands for Advanced Modeling Environment for performing Simulations of engineer-
ing systems. It is based on an intuitive graphical interface in which the system is displayed
throughout the simulation process.

Supported Languages
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AMESim is a tool for the following languages:

• Modelica (see section 2.3.32)

References

• (2018), AMESim Website, https://www.plm.automation.siemens.com/
global/en/products/simcenter/simcenter-amesim.html

2.4.8 Any Logic

AnyLogic is a multi-method modelling tool, supporting various modelling formalims and lan-
guages, including statecharts, process flowcharts, and action charts. The tool allows the use of
multiple simulation paradigms, including system dynamics, discrete events and agent-based
models. Its graphical user interface and well-integrated tools and libraries allow rapid mod-
elling processes in various domains, such as business processes, manufacturing and logistics.

Supported Languages

None

References

• (2018), Any-Logic Website, http://www.anylogic.com/

2.4.9 ARENA

Supported Languages

ARENA is a tool for the following languages:

• ARENA Language (see section 2.3.7)

References

• (2018), Arena Website, https://www.arenasimulation.com/

2.4.10 Asmeta Tools

Asmeta Tools is a collection of software utilities for interaction with Asmeta models. Asmeta
Tools allow for example the editing, visualisation, simulation and model checking of Asmeta
models. The tools are distributed as plugins for the Eclipse IDE.

Supported Languages

Asmeta Tools is a tool for the following languages:

• AsmetaL (see section 2.3.8)

References

• (2018a), Asmeta Website, http://asmeta.sourceforge.net/

2.4.11 AsmGofer

AsmGofer is a tool for Abstract State Machine (ASM) programming. It provides a modern ASM
interpreter making use of the functional programming language Gofer.

Supported Languages

AsmGofer is a tool for the following languages:

• Gofer (see section 2.3.21)

References

• (2018b), AsmGofer Website, https://tydo.eu/AsmGofer/
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2.4.12 Capella

Capella is a modeling tool for the ARCADIA method distributed as an Eclipse plugin. The ba-
sis of ARCADIA enforces three main modelling aspects, i.e. the requirements engineering, the
architecture modelling and the need analysis.

Supported Languages

None

References

• (2018), Capella Website, https://polarsys.org/capella/

2.4.13 COMSOL Multiphysics

COMSOL Multiphysics is a tool that allows the simulation, solving and analysis of systems in
various domains, such as electrical, mechanical and chemical applications.

Supported Languages

None

References

• (2018), COMSOL Website, https://www.comsol.com/

2.4.14 Crescendo

Crescendo is a tool built upon the Overture tool and 20-sim, to offer co-simulation, design and
modelling capabilities for cyber-physical systems.

Supported Languages

Crescendo is a tool for the following languages:

• VDM-SL (see section 2.3.73)

References

• (2018), Crescendo Website, http://crescendotool.org/

2.4.15 CyPhySim

CyPhySim is a Cyber-Physical Simulator based on Ptolemy II.

Supported Languages

CyPhySim is a tool for the following languages:

• Ptolemy Language (see section 2.3.49)

References

• (2018), CyPhySim Website, http://cyphysim.org/

2.4.16 Cytoscape

Cytoscape is a tool for the visualisation of biological networks.

Supported Languages

Cytoscape is a tool for the following languages:

• Cytoscape Language (see section 2.3.13)

References

• (2018), Cytoscape Website, https://cytoscape.org/
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2.4.17 Dymola

Dymola is an commercial implementation of the Modelica language. It allows modelling and
simulation of complex multi-domain systems.

Supported Languages

Dymola is a tool for the following languages:

• Modelica (see section 2.3.32)

References

• (2018), Dymola Website, https://www.3ds.com/products-services/catia/
products/dymola/

2.4.18 ePNK

The Eclipse Petri Net Kernel (ePNK) is an Eclipse-based tool that allows the easy creation of
Petri net tools based on the PNML (Petri Net Markup Language) exchange format. It aims to
facilitate the definition of various types of Petri nets and provide a mutual, generic graphical
editor for all types of Petri nets.

Supported Languages

ePNK is a tool for the following languages:

• PNML (see section 2.3.43)

References

• (2018), ePNK Website, www.imm.dtu.dk/~ekki/projects/ePNK/

2.4.19 ESMoL (Embedded Systems Modeling Language)

ESMoL is a set of DSMLs for the modelling of embedded systems. The languages address vari-
ous aspects of the safety-critical systems domain and focus on separation of concerns between
control engineering, hardware specification, and software development teams. ESMoL is fur-
ther used to specify relations between controllers, implementing functions and hardware plat-
forms.

