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Trajectory data analysis and mining require distance and similarity measures,
and the quality of their results is directly related to those measures. Several
similarity measures originally proposed for time-series were adapted to work
with trajectory data, but these approaches were developed for well-behaved
data, that usually do not have the uncertainty and heterogeneity introduced
by the sampling process to obtain trajectories. More recently, similarity mea-
sures were proposed specifically for trajectory data, but they rely on simplistic
movement uncertainty representations, such as linear interpolation. In this arti-
cle we propose a new distance function, and a new similarity measure that uses
an elliptical representation of trajectories, being more robust to the movement
uncertainty caused by the sampling rate and the heterogeneity of this kind of
data. Experiments using real data show that our proposal is more accurate
and robust than related work.
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1. Introduction

The increasing use of GPS-enabled devices allowed the collection of huge amounts of
data representing the movement history of individuals. When an individual is moving,
its location is collected along time in the form of sequences of space-time points, called
raw trajectories. A raw trajectory is a sequence 〈p1, . . . , pn〉 of points p = ((x, y), t), where
(x, y) is the geographic position of the individual at the time instant t.
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Real trajectory data are in general collected over different sampling strategies, and
this process introduces uncertainty in the movement representation (Pfoser and Jensen
1999). This uncertainty is caused by two types of error: i) the measurement error, caused
by the impossibility to determine the position of an object by the measurement system
that is intrinsic to each sampled point; and ii) the interpolation error, that refers to the
limitations to represent the motion between two sampled points, influenced by the sam-
pling rate (Ranacher et al. 2016). However the heterogeneous distribution of trajectory
points still remains a problem in real trajectory datasets. A consequence is that two indi-
viduals moving in the same path may have different trajectories, making the movement
similarity analysis a complex and challenging task.

Movement similarity analysis is useful for several application domains, such as: i) in
a set of student trajectories it is possible to determine which students follow similar
paths between their homes and the university, what is useful in a ride-sharing app; ii)
in taxi trajectories, we may determine if a trajectory between two popular regions (e.g.,
airport and the city center) is very dissimilar to the others, to identify a driver that took
a longer path to increase the fare; and iii) in animal trajectories we may identify the
species through the most similar trajectories in a database where the species are already
known.

Similarity measures have been proposed for different purposes in information retrieval
and data mining, such as: top-K similarity queries - queries that given a trajectory
return the most similar trajectories; trajectory outlier detection - identify the objects
that move differently from the majority; and clustering techniques for grouping most
similar trajectories, and classification of individuals by socio-demographic profiles (e.g.,
student, worker or retired) according to their trajectories

For similarity analysis there are the well-known DTW (Dynamic Time Warping)
(Berndt and Clifford 1994), developed for time series, LCSS (Longest Common Sub-
sequence) (Vlachos et al. 2002), EDR (Edit Distance on Real Sequences) (Chen et al.
2005), SWALE (Morse and Patel 2007), wDF (Ding et al. 2008), MSM (Furtado et al.
2016), and others. In general, these approaches have considered the physical properties of
raw trajectories, and a summary of these measures is presented in Ranacher and Tzavella
(2014). The main limitations of these approaches are related to the assumption that the
movement between two points is a straight line (linear interpolation) or building a circle
of fixed size around every single point for point matching (called matching threshold).
When dealing with real trajectory datasets, where points are collected at different sam-
pling rates, these limitations directly affect the accuracy in the similarity assessment, as
detailed later in Section 2.

In this work we focus on the spatial similarity of movement, where two objects are
considered similar if they share a similar path in space. As the granularity of the sampling
rate may be variable and may have, for instance, minutes between two samples, building a
radius of fixed size around each trajectory point for measuring spatial similarity is a very
limited solution. To solve the problem, in this paper we introduce the idea of dynamic and
automatic threshold definition, and use the concept of ellipses proposed by Pfoser and
Jensen (1999), between two consecutive sampled points, in order to improve the accuracy
in trajectory similarity analysis. We use an elliptical representation of trajectory, where
the size of the ellipses is dynamically computed according to the distance between two
consecutive trajectory points. This approach avoids the need of a fixed point threshold or
linear interpolation, overcoming several problems. Considering this new representation,
we propose a novel trajectory similarity measure and a new distance function to estimate
a narrowed upper bound area for the ellipses. We show with extensive experiments that
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our approach is more robust and precise than related similarity measures.
In summary, we make the following contributions:

(1) We propose a new distance function to estimate an approximate upper bound
for the real movement between two points in space, and use this distance to
dynamically determine the size of the matching threshold;

(2) We introduce a new parameter-free trajectory similarity measure, called UMS
(Uncertain Movement Similarity) that is based on dynamically defined thresholds
and of variable size, thus being more robust to variations in the sampling rate
and more accurate in the similarity assessment.

(3) We perform extensive experiments based on state-of-the-art techniques used in
the literature to show that our approach is more robust and accurate than related
work. It includes the extension of the classic retrieval-based evaluation technique
(precision @ recall) to work with trajectory data.

The remainder of this article is organized as follows: Section 2 presents the Problem
Statement. Section 3 presents the basic concepts and the new distance function for the
proposed similarity measure. Section 4 defines the UMS, a new similarity measure for
trajectory data. Section 5 validates the proposed measure using a variety of experiments.
Section 6 presents the related work and Section 7 remarks the main contributions and
concludes the article.

2. Problem Statement

In this section we present the basic concepts and point out the main problems of existing
approaches for trajectory similarity analysis. The real movement of an individual is
continuous along time, as stated in Definition 2.1.

Definition 2.1: Movement. The movement of an individual is represented by a con-
tinuous function M : R+ → R2, assigning time instants over a two-dimensional space.

Although the real movement of an object is continuous, mobile devices collect dis-
cretized points along time, such that the movement is discretized as a sequence of times-
tamped spatial locations, as stated in Definition 2.2.

Definition 2.2: Raw Trajectory. A raw trajectory T is a sequence of time-ordered
sampled points 〈p1, ..., pn〉, where each point has the form pk = ((x, y)k, tk), such that
(x, y)k is the location in space and tk is the time instant that (x, y)k was sampled.

Considering the definitions of movement and raw trajectory, the central problem of this
work can be stated by the following question: Given two trajectories R = 〈r1, . . . , rn〉
and S = 〈s1, . . . , sm〉, how similar is their movement? In the following we describe three
main problems that affect existing similarity measures:

Problem 2.3 Rigid Uncertainty Representation (RUR). The sampling process introduces
uncertainty in the representation of raw trajectories. To attenuate the effect of uncer-
tainty, two techniques are commonly used over the sampled points: i) linear interpolation;
and ii) point threshold.

In approaches that use linear interpolation, such as wDF (Ding et al. 2008) or as
adopted in EDwP (Ranu et al. 2015), the assumption is that the movement between two
sampled points is a straight line, what is not the case in real movement, where individuals
usually follow non-linear paths to avoid obstacles. Figure 1(a) illustrates an example of
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three trajectories P , Q and R, where small circles correspond to the sampled points. Fig-
ure 1(b) illustrates the representation of P , Q and R using linear interpolation, with the
movement between the sampled points assumed as a straight line. The methods that use
linear interpolation will result in similarity(P,R) > similarity(P,Q), while considering
the real movement (in Figure 1(a)), clearly the similarity(P,R) < similarity(P,Q).
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Figure 1. Real Movement (a) and Linear Interpolation (b) representation for trajectories P , Q
and R (contiguous, dashed and dotted lines)

Approaches that use point threshold, such as LCSS (Vlachos et al. 2002), EDR (Chen
et al. 2005), SWALE (Morse and Patel 2007), CATS (Hung et al. 2015), and MSM
(Furtado et al. 2016), build a circle of radius with fixed size, given by the user, around
each trajectory sampled point, assuming that the sampled points could be at any location
inside the radius. An example is shown in Figure 2(a), where a circle of given fixed size
is built around each point of trajectory P . There are two problems in this approach:
first, the analysis occurs around every single sampled point of a trajectory; and second,
a single threshold value cannot be accurately defined for trajectories with heterogeneous
distribution of sampled points1. The methods that use point threshold to determine
if two points of different trajectories are similar, verify if a point of a trajectory Q is
within the radius around a point of a trajectory P , and if this is the case, they are
said to match. Figure 2 (a) illustrates this problem where there are parts of the real
movement of P that are not covered by the threshold radius around the points of P . As
as consequence, although the real movement of trajectory Q crosses the radius around p2,
as there is no sampled point of Q inside the radius of p2, there will be no match between p2

and Q. Because of the threshold uncovered areas, the methods LCSS, EDR and CATS
will not match p2 with any point of Q, decreasing the similarity score, even though
the real movement of P (between p1 and p2) was very similar to the real movement
of Q. As a consequence, for these methods an unexpected result similarity(P,R) >
similarity(P,Q) is obtained. The expected result similarity(P,Q) > similarity(P,R)
can be obtained by reducing the threshold size, as shown in Figure 2(b). However, with
a lower value for the point threshold the original problem not only remains but has its
effect increased, losing the matching between points p3 and q3.

In addition, the definition of a fixed threshold value for all trajectories is not accurate
in scenarios where the density distribution of points varies significantly. For instance, the
density of a trajectory in low speed areas of a city will be higher than in a highway, what

1Heterogeneous distribution of sampled points is common in real-world data. It happens because the time-sampling
strategy is commonly adopted (e.g., a point is collected each 30s). As a consequence of this strategy, when the
moving speed of an individual is higher, the distance between its sampled points tend to be greater, resulting in a
less dense distribution of points. For instance: consider an individual driving at 120km/h in a highway and then
reaching the city center where the speed is reduced to 40km/h. Because of the higher speed the distance between
sequential points in the first part is larger.
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makes the distance between sampled points of the same trajectory to vary dramatically.
Therefore, if the threshold is defined with a high value, it can match trajectories that
performed different movements in nearby streets, while a low value can lead to none
matching points of trajectories with similar movement and in the same street.
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Figure 2. Point Radius with large (a) and small (b) threshold values what directly influence the
similarity score

Methods that directly calculate the distance between the sampled points such as DTW
and wDF are also sensitive to sampling gaps. For example, in Figure 2(a), the sum of the
point distances dist(p1, r1) + dist(p2, r2) + dist(p3, r3) of trajectories P and R is smaller
than the sum of the distances between P and Q dist(p1, q1) + dist(p2, q2) + dist(p3, q3).
As a result, the similarity(P,R) > similarity(P,Q).

Problem 2.4 Binary Distance Assumption (BDA). Some methods as LCSS and EDR use
binary values to measure the similarity score between two points: if two points match, the
score is 1, otherwise it is 0 (the inverse in EDR).

The main problem of the binary distance assumption is that the real distance between
the points inside the threshold is not considered, i.e., if the threshold of p is 100m, a
point of another trajectory that is 1m or 99m far from p will have the same score in
relation to p. Figure 2(a) illustrates this problem for trajectories P , Q and R. Looking
at the points p1, q1 and r1, it is clear that dist(p1, q1) < dist(p1, r1), but LCSS and EDR
will consider the same distance between the points.

Problem 2.5 Sampling Rate Intolerance (SRI). Let P and Q be two trajectories with very
similar real movement but different sampling rates, as shown in Figure 3. Trajectory P
has 3 points and trajectory Q has 5 points. Most related approaches are not tolerant to this
situation. For example, for EDR, the maximum similarity score would be sim(P,Q) ≤ 0.6
because the method matches points with a one-to-one cardinality, hence, at least two points
of Q will not have any matching, therefore decreasing the similarity score.

EDR looks for the best matching sequence in two trajectories, but in this process one
point of a trajectory can match only one point of the other trajectory. As trajectory Q has
more sampled points than trajectory P , an error is introduced (length(Q)− length(P )),
decreasing the similarity. In this same case, DTW would repeat the nearest point of P to
the non-matched point of Q, increasing the distance when a trajectory has more sampled
points. wDF would add points to the smaller trajectory using linear interpolation, what
may create points that are not over the real movement.

In summary, several problems related to the heterogeneity of the data caused by the
sampling process affect both precision and robustness of existing similarity measures.
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Figure 3. Trajectories P and Q with different sampling rates

3. Proposed Method - Foundations

In this section we explain the foundations of our proposal, that overcomes the aforemen-
tioned problems by using the time-geography ellipses proposed in (Pfoser and Jensen
1999), for each pair of sequential points for trajectory matching instead of building a
radius of fixed size around every point, as detailed in Section 3.1. (Pfoser and Jensen
1999) use the maximum speed that an individual can move to define an upper bound for
the ellipse, but we claim that individuals do not move at their maximum speed all time.
As preliminary experiments have shown that the original time-geography ellipses tend to
overestimate the ellipse sizes, and this overestimation significantly reduces the similarity
accuracy, in Section 3.2 we propose a new distance function that approximates the upper
bound of the movement to reduce the size of the ellipses in the trajectory representation.

3.1. Creating Movement Ellipses

Pfoser & Jensen in (Pfoser and Jensen 1999) proposed the use of ellipses to cover the
area of all possible locations of a moving object between two consecutive sampled points,
as shown in Figure 4(a). In that work the size of the ellipse is defined using the maximum
velocity (vmax) that an individual can move until reaching the next sampled point. So the
higher the time difference between two consecutive sampled points is, the bigger will be
the size of the ellipse. Definition 3.1 shows how the ellipse is determined and an example
is shown in Figure 4(b) (more details can be found in (Pfoser and Jensen 1999)).

Definition 3.1: Movement Ellipse. Given two points p1 and p2 they are set as the
foci f1 and f2 of an ellipse e centered at c (we call f1, f2 and c the reference points of
e). The eccentricity ε of the ellipse is the minimum distance between the foci, given by
ε = deuc(p1, p2). The major axis µ1 is the maximum distance that an object can travel
at vmax during a period of time ∆t = t2− t1, therefore µ1 = vmax×∆t. The thickness of
the ellipse is given by the minor axis µ2 =

√
µ1

2 − ε2.

An important remark is that in the extreme case, when the individual is traveling at
vmax in a straight line (vmax = vmin = ε

∆t
) the ellipse is degenerated to a line.