Supported Languages

None

References

• Porter, J., G. Hemingway, N. Kottenstette, G. Karsai and J. Sztipanovits (2011), The ESMoL
Language and Tools for High-Confidence Distributed Control Systems Design . Part 1 :
Design Language , Modeling Framework , and Analysis

2.4.20 FlexSim

Supported Languages

FlexSim is a tool for the following languages:

• FlexSim Language (see section 2.3.19)

References

• (2018), Flexsim Website, https://www.flexsim.com/flexsim

53

https://www.3ds.com/products-services/catia/products/dymola/
https://www.3ds.com/products-services/catia/products/dymola/
www.imm.dtu.dk/~ekki/projects/ePNK/
https://www.flexsim.com/flexsim


2. Structured Catalog of Modelling Languages and Tools

2.4.21 FlyAQ

FlyAQ is a tool that enables non-expert users to program missions of autonomous multi-
copters. http://www.flyaq.it FlyAQ enables the specification of mission through a domain-
specific modeling language, which can be effectively used by end-users with no technical ex-
pertise, e.g., firefighters and rescue workers. The FfyAQ generation method automatically de-
rives the lower level behaviours that each drone must perform to accomplish the specified mis-
sion, prevents collisions between drones and obstacles, and ensures the preservation of no-fly
zones.

Supported Languages

None

References

• Further details might be found at: https://doi.org/10.1145/2976767.
2976794

2.4.22 GreatSPN

Supported Languages

None

References

2.4.23 HyTech

HyTech is a tool for the analysis hybrid systems that are specified as collections of automata
with discrete and continuous components. It supports the verification of temporal require-
ments using symbolic model checking.

Supported Languages

HyTech is a tool for the following languages:

• HyTech Language (see section 2.3.22)

References

• Henzinger, T. A., P.-H. Ho and H. Wong-Toi (1997), HyTech: A model checker for hybrid
systems, in Computer Aided Verification, Ed. O. Grumberg, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 460–463, ISBN 978-3-540-69195-2

• (2018), HyTech Website, https://ptolemy.berkeley.edu/projects/
embedded/research/hytech/

• Alur, R., T. A. Henzinger and P.-H. Ho (1996), Automatic symbolic verification of embedded
systems, IEEE Transactions on Software Engineering, 22, 3, pp. 181–201, ISSN 0098-5589,
doi: 10.1109/32.489079

2.4.24 iGraph

iGraph is a tool for complex networks typically used in the R Environment for Statistical Com-
puting.

Supported Languages

iGraph is a tool for the following languages:

• iGraph Language (see section 2.3.23)

References
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• (2018), iGraph Website, https://igraph.org/

2.4.25 IRM SA (Invariant Refinement Method for Self-Adaptation)

IRM-SA is a toolchain for creating IRM-SA models. The method is focused on the specification
of ensemble-based component system (EBCS) - DEECo. It is developed using Eclipse EMF and
GMF and the Epsilon modeling languages.

Supported Languages

IRM SA is a tool for the following languages:

• IRM SA Language (see section 2.3.25)

References

• (2018), IRM Website, http://d3s.mff.cuni.cz/software/irm/

2.4.26 jDEECo (Java Dependable Emergent Ensembles of Component)

JDEECo is a prototype tool that illustrates basic DEECo concepts. JDEECo provides a runtime
environment for DEECo that is built using the Java language. With jDEECo, users can build
their own use cases following the DEECo concepts.

Supported Languages

jDEECo is a tool for the following languages:

• DEECo (see section 2.3.14)

References

• (2018), JDEECo Website, https://github.com/d3scomp/JDEECo/wiki

2.4.27 Kronos

Kronos is a timed automata model checker, which uses the region graph method for verifica-
tion. It supports the TCTL temporal logic.

Supported Languages

Kronos is a tool for the following languages:

• Kronos Language (see section 2.3.26)

References

• Bérard, B., M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Schnoebelen and
P. Mckenzie (2001), KRONOS — Model Checking of Real-time Systems, Springer Berlin Hei-
delberg, Berlin, Heidelberg, pp. 161–168, ISBN 978-3-662-04558-9, doi: 10.1007/978-3-
662-04558-9_16.
https://doi.org/10.1007/978-3-662-04558-9_16

• Bozga, M., C. Daws, O. Maler, A. Olivero, S. Tripakis and S. Yovine (1998), Kronos: A model-
checking tool for real-time systems, in Formal Techniques in Real-Time and Fault-Tolerant
Systems, Eds. A. P. Ravn and H. Rischel, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
298–302, ISBN 978-3-540-49792-9

• (2018), Kronos Website,http://www-verimag.imag.fr/~tripakis/openkronos.
html
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2.4.28 LabVIEW

LabVIEW is a platform for visual dataflow programming created by National Instruments. It
features a visual programming language, simulation capabilities and supports hardware-in-
the-loop system development.

Supported Languages

LabVIEW is a tool for the following languages:

• LabVIEW Language (see section 2.3.27)

References

• (2018), LabVIEW Website, http://www.ni.com/en-us/shop/labview/
labview-details.html

2.4.29 Lola

Supported Languages

None

References

2.4.30 MASIW (Modular Avionics System Integrator Workplace)

MASIW is a tool to for the design, verification and code generation of real-time aviation elec-
tronics systems based on Integrated Modular Avionics architectures. MASIW makes use of
AADL as specification language.

Supported Languages

MASIW is a tool for the following languages:

• AADL (see section 2.3.3)

References

• (2018a), MASIW Website, http://www.ispras.ru/en/technologies/masiw/

2.4.31 MAST

MAST is a suite of tools for the analysis of distributed systems. Its focus lies on the assessment
of schedulability and timing requirements of real-time systems.

Supported Languages

None

References

• (2018b), MAST Website, https://mast.unican.es/

2.4.32 MAT Sim

MATSim (Multi-Agent Transport Simulation) is a framework that is used to simulate road traffic
and replanning. It allows the developer to model agents in large scale systems.

Supported Languages

None

References

• (2018), MATSim Website, https://matsim.org/
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• Horni, A., K. Nagel and K. Axhausen (Eds.) (2016), Multi-Agent Transport Simulation MAT-
Sim, Ubiquity Press, London, ISBN 978-1-909188-75-4, 978-1-909188-76-1, 978-1-909188-
77-8, 978-1-909188-78-5, doi: 10.5334/baw

2.4.33 Mathematica

Supported Languages

Mathematica is a tool for the following languages:

• Mathematica Language (see section 2.3.30)

References

• (2018a), Mathematica-Complex-Networks Website, http://www.wolfram.com/
mathematica/

• (2018b), Mathematica Website, http://www.wolfram.com/mathematica/

2.4.34 MS4 Me

Supported Languages

MS4 Me is a tool for the following languages:

• MS4 Me Language (see section 2.3.33)

References

• (2018), MS4 Website, http://www.ms4systems.com/

2.4.35 Network Workbench

Network Workbench is an Interactive analysis and visualisation tool for large-scale networks.

Supported Languages

Network Workbench is a tool for the following languages:

• Network Workbench Language (see section 2.3.34)

References

• (2018a), NetworkWorkbench Website, http://nwb.cns.iu.edu/

2.4.36 NetworkX

NetworkX is a tool for Interactive analysis of complex networks in Python.

Supported Languages

NetworkX is a tool for the following languages:

• Small-World Networks (see section 2.3.60)

• NetworkX Language (see section 2.3.35)

• Scale-Free Networks (see section 2.3.52)

• Random-Graph Networks (see section 2.3.51)

References

• (2018b), NetworkX Website, https://networkx.github.io/
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2.4.37 NuSMV

NuSMV is a popular symbolic model checker. It is employed in many other tools for systems
and model analysis. It is further the basis of NuXMV, a model checker for synchronous systems.

Supported Languages

NuSMV is a tool for the following languages:

• NuSMV Language (see section 2.3.36)

References

• (2018), NuSMV Website, http://nusmv.fbk.eu/

2.4.38 OBP Explorer

The OBP toolset is an implementation of the OBP-CDL language. It allows model properties to
be checked properties to be checked.

Supported Languages

OBP Explorer is a tool for the following languages:

• CDL (see section 2.3.12)

• FIACRE (see section 2.3.18)

References

• (2018), OBPCDL Website, http://www.obpcdl.org/

2.4.39 Ocarina

Ocarina is a tool for the processing of AADL models. It supports model and schedulability
analysis, parsing, code generation and model checking. Ocarina can be used as stand-alone
solution or integrated into OSATE and other tools.