The main problem of the movement ellipse proposed by Pfoser and Jensen (1999) is
that it assumes that vmax is known and that the individual could be traveling during
the whole period at vmax, what is necessary to correctly obtain the upper bound of the
movement. The problem of this assumption is that the maximum velocity of a moving
object is valid only when it is traveling freely, but in most cases (e.g., cars) the trips
are constrained by several factors such as: traffic flows, traffic lights, speed limits, road
networks, road structure, climate condition, etc. Therefore, when working with real world
trajectories it is impossible to define a single maximum velocity parameter that would
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Figure 4. Example of: (a) Uncertainty representation using ellipses (b) Movement Ellipse with
its foci (f1 and f2) and center (c) points, eccentricity (ε), major axis (µ1), and minor axis (µ2)

not overestimate the size of the ellipse. This overestimation is a problem for trajectory
similarity. To overcome these limitations, in the next section we propose an approximate
upper bound distance metric to dynamically define the size of the ellipses based on the
intrinsic information of the trajectory.

It is important to highlight that we use the work proposed by Pfoser and Jensen
(1999) solely as an inspiration to create dynamically-sized ellipses between two trajectory
points instead of a fixed size radius around each trajectory point. The proposal of a new
uncertainty model that covers all possible locations that an individual could visit between
two sampled points is out of the scope of our work and, for completeness, we refer to
the works of Kuijpers and Othman (2006), Trajcevski et al. (2010) and to Ranacher and
Rousell (2013), that proposed an adaptive sampling approach based on the concept of
time-geography ellipses for trajectory collection.

3.2. Narrowing Movement Ellipses

In this section we introduce the Approximate Upper Bound distance (AUB) for move-
ment, a distance metric to estimate an approximate maximum possible movement length
between two sampled points, which can be used to determine the size of the ellipse.

As stated before, in linear approximation the length of the movement between two
sampled points is assumed to be equal to the shortest distance that an individual could
travel between two points in space, i.e., the Euclidean distance, as illustrated with the
distances between points (A,B) and (A,C) in Figure 5(a). Therefore, the use of the
Euclidean distance is not appropriate to determine an upper bound distance between
two sampled points.

Another possibility is to estimate an upper bound with the Manhattan distance, that
is always greater than or equal to the Euclidean distance (Janssen 2007), but it tends to
overestimate the travel distance between two points.

It is natural to assume that an approximate upper bound distance should be greater
than the minimum possible movement length between two points where vmax = vmin (in
this case, the Euclidean distance). Therefore, with the exception of the situation when
deuc(p1, p2) = 0, in all other cases an approximate upper bound distance aub should be
greater than the Euclidean distance (aub(p1, p2) > deuc(p1, p2)). Even though in some
cases the Manhattan distance (exemplified in Figure 5(b)) can be greater than the Eu-
clidean distance, in other cases it can result in the same distance, i.e., equal to the
minimum possible distance. It is easy to prove by counter-example that the Manhat-
tan distance dman does not always hold the property dman(p1, p2) > deuc(p1, p2) with
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Figure 5. (a) Euclidean Distance calculation for the pairs of points (A,B) (darker
contiguous line) and (A,C) (lighter contiguous line):
(A,B): atan2(A,B) = 90◦ ; deuc(A,B) = |AB| = 1

(A,C): atan2(A,C) = 45◦ ; deuc(A,C) = |AC| =
√

2
(b) Manhattan Distance calculation for the pairs of points (A,B) (darker contiguous
line) and (A,C) (lighter contiguous line):
(A,B): atan2(A,B) = 90◦ ; dman(A,B) = |AB| = 1
(A,C): atan2(A,C) = 45◦ ; dman(A,C) = |AO|+ |OC| = 2
(c) Approximate Upper Bound Distance calculation for the pairs of points (A,B)
(darker contiguous line) and (A,C) (lighter contiguous line):

(A,B): atan2(A,B) = 90◦ ; aub(A,B) = |AO′|+ |O′B| =
√

2
(A,C): atan2(A,C) = 45◦ ; aub(A,C) = |AO|+ |OC| = 2

deuc(p1, p2) > 0, and in some cases it is equal to the Euclidean distance, as shown in
Figures 5(a) and 5(b)), where both distances have the same value for the pair of points
(A,B).

The Manhattan distance is adequate as an approximate upper bound when it reaches
its maximum value in relation to the Euclidean distance, i.e., when the arc tangent
between two points is equal to 45◦ (or to any of its corresponding values in the other
quadrants of−45◦, 135◦ and−135◦), conforming an isosceles right-angled triangle ∆AOC
as shown in Figure 5(b), where the hypotenuse AC is the Euclidean distance and the sum
of the two other sides AO and OC is the Manhattan distance. However, the value of the
Manhattan distance approximates the value of the Euclidean distance as the value of the
arc tangent approximates 0 (in the interval [0, 45[) or 90 (in the interval ]45, 90]) in the
first quadrant (the same is valid for the corresponding angles in the other quadrants).

In order to avoid this approximation that follows the arc tangent variation between two
points and tends to the equality between the Manhattan and Euclidean distance in its
extremes (at 0◦ and 90◦), we propose an Approximate Upper Bound distance (AUB) that
gives a distance greater than the Euclidean distance in all cases (where deuc(p1, p2) >
0) and greater than the Manhattan distance in all cases where dman(p1, p2) > 0 and
atan2(p1, p2) 6= 45◦. For this distance, in all cases, an isosceles right-angled triangle is
created from the straight line between two points, that is the hypotenuse, with the length
given by the Euclidean distance). The length of the two other sides are the same and can
be determined by using basic trigonometry (|AO′| = hypotenuse× sin 45◦) as illustrated
in Figure 5(c), where AB and AC correspond to the hypotenuse, with length given by
the euclidean distance, from which the 45◦ right-angled triangle is created. In Definition
3.2 we formally describe the Approximate Upper Bound Distance.

Definition 3.2: Approximate Upper Bound Distance. Given two points pi and pj ,
the line segment pipj is assumed as the hypotenuse of an isocelles right-angled triangle.
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The sum of the length of the other two sides of this triangle is the approximate upper
bound distance between pi and pj . The formula is detailed in Equation 1.

aub(pi, pj) = 2× sin 45◦ ×
√

(xi − xj)2 + (yi − yj)2

= 2×
√

2

2
×
√

(xi − xj)2 + (yi − yj)2

=
√

2((xi − xj)2 + (yi − yj)2)

(1)

With the Approximate Upper Bound measure defined, we prove that it holds the
aforementioned property of always being greater than the minimum distance between
two points. Theorem 3.3 states that aub(pi, pj) ≥ dman(pi, pj), as long as pi 6= pj . Also,
Theorem 3.4 states that the approximate upper bound distance is always greater than
the minimum possible distance aub(pi, pj) ≥ deuc(pi, pj), considering that pi 6= pj .

Theorem 3.3 : Consider that the function dman : P ×P → R calculates the Manhattan
distance. Then, for any pair of points pi, pj ∈ P , we have that dman(pi, pj) ≤ aub(pi, pj).

Proof : Let a = |xi − xj | ≥ 0 and b = |yi − yj | ≥ 0 and pi 6= pj . Then,

a+ b ≤
√

2(a2 + b2)

(a+ b)2 ≤ 2(a2 + b2)

a2 + 2ab+ b2 ≤ a2 + a2 + b2 + b2

2ab ≤ a2 + b2

(2)

Expanding 0 ≤ (a − b)2, we have 0 ≤ a2 − 2ab + b2, consequently 2ab ≤ a2 + b2 is

implied. Therefore, a+ b ≤
√

2(a2 + b2). � �

Theorem 3.4 : Consider that the function deuc : P × P → R calculates the Euclidean
distance. Then, for any pair of points pi, pj ∈ P |pi 6= pj, we have that aub(pi, pj) >
deuc(pi, pj)

Proof : Let a = |xi − xj | ≥ 0 and b = |yi − yj | ≥ 0 and pi 6= pj . Then,√
(a2 + b2) ≤

√
2(a2 + b2)

(a2 + b2) ≤ 2(a2 + b2)
(3)

The proof is straightforward since two times any value greater than zero will always
be greater than the value itself. � �

3.3. Creating Elliptical Trajectories

In this section we redefine a movement ellipse considering the AUB distance to determine
the size of the ellipse avoiding its superestimation, as described in Definition 3.5. An im-
portant remark is that we use ellipses solely with the intention of determining a dynamic
matching threshold between sampled points, and do not use the ellipses to determine a
movement model as in the original proposal of Pfoser and Jensen (1999).
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Definition 3.5: Narrowed Movement Ellipse. Given two points p1 and p2 they
are set as the foci of an ellipse e. The eccentricity ε of the ellipse is the euclidean distance
between the foci, given by ε = deuc(p1, p2). The major axis µ1 is given by the approximate
upper bound distance between the points p1 and p2, therefore µ1 = aub(p1, p2). The

thickness of the ellipse is given by the minor axis µ2 =
√
µ1

2 − ε2.

A sequence of narrowed movement ellipses conform an elliptical trajectory, as stated
in Definition 3.6.

Definition 3.6: Elliptical Trajectory. An elliptical trajectory E(T ) ∈ E is a time-
ordered sequence of narrowed movement ellipses 〈e1, . . . , en〉 that belongs to a set of
elliptical trajectories E.

Figure 6 illustrates a simple example that shows the effect of narrowing movement
ellipses using the AUB distance. Let p1 = ((0, 0), 0), p2 = ((10, 0), 1) and p3 = ((15, 0), 2)
be three points of a trajectory P = 〈p1, p2, p3〉 representing the movement of an individual
(in dashed lines). Assuming that the maximum speed the individual can reach is 20m/s
we can determine the ellipses as follows:

• A movement ellipse e1 (Figure 6(a)) is calculated as described in Definition 3.1: µ1 =

(vmax × (t2 − t1)) = (20× 1) = 20 and µ2 =
√
µ2

1 − ε2 =
√

400− 100 = 17.32.

• A narrowed movement ellipse e′1 (Figure 6(b)) is calculated as described in Definition

3.5: µ1 = aub(p1, p2) = 14.14 and µ2 =
√
µ2

1 − ε2 =
√

199.93− 100 = 9.99.

The next ellipse e2 and the narrowed ellipse e′2 are analogously calculated. Notice in
Figure 6 that both movement ellipses (e1 and e2) and narrowed movement ellipses (e′1
and e′2) cover the real movement, but the total area covered by the narrowed ellipses is
≈ 4× smaller than the area covered by the movement ellipses.

The main benefits of using an elliptical representation of trajectories with narrowed
ellipses is that they cover the real movement in the majority of the cases (as shown
in the experiments of Section 5.1) and at the same time: i) are dynamically defined
considering pairs of sequential points instead of using a radius with fixed user-defined
size around each point; ii) avoid the underestimation of the movement as happens in
linear approximation; and iii) avoid the overestimation of the ellipse area as happens
when an individual is not traveling at its maximum speed.

p1 p2 p3

(a) Movement Ellipses
e1 : µ1 = 20;µ2 = 17.32
e2 : µ1 = 20;µ2 = 19.36

p1 p2 p3

(b) Narrowed Ellipses
e′1 : µ1 = 14.14;µ2 = 9.99
e′2 : µ1 = 7.07;µ2 = 4.99

Figure 6. From (a) Movement Ellipses to (b) Narrowed Movement Ellipses

4. Proposed Method - UMS

In this section we propose the UMS (Uncertain Movement Similarity) measure. Intu-
itively, the similarity score computed by UMS is based on three premises, where two
elliptical trajectories are more similar if:
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(1) Their shapes formed by the union of the movement ellipses look alike.
(2) Their movement ellipses cover the same space, sharing a greater common area.
(3) Their movement ellipses order represents individuals traveling in the same direc-

tion.

In order to cover these three premises we define the basis for the similarity score:
alikeness, shareness and continuity.

The first concept is alikeness. Intuitively, the larger the area that the ellipses of two
trajectories overlap is, the more alike they are. A simple way to obtain that would be
through the evaluation of the intersection between the movement ellipses. However, it
would not be accurate to only look if the ellipses intersect in cases where the trajectories
start and/or end at different locations. An example is illustrated in Figure 7, where all
the ellipses of S intersect at least one ellipse of R, but the shape of the trajectories is
different. For this reason, instead of directly verifying if two ellipses intersect, we verify
if the original trajectory points of one trajectory are spatially within the ellipses of the
other, and vice-versa.

r2

r1

r3 r4

s1 s2 s3
s4

Figure 7. Example of Trajectories R =
〈r1, r2, r3, r4〉 and S = 〈s1, s2, s3, r4〉; and
Elliptical Trajectories E(R) (continuous el-
lipses) and E(S) (dashed ellipses)

e′1 e′2
e′3

r2r1 r3 r4

Figure 8. Example of a Trajectory R =
〈r1, . . . , r4〉 (black circles) and an Elliptical
Trajectory E(S) = 〈e′1, e′2, e′3〉 (dashed el-
lipses)

Based on the trajectory R and the elliptical trajectory E(S) we determine the point
matching as follows:

Definition 4.1: Point Matching. Given a trajectory point r ∈ R and an elliptical
trajectory E(S), r is said to match with E(S) if it is within at least one of the ellipses
e′ ∈ E(S). The result of the matching function match(r, E(S)) : R × E→ {0, 1} (E is a
set of elliptical trajectories) is computed according to Equation 4.

match(r, E(S)) =

{
1 if ∃e′ ∈ E(S)|within(r, e′)
0 otherwise

(4)

For example, in Figure 8 we illustrate the trajectory R and the Elliptical Trajectory
E(S). In this case, it is easy to see that the point r1 is not within any ellipse e′ ∈ E(S),
hence it does not match with E(S). Following this intuition, we formalize the concept
of alikeness in Definition 4.2. Naturally, when more points r ∈ R pair with ellipses
e′ ∈ E(S), and more reference points s ∈ S pair with ellipses e ∈ E(R), the alikeness
score will be higher.