Supported Languages

Ocarina is a tool for the following languages:

• AADL (see section 2.3.3)

References

• (2018), Ocarina Website, http://www.openaadl.org/ocarina.html

2.4.40 OMNeT++

OMNeT++ is a discrete event simulation library for network simulators, implemented in C++.
This design choice renders the tool extensible and modular.

Supported Languages

OMNeT++ is a tool for the following languages:

• OMNet++ Language (see section 2.3.39)

References

• (2018), OMNetPP Website, https://www.omnetpp.org/

2.4.41 Open Modelica

Open Modelica is an open-source tool for the Modelica language. The popular tool offers mod-
elling and simulation capabilities and sees industrial and academic usage.
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Supported Languages

Open Modelica is a tool for the following languages:

• Modelica (see section 2.3.32)

References

• (2018), MODELICA Website, https://www.modelica.org/

2.4.42 ORIS

Supported Languages

None

References

2.4.43 OSATE (Open Source AADL Tool Environment)

OSATE is the reference tool for AADL. It allows editing AADL models using the textual and
graphical syntax. It also supports several analyses such as resource scheduling, latency and
response time and resources consumption. It also support most standard AADL annexes such
as the Error model and behavior annexes and provides ALISA, a workbench for assurance case
modeling including requirements management and verification activities.

Supported Languages

OSATE is a tool for the following languages:

• AADL (see section 2.3.3)

References

• (2018), OSATE Website, http://osate.org/

2.4.44 Overture

Overture is an Eclipse-based tool that notably supports the Vienna Development Method
(VDM). It supports various VDM dialects (VDM-SL, VDM++, VDM-RT).

Supported Languages

Overture is a tool for the following languages:

• VDM-SL (see section 2.3.73)

References

• (2018), Overture Website, https://www.overturetool.org/

2.4.45 Pajek

Pajek is a tool for the analysis and visualisation of large-scale complex networks.

Supported Languages

Pajek is a tool for the following languages:

• Pajek Language (see section 2.3.40)

References

• (2018), Pajek Website, http://mrvar.fdv.uni-lj.si/pajek/
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2.4.46 Palladio

Palladio is an architecture based analysis and simulation tool. It focuses on model-based dis-
covery of performance bottlenecks, scalability issues, and reliability threats.

Supported Languages

Palladio is a tool for the following languages:

• Palladio Component Model (see section 2.3.41)

References

• (2018), Palladio Website, https://www.palladio-simulator.com/home/

2.4.47 Papyrus

Papyrus is an Eclipse-based UML, SysML and domain-specific modelling environment. The
tool is customisable and expandable and supports UML profiles.

Supported Languages

Papyrus is a tool for the following languages:

• UML (see section 2.3.69)

• OCL (see section 2.3.37)

• EAST-ADL (see section 2.3.15)

• MARTE (see section 2.3.29)

• SysML (see section 2.3.66)

References

• (2018), Papyrus Website, https://www.eclipse.org/papyrus/

2.4.48 PHAVer (Polyhedral Hybrid Automaton Verifyer)

PHAVer is a model checking and verification tool for hybrid automata. It allows the verification
of safety properties and offers robust arithmetic, unlimited precision and support for compo-
sitional and assume-guarantee reasoning.

Supported Languages

None

References

• (2018), PHAVer Website, http://www-verimag.imag.fr/~frehse/phaver_
web/

2.4.49 Polychrony

Polychrony was initially developed as an environment for the Signal language (see section
2.3.55). Polychrony is an integrated development environment including an editor and a com-
piler of Signal programs. More recently, Polychrony has been extended to support subsets of
the AADL language 2.3.3.

Supported Languages

Polychrony is a tool for the following languages:

• AADL (see section 2.3.3)

• Signal (see section 2.3.55)
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References

• (2018), Polychrony Website, http://www.irisa.fr/espresso/Polychrony/

2.4.50 PragmaDevTracer

PragmaDev Tracer is a free tool for checking that traces of the system execution match require-
ments expresses in PSC.

Supported Languages

PragmaDevTracer is a tool for the following languages:

• PSC (see section 2.3.47)

References

• http://www.pragmadev.com/product/tracer.html

2.4.51 PRISM

PRISM is a popular model checker for probabilistic models. It features the analysis of systems
with random or probabilistic behaviour.