Definition 4.2: Alikeness. Given two trajectories R and S the alikeness is computed
by the function A(R,S) : T× T→ [0, 1] (Equation 5).
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A(R,S) =

∑
r∈R

match(r, E(S))

length(R)
×

∑
s∈S

match(s, E(R)

length(S)
(5)

A high alikeness score is an indication that two elliptical trajectories have similar
shapes in space. However, there are situations where two elliptical trajectories may have
all its points matching the ellipses of the other trajectory but with less similar movements,
as the example shown in Figure 9(b), where two individuals are traveling in parallel but
different roads. The alikeness score considers only a binary value to quantify if the points
of the trajectories match. However, binary values do not differentiate the proportion of
intersection between two movement ellipses, as shown in Figure 9, where both A(R,S)
and A(R,S) are equal to 1.

r1 r3

r2

s2e′1 e′2

s1 s3

(a)

r1 r3

q2e′′1 e′′2

r2

q1 q3

(b)

Figure 9. Example of trajectories R, S and Q, and their Elliptical Trajectories E(R) (continuous
ellipses), E(S) (dashed ellipses) and E(Q) (dotted ellipses). In this case both alikeness scores
A(R,S) and A(R,Q) have the maximum value of 1.

A simple approach to solve this problem is to quantify the intersection area between
the ellipses and choose an arbitrary value (e.g., the area of the bigger ellipse) to obtain a
normalized score. However, the exact quantification of the intersection area of two rotated
ellipses is very costly. For this reason, we define a function to quantify an approximate
proportion of the intersection between two ellipses in Definition 4.4, that is faster and
avoids the problem of binary distance assumption. According to this function, the nearest
the points of a trajectory R and the reference points (foci and center points) of an
elliptical trajectory E(S) are (and vice-versa), the higher will be the sharing score.

Definition 4.3: Reference Point Normalized Distance. Given a point r ∈ R and
an ellipse e′ ∈ E(S), the reference point normalized distance dpnd is given by the following
Equation:

dpnd(r, e
′) =

min
k∈{e′f1 ,e

′
c,e

′
f2
}
deuc(r, k)

ξ(e′)
(6)

where ξ(e′) is the maximum possible distance for r to its nearest reference point of
e′ such that r is spatially within e′. This value is obtained from the equation ξ(e′) =√
α2 + β2 where β = ε/4 and α can be obtained by finding half of the length of the

chord parallel to the minor axis at a distance β using the equation α = 1
2µ2

√
1− ( β

µ1/2
)2

derived from the ellipse general equation, as illustrated in Figure 10. By definition, if a
reference point r ∈ R is not within the ellipse e′, we consider that dpnd(r, e

′) = 1.
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αξ(s)

βf1 f2c

ε

µ2

µ1

Figure 10. Example: calculating the value of ξ for an ellipse

Definition 4.4: Reference Point-Ellipse Sharing Score. Given a trajectory point
r ∈ R and an elliptical trajectory E(S) the reference point-ellipse sharing score of r
to E(S) is the inverse of the minimum normalized distance between r and any ellipse
e′ ∈ E(S), given by the following Equation:

share(r, E(S)) = 1− min
e′∈E(S)

dpnd(r, e
′) (7)

For example, in Figure 9, the trajectory point r1 = (−25, 0) is only within the ellipse
e′1 that has the foci f1 = (−25, 2) and f2 = (0, 2). Therefore, to obtain the value of
share(r1, E(S)) we only need to calculate the value of the reference point normalized
distance dpnd(r1, e

′
1). The value dpnd(r1, e

′
1) is the minimum distance from r1 to the refer-

ence points {e′f1 , e
′
c, e
′
f2
} of e′ normalized by the value ξ(e′). It can be computed according

to the following steps: i) calculate the euclidean distance between r1 and {e′f1 , e
′
c, e
′
f2
}

to obtain the minimum distance. It is clear that the nearest point to r1 is s1, i.e., the
foci f1 of e′, hence the euclidean distance deuc(r1, e

′
f1

) = 2; ii) considering the foci of

e′ and the equations to compute the narrowed movement ellipse in Definition 3.5, we
have that ε = 25, µ1 = 35.35 and µ2 = 25. From these values it is possible to obtain

β = ε/4 = 6.25, α = 1
225
√

1− ( 6.25
35.35/2)2 = 11.7; iii) from these values it is possible to

compute the value of ξ(e′) =
√

11.72 + 6.252 = 13.25 by applying Pythagoras Theorem;
and iv) we can compute the value of share(r1, E(S)) as 1 − 2

13.25 = 0.85. Similarly, the
score share(r1, E(Q)) can be calculated as 0.47, resulting in a lower score, as expected.

In Definition 4.4, we assume that the lower the normalized distance to the reference
points is, the higher will be the proportion of the intersection between the ellipses of
different trajectories, and consequently, the more similar they are. In Definition 4.5, we
extend this assumption for the whole elliptical trajectory, and propose the concept of
shareness.

Definition 4.5: Shareness. Given two trajectories R and S, the shareness is computed
by the function S(R,S) : T× T→ [0, 1] (Equation 8).

S(R,S) =
1

2


∑
r∈R

share(r, E(S))

length(R)
+

∑
s∈S

share(s, E(R))

length(S))

 (8)

The concepts of alikeness and shareness are useful to determine if two trajectories are
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similar in space. However, none of these concepts take into consideration the order of
the matchings. For instance, two individuals traveling in the same street but in opposite
directions will have two elliptical trajectories with high alikeness and shareness score.
The movement is not similar because the first point of one trajectory will match with
the last ellipse of the other trajectory, the second point will match the penultimate, and
so on for the following ellipses. In order to avoid this situation, we consider that beyond
a high alikeness and shareness score, the matching order should be continuous for two
trajectories to be considered similar.

To evaluate if the matchings of two trajectories are continuous, initially, we look for
all the matchings of the points r ∈ R with the elliptical trajectory E(S), as stated in
Definition 4.6.

Definition 4.6: Matching Sequence. Given a trajectory point r ∈ R and an elliptical
trajectory E(S), the function matchingSeq(r, E(S)) : R × E → L returns a list L with
the positions of all elements e′ ∈ E(S) such that within(r, e′) is true, ordered according
to the sequential index of matched ellipses.

A trajectory point can have several matchings with ellipses of another trajectory. For
this reason, we use the function presented in Definition 4.7 to find the position of the
first match of an ellipse e′k that is greater than or equal to the last matching position of
the previous ellipse e′k−1. For example, if r1 has the matching sequence 〈3, 4, 5〉, and r2

has the matching sequence 〈2, 4, 5, 6〉, we have that first(r1, S) = 3 and first(r2, S) = 4.

Definition 4.7: First Matching Position. Given a point rk and an elliptical
trajectory E(S), the position of the first matching of rk is given by the function
first(rk, E(S)) : R× E→ [−1, |E(S)|], according to the following conditions:

(1) if k = 1 ∧ ∃sl ∈ matchingSeq(rk, E(S)), the lowest value of l is returned;
(2) if k > 1 ∧ ∃sl ∈ matchingSeq(rk, E(S)), the lowest value of l such that l >=

first(rk−1, E(S)) is returned;
(3) otherwise, by definition, the value -1 is returned;

The first matching position of each point is considered in the definition of continuity.
According to this concept, a sequence of first matching positions is created and verified for
each trajectory. If more matching positions are ordered, that means that the matchings
occurred in sequence, and the continuity score will be higher, as shown in Definition 4.8.

Definition 4.8: Continuity. Given two trajectories R and S, let U =
〈first(r1, E(S)), . . . , first(rn−1, E(S)), first(rn, E(S))〉 and V = 〈first(s1, E(R)), . . . ,
first(sm−1, E(R)), first(sm, E(R))〉 be two sequences with the first matching positions
of all elements r ∈ R and s ∈ S. Then, the continuity is computed by the function
C(R,S) : T× T→ [0, 1] (Equation 9).

C(R,S) =

∑
0<i≤|U |

valid(ui)

length(R)
×

∑
0<j≤|V |

valid(vj)

length(S)
(9)

where valid(uk) : U → {0, 1} (analogously for valid(vk) : V → {0, 1} ) is the follow-
ing function that states if a matching position is ordered w.r.t. the previous matching
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position:

valid(uk) =

1 if (k = 1 ∧ uk 6= −1)
∨ (k > 1 ∧ uk 6= −1 ∧ uk >= uk−1)

0 otherwise
(10)

Finally, the similarity score of UMS is given by the composition of the three charac-
teristics: alikeness, shareness and continuity, as shown in Definition 4.9. By definition if
length(E(R)) < 2 or length(E(S)) < 2 we consider that UMS(R,S) = 0.

Definition 4.9: UMS Similarity. Given two trajectories R and S, the similarity score
is computed by the function UMS(R,S) : T× T→ [0, 1] (Equation 11).

UMS(R,S) =
(A(R,S) + S(R,S))

2
× C(R,S) (11)

UMS holds the properties of non-negativity, reflexivity, and symmetry (Lemmas 4.10
to 4.12).

Lemma 4.10: (non-negativity). Given any two elliptical trajectories R and S, then
UMS(R,S) ≥ 0.

Proof : Direct from Equations 5, 8, 9 and 11. � �

Lemma 4.11: (reflexivity). Given any two trajectories R and S, if R = S and
length(E(R)) ≥ 2, then UMS(R,S) = 1.

Proof : Definition 4.9 states that the similarity score is the result of the average match-
ing and sharing scores multiplied by the continuity score. In all cases, if the elliptical
trajectories have the same ellipses the score will be one. It happens because: i) all the
trajectory points will intersect the ellipses of the other trajectory (alikeness score equal
to 1); ii) at least one point will be at a distance 0 from a point of the other trajectory
(shareness score equal to 1); and iii) the matchings will be ordered (continuity score equal
to 1). It means that if two trajectories are equal (R = S) then all the terms of Equation
11 will reach the maximum possible value. Hence, if R = S then UMS(R,S) = 1. � �

Lemma 4.12: (symmetry). Given any two trajectories R and S, in all cases
UMS(R,S) = UMS(S,R).

Proof : Direct from Equations 5, 8, 9 and 11. � �

5. Experiments

We performed experiments with two well-known datasets: i) the mobility dataset from the
CRAWDAD Project1 with low-sampled GPS trajectories (in average one point recorded
each 61.8s) of 536 taxi drivers collected in May 2008 in San Francisco, USA; and ii)
the Geolife dataset with more heterogeneous data and higher-sampled GPS trajectories
(in average one point recorded each 16.2s) with daily life trajectories of 182 individuals
using different transportation means (walking, cycling, driving, etc.), mainly collected in
Beijing, China, between April 2007 and August 2012.

1http://crawdad.org/epfl/mobility/
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Table 1. Summary of Datasets

Dataset Trajectories Points Avg. Sampl. Avg. Sampl.
Distance Time

CRAWDAD 1,000,596 11,219,955 499m 61.8s
Geolife 59,158 24,876,978 96m 16.2s

Originally, the CRAWDAD dataset contained one trajectory per driver (with duration
of several days), what is not useful to determine similar movements around the town. For
that reason, we applied two transformations to the dataset: i) trajectories were split each
time the occupation status (taken or free) of the taxi changed; and ii) trajectories were
split when a gap of 5 minutes between two consecutive points was found. As a result,
the original 536 trajectories of the dataset were transformed in more than 1 million
trajectories representing several taxi trips between different locations in San Francisco,
USA. In the Geolife dataset we also applied the second transformation. In both datasets
all the original points were kept. A summary of these datasets is presented in Table 1.

The experiments were performed comparing the approaches: DTW, LCSS, EDR,
SWALE, wDF, CATS, EDwP and MSM. Different spatial threshold parameter values
(50m, 100m, 200m, 300m, 400m, 500m) were used for the methods that require parame-
ters, and the best results obtained for each method were reported. All these methods were
implemented in Java and the experiments were performed with a i5 3317U processor, 8Gb
of RAM and a solid-state disk. The results are shown in Sections 5.2-5.4.

Before we start the evaluation of the similarity measure, in Section 5.1 we evaluate the
proposed Approximate Upper Bound distance function.

5.1. Approximate Upper Bound Evaluation

In Section 4.2 we claimed that AUB is a good approximate upper bound measure to create
ellipses, balancing the coverage of the real locations between two sampled points, while
at the same time it narrows the area determined by the upper bound ellipse approach.
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Figure 11. Results for the Evaluation of the Approximate Upper Bound Distance Measure for
different sampling rates

We validate AUB using the Geolife dataset, which is very heterogeneous, has several
kinds of trajectories collected with different transportation means, and contains highly-
sampled trajectories, what allows the creation of transformed trajectories with varying
sampling rates. In this experiment, we: i) selected all high-sampled trajectories, with an
average sampling lower than 2s, and with a maximum speed of 200km/h (speed obtained
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from real trajectories in the dataset), so we could set the maximum speed of the Upper
Bound approach as 200km/h; ii) resampled these trajectories using several sampling rates
(30s,60s,...,180s); and iii) created elliptical trajectories for all the low-sampled versions
of the trajectories. Then, the ellipses average coverage of the real (originally sampled)
locations between two sampled points and the average area size were computed for all
trajectories1.

Intuitively, a measure is more adequate to determine an approximate upper bound
when it covers more points of the original trajectories with the smallest area size. To
evaluate the results, we compare the proposed Approximate Upper Bound (AUB) mea-
sure with the Upper Bound Ellipse (UB), the original time-geography ellipses of (Pfoser
and Jensen 1999), and the Elliptical Trajectories created using the Manhattan Distance
as the major axis of the ellipses (MH).

The results of the experiments, detailed in Figures 11(a), 11(b) and 11(c), show that
AUB had the best results regarding the balance between the coverage of the original
trajectory points (y axis in Figure 11(a)), the area size (as a percentage of the upper
bound area) covered by the generated ellipses (y axis in Figure 11(b)), and the percentage
of trajectories with at least 90% of the original points covered considering a varying
sampling rate (x axis in both graphs).