Supported Languages

PRISM is a tool for the following languages:

• PRISM Language (see section 2.3.44)

References

• (2018), PRISM Website, http://www.prismmodelchecker.org

2.4.52 PROMISE (simPle RObot Mission SpEcification)

PROMISE (i) provides the users with a user-friendly instrument to specify missions (without
requiring them to know programming languages, robotics, and mathematics); (ii) enables a
rigorous and precise specification so to enable the use of planners, analysis tools, simulators,
or other modules; and (iii) is platform-independent and highly customizable. PROMISE is de-
veloped as a standalone application, and it could be integrated with various tools and robotic
platforms

Supported Languages

PROMISE is a tool for the following languages:

• PROMISE Language (see section 2.3.46)

References

• (2018), PROMISE Website, https://sergiogarcia6.wixsite.com/promise

2.4.53 PsALM

PsALM is a tool for specifying missions for mobile robot platforms by composing reusable spec-
ification patterns. The core motivation behind the tool is that manually writing LTL and CTL
specifications for robotic missions is often tedious, difficult, and error prone. PsALM helps
practitioners to write specifications by providing a library of reusable specification patterns,
each of which describes a particular intent for the robot (e.g., to visit a set of locations in a
particular order), that can be composed to produce a complete description of the intended
behaviours of the robot. The tool has been accepted as tool paper at ICSE 2019.

Supported Languages

61

http://www.irisa.fr/espresso/Polychrony/
http://www.pragmadev.com/product/tracer.html
http://www.prismmodelchecker.org
https://sergiogarcia6.wixsite.com/promise


2. Structured Catalog of Modelling Languages and Tools

None

References

• (2018), PsALM Website, http://178.62.206.217/patterns/psalm/

2.4.54 PSPWizard (Property Specification Pattern Wizard)

PSPWizard is designed to allow system engineers to flexibly specify properties, without knowl-
edge in qualitative, real-time, or probabilistic logic. PSPWizard makes use of a catalogue of
specification patterns described in Autili et al. (2015).

Supported Languages

PSPWizard is a tool for the following languages:

• PSPF Language (see section 2.3.48)

References

• (2018b), PSPWizard Website, http://www.ict.swin.edu.au/personal/
mlumpe/PSPWizard/

• (2018a), Property Specification Patterns Website, http://ps-patterns.wikidot.
com

2.4.55 PTC MBSE (PTC Model-based System Engineering)

PTC Model-based System Engineering is a set of tools supporting complex systems engineer-
ing. It consists of PTC Integrity Modeler, which is a modeling tool for SysML including variabil-
ity modeling, PTC Integrity Process Director, which is a process engineering tool to manage any
processes including engineering and software development processes, and PTC Integrity Asset
Library for supporting software and systems assets reuse.

PTC’s solutiion is issued from the former Atego Artisan Studio that was bought in 2014.

Supported Languages

PTC MBSE is a tool for the following languages:

• SysML (see section 2.3.66)

References

• (2018), PTC Website, https://www.ptc.com/

2.4.56 Ptolemy

Ptolemy II is a modelling platform, supporting various modelling paradigms, such as actor-
oriented, real-time, discrete-event, continuous time. It supports the modelling, simulation and
analysis of heterogeneous models, notably hybrid automata. It is further the platform for other
tools built upon its models of computation.

Supported Languages

Ptolemy is a tool for the following languages:

• Ptolemy Language (see section 2.3.49)

References

• (2018), Ptolemy Website, http://ptolemy.eecs.berkeley.edu/
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2.4.57 PyDSTool

PyDSTool is a simulation and analysis tool for dynamical systems models of physical systems.
It supports ordinary differential equations, differential algebraic equations, maps and hybrid
system.

Supported Languages

PyDSTool is a tool for the following languages:

• PyDSTool Language (see section 2.3.50)

References

• (2018), PyDSTool Website, http://www2.gsu.edu/~matrhc/PyDSTool.htm

2.4.58 Rainbow

Rainbow is a tool building self-adaptive systems based on MAPE-K method and using Stitch
language. The tool allows the developer to describe strategies and tactics, in addition to cap-
turing context in adaptation decisions.

Supported Languages

Rainbow is a tool for the following languages:

• Stitch (see section 2.3.65)

References

• (2018), Rainbow Website, http://www.cs.cmu.edu/~able/research/
rainbow/

2.4.59 Rational Software Architect

IBM’s Rational Software Architect is a tool suite for the end-to-end modelling and develop-
ment of software systems. It features extensive design and modelling capabilities around vari-
ous modelling formalisms and languages and further features extensive analysis and reporting
capabilities.

Supported Languages

None

References

• (2018), RSA Website,https://www.ibm.com/developerworks/downloads/r/
architect/

2.4.60 Remes

Remes is a state-machine based modelling language for embedded systems. It features the
representation of resources (e.g. storage, computation, electrical power) and continuous time.

Supported Languages

None

References

• Seceleanu, C., A. Vulgarakis and P. Pettersson (2009), REMES: A resource model for em-
bedded systems, pp. 84–94, doi: 10.1109/ICECCS.2009.49
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2.4.61 ROS (Robot Operating System)

The Robot Operating System is a middleware for robotics systems. It provides libraries for the
design, creation and analysis of embedded systems.

Supported Languages

None

References

• (2018), ROS Website, http://www.ros.org/

2.4.62 Scade Suite

SCADE is a tool suite for the modelling, simulation and analysis of mission and safety-critical
embedded systems. Its focus lies on the software side, which can be modelled. SCADE appli-
cations involve requirements modelling, model design, verification and code-generation.

Supported Languages

Scade Suite is a tool for the following languages:

• Lustre (see section 2.3.28)

References

• (2018), SCADE Website, https://www.ansys.com/products/embedded-
software/ansys-scade-suite

2.4.63 Scilab

Scilab is a tool for mathematics, statistics, signal processing and control systems.

Supported Languages

Scilab is a tool for the following languages:

• Scilab Language (see section 2.3.54)

References

• (2018), Scilab Website, https://www.scilab.org/

2.4.64 SimEvents

Supported Languages

SimEvents is a tool for the following languages:

• SimEvents Language (see section 2.3.56)

References

• (2018a), SimEvents Website, https://www.mathworks.com/products/
simevents.html

2.4.65 Simio

Supported Languages

Simio is a tool for the following languages:

• Simio Language (see section 2.3.57)

References
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• (2018b), Simio Website, https://www.simio.com/products/simulation-
software.php

2.4.66 SIMUL8

Supported Languages

SIMUL8 is a tool for the following languages:

• SIMUL8 Language (see section 2.3.58)

References

• (2018), SIMUL8 Website, https://www.simul8.com/

2.4.67 Simulink

Simulink is a multi-domain simulation and modelling environment. Its main language is block
diagram based, although it also supports a programming and scripting language for advanced,
customised extension. Due to its flexibility and large object library it is popular and can be seen
as a de-facto standard for systems modelling.

Supported Languages

Simulink is a tool for the following languages:

• Simulink Language (see section 2.3.59)

References

• (2018), Simulink Website, https://ch.mathworks.com/de/products/
simulink.html

2.4.68 SPICE (Simulation Program with Integrated Circuit Emphasis)

Supported Languages

SPICE is a tool for the following languages:

• SPICE Language (see section 2.3.63)

References

• Nagel, L. W. and D. Pederson (1973), SPICE (Simulation Program with Integrated Circuit
Emphasis), Technical Report UCB/ERL M382, EECS Department, University of California,
Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html

2.4.69 Spin

Spin is wide-spread model verification tool. It is known for its verification capabilities of paral-
lel and multi-threaded software applications.

Supported Languages

Spin is a tool for the following languages:

• Promela (see section 2.3.45)

References

• (2018), Spin Website, http://spinroot.com/spin/whatispin.html
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2.4.70 Stateflow

Stateflow is a tool developed by MathWorks for control logic modeling of reactive systems via
state machines and flow charts within a Simulink model.

Supported Languages

Stateflow is a tool for the following languages:

• Stateflow Language (see section 2.3.64)

References

• (2018), Stateflow Website,https://www.mathworks.com/products/stateflow.
html

2.4.71 STOOD

STOOD is a tool suite for the system design and modelling. It complies with AADL and follows
the Hierarchical Object Oriented Design (HOOD) method.

Supported Languages

STOOD is a tool for the following languages:

• AADL (see section 2.3.3)

References

• (2018), STOOD Website, https://www.ellidiss.com/products/stood/

2.4.72 StrataGEM (Strategy Generic Extensible Modelchecker)

(StrataGEM is a tool for the analysis and symbolic model-checking of concurrent models such
as Petri nets. It is based on term rewriting and uses decision diagrams fro efficiency.