In summary, as shown in Figures 11(a), 11(b) and 11(c), AUB had an average coverage
of 97% with an average area of 9% of the UB area (with vmax = 200km/h) and in average
covered at least 90% of the original points of 92.4% of the trajectories, outperforming
the Manhattan Distance that had averages of 94.1%, 5.1%, and 83.2%, respectively.
AUB had a coverage closer to the upper bound value, as shown in Figures 11(a) and
11(c), with a slight increase in the area when compared to the Manhattan Distance, as
shown in Figure 11(b)), resulting in a better balance between movement coverage and
the size of the uncertain area representation. The explanation is that the Manhattan
distance approximates linear interpolation in some cases, reducing the ellipse size and
consequently its coverage (as demonstrated in Section 4.2).

In the following sections we evaluate UMS according to different aspects such as the
precision of the measure in retrieval tasks (Section 5.2), the robustness of the measures
regarding the sampling rate variation (Section 5.3) and the scalability (Section 5.4).

5.2. Retrieval-based Evaluation

In this section we extend the classic retrieval-based approach precision at recall (described
in (Baeza-Yates and Ribeiro-Neto 1999)) to evaluate the precision of trajectory similarity
measures.

5.2.1. Trajectory Precision@Recall Description

Initially, (i) two spatial regions R1 and R2 are defined as the origin and destination,
respectively. The next step is (ii) to find, in the entire dataset D, a set T of trajectories
that travel from R1 to R2, since several different routes may connect R1 to R2; (iii) a
crowded route is selected and all trajectories of T that performed the movement in this
route (being very similar to each other) are considered as the groundtruth set G with the

1For example: let T1 = 〈p1, . . . , p15〉 be the original trajectory with points sampled at each 1 second. Then, let
T5 = 〈p1, p5, p10, p15〉 be the resampled trajectory with 5 seconds as the rate. Finally, let E = 〈e1, e2, e3〉 be
the elliptical trajectory representing T5. The coverage of each ellipse is given by the percentage of points in the
original trajectory that are spatially covered by the ellipse (e.g., the ellipse e1 should spatially cover the points
p1, p2, p3, p4 and p5 of trajectory T1) and the area size of the ellipses is calculated using basic geometry.



18 A. Salvaro Furtado et al.

relevant trajectories. Next, (iv) the similarity score is computed between all the relevant
trajectories in G with all trajectories of the entire dataset D, and (v) the trajectories are
ranked by the similarity score. Naturally, a ”perfect” measure would have at the top of
the ranking all the trajectories in G. Then, (vi) the precision is calculated for size(G)
levels of recall1 and the average precision at each level of recall of all trajectories in G is
calculated. Finally, (vii) the result is shown over a classical precision versus recall chart
(Baeza-Yates and Ribeiro-Neto 1999).

Intuitively, the precision at a certain recall level is higher if more trajectories ranked
until that recall level belong to G (consequently, a ”perfect” measure would have the
precision 1 at recall level 1, when all the relevant trajectories were returned). Other two
alternatives to simplify the result in a single value include: i) compute the mean average
precision (MAP) by considering the average precision in all levels of recall; and ii) find
the break-even point (BEP) - the point where the precision and recall curve cross. In
both cases, higher values indicate a better result of the measure.

5.2.2. Ground Truth Definition

Initially, we selected five locations in San Francisco with a high density of pick-up/drop-
off points near crowded places (Airport, Union Square (US), Train Station (TS), Pier 39
(P39) and Westfield San Francisco Center (WSFC)) in order to maximize the number of
trajectories traveling between these regions in the CRAWDAD dataset. Then, we selected
six of the most crowded routes with travels between these places, that are described in
Table 2 as G1 to G6. The trajectories of the ground truth are illustrated in Figure 12.
The use of a dataset with taxi trajectories was ideal to this kind of experiment because
there are several trajectories between the pairs of regions that allow the construction of
a ground truth with the trajectories in the same route, and at the same time there are
several trajectories in slightly different routes, what makes the task of correctly ranking
the most similar trajectories more challenging.

In the selection of the ground truth we considered several criteria to guarantee the
variability in the evaluation including: i) a minimal number of trajectories in the route;
ii) the average number of points of the trajectories; iii) the variation in the number of
points (high in G1 and G2, medium in G3 and low in G4, G5 and G6); iv) the average
sampling distance (high in G1 and G4, medium in G2 and G3, and low in G5 and G6); and
v) characteristics of the route (the route taken in G2 was almost entirely in highways),
while G1, G3 and G4 were partially inside the city and in G5 and G6 were entirely in roads
inside the city).

Table 2. Description of Ground Truth Trajectories (Average reported with the Standard Deviation in
the format AV G± SD)

From To Trajectories Avg. Points Avg. Sampling Avg. Sampling
per Trajectory Distance Time

G1 WSFC Airport 8 27±7.5 1536m±580 63.8s±22.3
G2 Airport TS 90 26.4±11.7 1160m±383 59s±6.6
G3 Airport US 99 22.7±4.3 1308m±186 56.5s±6.1
G4 WSFC Airport 353 18.6±4.8 1590m±374 61.3s±11.9
G5 TS P39 19 12.9±2.5 502m±102 61.5s±6.2
G6 P39 US 13 13.5±3 272m±57 64.8s±8.2

1For example, if size(G) = 10 then the recall levels are {0.1, 0.2, . . . , 0.9, 1.0}.
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(a) (b) (c)

Figure 12. Groundtruth trajectories in: (a) G1: between the WSFC and Airport, and G3: between
the Airport and Union Square (US); (b) G2: between the Airport and the Train Station (TS),
and G4: between the WSFC and Airport; and (c) G5: between the Train Station (TS) and Pier
39 (P39), and G6: between the Pier 39 and Union Square

Table 3. Mean Average Precision (MAP) and Break-Even Point (BEP) for all the methods over each
selected ground truth

G1 G2 G3 G4 G5 G6
MAP BEP MAP BEP MAP BEP MAP BEP MAP BEP MAP BEP

UMS 0.66 0.63 0.41 0.43 0.64 0.63 0.49 0.50 0.72 0.67 0.40 0.40
DTW 0.44 0.45 0.25 0.29 0.12 0.17 0.13 0.17 0.66 0.63 0.21 0.23
LCSS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
EDR 0.34 0.43 0.07 0.14 0.07 0.12 0.08 0.15 0.43 0.43 0.17 0.21
Swale 0.34 0.45 0.09 0.15 0.07 0.13 0.08 0.15 0.43 0.47 0.18 0.24
wDF 0.41 0.43 0.09 0.13 0.07 0.13 0.07 0.12 0.53 0.52 0.16 0.21
CATS 0.27 0.35 0.10 0.14 0.07 0.11 0.04 0.08 0.24 0.31 0.18 0.21
EDwP 0.43 0.44 0.11 0.16 0.08 0.11 0.11 0.14 0.72 0.68 0.22 0.26
MSM 0.22 0.31 0.06 0.14 0.05 0.10 0.04 0.09 0.24 0.28 0.14 0.18

5.2.3. Retrieval-based Results

The |Gk| trajectories were used as the ground truth trajectories, and for each trajectory
that belongs to Gk, the |Gk| most similar trajectories should also belong to Gk. For each
one, a similarity search over the whole database was performed, ranking the trajectories
until all |Gk| trajectories were found. The best result for a similarity measure is to return
all trajectories in the groundtruth ranked in the positions from 1 to |Gk|. The results of
precision at each recall level is the average obtained for all |Gk| trajectories at that level.
Figure 13 reports the results, and Table 3 summarizes the mean average precision (MAP)
and break-even point (BEP) results for DTW, LCSS, EDR, SWALE, wDF, CATS, MSM,
EDwP and UMS.