Supported Languages

StrataGEM is a tool for the following languages:

• PNML (see section 2.3.43)

• Petri Net Diagram (see section 2.3.42)

References

• http://link.springer.com/chapter/10.1007/978-3-319-07734-5_
20

2.4.73 System Desk

SystemDesk is an AUTOSAR tool aimed at the modelling of system architectures. It can gener-
ate virtual ECUs (V-ECUs) from application software,w hich can be tested using other dSPACE
simulation platforms.

Supported Languages

System Desk is a tool for the following languages:

• AUTOSAR Language (see section 2.3.10)

References

• (2018b), System-Desk Website, https://www.dspace.com/en/inc/home/
products/sw/system_architecture_software/systemdesk.cfm
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2.4.74 SyVoLT (Symbolic Verifier of mOdeL Transformations)

SyVOLT is a contract verification tool. It is distributed as a plugin for the Eclipse development
environment and allows the verification of structural pre-/post-condition contracts on model
transformations.

Supported Languages

None

References

• Selim, G. M. K., L. Lúcio, J. R. Cordy, J. Dingel and B. J. Oakes (2014), Specification and
Verification of Graph-Based Model Transformation Properties, in Graph Transformation,
Eds. H. Giese and B. König, Springer International Publishing, Cham, pp. 113–129, ISBN
978-3-319-09108-2

• Selim, G. M. K., J. R. Cordy, J. Dingel, L. Lucio and B. J. Oakes (2015), Finding and Fix-
ing Bugs in Model Transformations with Formal Verification: An Experience Report, in
AMT@MoDELS

• Oakes, B. J., J. Troya, L. Lúcio and M. Wimmer (2018), Full contract verification for ATL
using symbolic execution, Software & Systems Modeling, 17, 3, pp. 815–849, ISSN 1619-
1374, doi: 10.1007/s10270-016-0548-7.
https://doi.org/10.1007/s10270-016-0548-7

• Oakes, B. J., J. Troya, L. Lúcio and M. Wimmer (2015), Fully verifying transforma-
tion contracts for declarative ATL, in 2015 ACM/IEEE 18th International Conference on
Model Driven Engineering Languages and Systems (MODELS), pp. 256–265, doi: 10.1109/
MODELS.2015.7338256

• Lucio, L., B. J. Oakes, C. Gomes, G. M. K. Selim, J. Dingel, J. R. Cordy and H. Vangheluwe
(2015), SyVOLT: Full Model Transformation Verification Using Contracts, in P&DMoDELS

• Lúcio, L., B. Oakes and H. Vangheluwe (2014), A technique for symbolically verifying prop-
erties of graph-based model transformations, Technical report, Technical Report SOCS-
TR-2014.1, McGill U

2.4.75 TAPALL

Supported Languages

None

References

2.4.76 Time Square

TimeSquare is an Eclipse-based tool for the Clock Constraint Specification Language (CCSL). It
allows thedefinition of CCSL specifications and the simulation of constraints and generation of
a trace model.

Supported Languages

Time Square is a tool for the following languages:

• CCSL (see section 2.3.11)

References

• (2018), TimeSquare Website, http://timesquare.inria.fr/
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2.4.77 TINA (TIme petri Net Analyzer)

TINA is a model checker for Petri nets and Time Petri nets. It supports various abstract state
space constructions, while preserving properties of the concrete state space representations
(e.g. reachability properties, deadlock freeness, liveness).

Supported Languages

TINA is a tool for the following languages:

• CDL (see section 2.3.12)

• FIACRE (see section 2.3.18)

References

• (2018), TINA Website, http://projects.laas.fr/tina/

2.4.78 TTool

TTool is a tool for the modeling, analysis, formal verification and code generation of embedded
systems and Systems on Chip (SoC). It allow the edition of UML and SysML diagrams support-
ing several UML profiles:

- DIPLODOCUS: For the partitioning of Systems-on-Chip or embedded systems. - AVATAR:
For the modeling and formal verification of real-time embedded software. - SysML-Sec: For
the modeling and formal verification of real-time embedded systems with security and safety
issues.

Supported Languages

TTool is a tool for the following languages:

• UML (see section 2.3.69)

• SysML (see section 2.3.66)

• TEPE (see section 2.3.68)

References

• (2018), TTool Website, http://ttool.telecom-paristech.fr/

2.4.79 UML Analyzer

UML Analyzer is a tool for the consiztenzy checking of UML models. It is integrated with IBM
Rational Rose.

Supported Languages

UML Analyzer is a tool for the following languages:

• UML (see section 2.3.69)

References

• Egyed, A. (2007), UML/Analyzer: A Tool for the Instant Consistency Checking of UML
Models, in Proceedings of the 29th International Conference on Software Engineering, IEEE
Computer Society, Washington, DC, USA, ICSE ’07, pp. 793–796, ISBN 0-7695-2828-7, doi:
10.1109/ICSE.2007.91.
https://doi.org/10.1109/ICSE.2007.91

• (2018a), UML Analyzer Website, http://sunset.usc.edu/available_tools/
UML_analyzer/
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2.4.80 UPPAAL

UPPAAL is a modeling, simulation and model-checking tool for timed and real-time systems.
It allows the desing and verification of timed automata and similar formalisms.

Supported Languages

UPPAAL is a tool for the following languages:

• UPPAAL Language (see section 2.3.71)

References

• (2018b), UPPAAL Website, http://www.uppaal.com/

2.4.81 Visone

Visone is a tool for the analysis and visualisation of social networks.

Supported Languages

Visone is a tool for the following languages:

• Visone Language (see section 2.3.74)

References

• (2018), Visone Website, https://visone.info/

2.4.82 XPPAUT

Supported Languages

XPPAUT is a tool for the following languages:

• XPPAUT Language (see section 2.3.75)

References

• (2018), XPPAUT Website, http://www.math.pitt.edu/~bard/xpp/xpp.html

2.4.83 Zen-RUCM (Restricted Use Case Modeling)

Zen-RUCM is an extension of the Restricted Use Case Modeling approach. Its accompanying
tool allows the analysis and verification of requirements defined in specified in restricted nat-
ural language. Requirements models can be automatically generated and verified.

Supported Languages

None

References

• (2018), Zen-RUCM Website, http://zen-tools.com/tools/zen-rucm.html
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3 Summary and Future Work

This report presents a catalog of formalisms, modelling languages and tools that are used in
the domain of cyber-physical systems development. It was compiled as part of the deliverables
produced by the ICT COST Action IC1404 Multi-Paradigm Modelling for Cyber-Physical Systems
(MPM4CPS) – Working Group 1 (WG1) on Foundations of MPM4CPS.

The catalog comprises descriptions of over 170 formalisms, languages and tools, and is auto-
matically generated from a digital ontology that was established using modern ontology engi-
neering techniques. The tight network of related ontology entries has been adapted to catalog
form for this report. Since it is a static snapshot of the current state of art, it requires that its
contents are revisited in regular intervals to extend, update and maintain the correctness of the
information.

The catalog poses a solid foundation for a future, more complete body of knowledge. To this ex-
tent, an extension of the catalog and the addition of further, more detailed properties for all en-
tries should be performed and the catalog extended. Obviously, this vast and time-consuming
task cannot be performed by a small group of researchers, but instead should be executed
through continuous, collaborative effort. While the descriptions and references in this catalog
already provide a significant coverage of the domain, we believe that tool creators and language
developers are best suited to maintain the catalog entries for their field of expertise. Evidently,
this solution also requires that these experts have the means to easily create, update and alter
the ontology’s entries.

There also exist more concrete research tasks to be performed on the catalog. For example, in
the course of the ontology development, we discovered that there exist many more properties
for each individual entry that can be used to search, filter and explore the ontology. It would be
of interest to look into possibilities of how to best represent this multi-dimensional information
within a catalog, while maintaining its legibility and usability.

One possibility would be to group the entries into subsections, based on these properties. For
example, we discovered that many tools serve particular purposes, such as e.g. analysis or sim-
ulation. This information was gathered and entered into the ontology and is readily available to
be used. At the moment, we are evaluating the benefits of this approach, as for example some
tools serve multiple purposes and thus would be present in multiple subsections, thereby in-
troducing redundancy. The members of WG1 envisage a collaboration with experts in the on-
tology domains to harness their knowledge in this matter.

Future tasks should also establish links to the practical usage of the listed formalisms, tools and
modelling languages. For instance, the MPM4CPS’s Working Group 4 has compiled a meta-
data study Barišić et al. (2019), reporting on which formalisms and tools were used in primary
studies of CPS modelling. Based on this information it can then be possible to discover e.g.
common formalisms for particular CPS application domains, or e.g. list potential alternative
tools and languages that can be used for certain projects.
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