The results clearly show that UMS outperforms all the other methods in this dataset.
The mean of the MAP and BEP results (MAP/BEP) of the six scenarios for UMS
were 0.55/0.54, significantly higher than DTW (0.30/0.32), LCSS (0.00/0.00), EDR
(0.19/0.25), SWALE (0.20/0.26), wDF (0.22/0.26), CATS (0.15/0.20), EDwP (0.27/0.29)
and MSM (0.12/0.18).

The explanation of the worse results of related approaches relies on their limitations
when dealing with real-world trajectory data. These approaches are very sensitive when
dealing with low sampled trajectories (the average sampling rate in CRAWDAD dataset
is 61.8 seconds), especially when the average sampling distance increases, what was the
case in G1 to G4. It happens because they: i) use a fixed threshold around sampled points
(LCSS, EDR, CATS and MSM); ii) directly sum the distance for pairs of points in dif-
ferent trajectories (DTW and wDF); or iii) try to interpolate points determining a rigid
path in the missing parts of the trajectory (EDwP); while UMS uses ellipses with dynam-
ically defined sizes to represent the movement between the sampled points, guaranteeing
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a tolerance in the uncertainty representation and overcoming several problems pointed
out in Section 2. The sensibility to these problems directly affects the similarity results
in real-world datasets. For the fixed threshold, if its value is set too high (e.g., 500m)
the methods will match points of trajectories in other paths, while if the threshold is
set too small (e.g., 50m) it is not enough to match points of trajectories in the same
route. The same happens with the measures that directly sum the distances, where the
points of different trajectories in the same route can be sampled at different locations,
increasing their distance. In the case of LCSS, the results are explained by the existence
of very small trajectories that receive the maximum similarity score due to the lack of
penalization for unmatched points. In addition, the use of interpolation presents some
limitations, especially in low-sampled trajectories, where map-matching is not accurate
(Zheng et al. 2012) and linear interpolation is too rigid, as adopted in (Ranu et al. 2015).
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Figure 13. Detailed precision at recall results for the ground truths G1 to G6

For the above reasons, the precision difference between UMS and related approaches
was higher in scenarios where the uncertainty is greater (G1 to G4), what demonstrates
the effectiveness of the dynamic-sized ellipses approach to cover trajectory uncertainty.
Although UMS also performs well in scenarios with less uncertainty (G5 and G6), while
the difference in precision was smaller, it was also expressive, with the exception of DTW
and EDwP in G5 that had similar results to UMS. It happened because at the same time
the average sampling distance was smaller (502m), the standard deviation in the number
of points was low, and most part of the trajectory was in an avenue parallel to the coast,
with less options for trajectories in near parallel routes (as can be seen in Figure 12(c)).
These results were not as good as in G6 because even though the route was straight
between the two regions and the average sampling distance was small (272m) there were
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several trajectories in different but parallel routes nearby that have wrongly received a
score higher than the ground truth trajectories.

An important remark at this point is that some of the methods as LCSS, EDR, SWALE,
CATS and MSM are not parameter-free, and that the difference between the best and
worst score in several cases was significant. In addition, the best results had a parameter
variation according to different ground truths and methods, what reinforces the fact that
choosing the best parameters for different datasets with an unknown ground truth is not
a trivial task.

In order to show the importance of AUB in the similarity accuracy of our measure
UMS, we compare the similarity accuracy (precision) of datasets G1 to G6 using both the
approximate ellipses (AUB) and the original time-geography ellipses proposed by Pfoser
and Jensen (1999). The results for Pfoser and Jensen (1999) are G1: 0.20, G2: 0.05, G3:
0.05, G4: 0.09, G5: 0.65 and G6: 0.31. The results with AUB were: G1: 0.66, G2: 0.41, G3:
0.64, G4: 0.49, G5: 0.72 and G6: 0.40. Notice that the precision with AUB is much higher,
because as demonstrated in Section 5.1, the use of maximum speed to determine the size
of the ellipses tends to overestimate the covered area, and therefore resulting in large
amounts of false positive ellipse intersection.

In summary, UMS had expressive higher mean average precision and break-even points
than related approaches for all scenarios, with the difference to the other approaches
being even more expressive in scenarios where the uncertainty was higher, confirming
the effectiveness of ellipses on the coverage of the uncertain parts of trajectories.

5.3. Robustness to Sampling Rate Evaluation

In this section we evaluate the robustness of similarity measures in relation to the sam-
pling rate. This experiment is similar to the one proposed in (Su et al. 2015) to validate
the claim that existing similarity measures are very sensitive to sampling rate variation.

Initally, a set T with all the highly-sampled trajectories (sampling rate lower than 2s)
of the Geolife dataset was selected. All trajectories were resampled using a variety of
sampling rates (5s, 15s, 30s, 45s, 60s, 90s and 120s). Then, the set of trajectories resam-
pled with 45s (T45) was used as baseline and the distances of each trajectory in this
set to their versions in the other sets (T5, T15, T30, T60, T90, T120) were calculated using
DTW, LCSS, EDR, wDF, CATS, EDwP, MSM and UMS. The spatial threshold was set
to 100m when required1. The resulting values of DTW, wDF and EDwP were normal-
ized by the maximum distance value and SWALE was not included in the comparison
because according to the values of reward and penalty it can have considerable variations
(in the extremes having similar results to LCSS and EDR). A measure that is robust to
variations in the sampling rate should have small distance variations.

The average distances between the trajectories of set T45 and its versions in the other
sets are reported in Table 4, which is ordered by the average distance variation of all sets.
UMS had the lowest variation, only 9%, while the second most robust measure (LCSS)
had 16%. LCSS does not increase the distance when there are none-matching elements
in the sequences and normalizes its score by the size of the smaller trajectory. It was
able to match part of the points of the smaller trajectory with the 100m threshold, what
reduces the score variation. All other methods had score variations greater than 25%.

In addition, the variation of the scores with LCSS was less uniform, varying between
0%− 29%, while in UMS the difference varied between 0%− 11%, as can be seen in the

1In the literature a radius of 100m or less is a common choice for these methods (Hung et al. 2015, Su et al. 2015).
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boxplot score distribution shown in Figure 14. This experiment shows that the use of
ellipses is less sensitive to sampling rate variations, once it covers the movement between
two sampled points.

UMS DTW LCSS EDR wDF CATS EDwP MSM

0

0.5

1

Figure 14. Sampling Rate Robustness: boxplot distribution for the similarity scores variation

Table 4. Average Distance to T45

T5 T15 T30 T45 T60 T90 T120 Avg.

UMS 0.10 0.10 0.10 0 0.10 0.09 0.11 0.09

LCSS 0 0.12 0.23 0 0.29 0.19 0.27 0.16

MSM 0.30 0.27 0.27 0 0.31 0.30 0.40 0.26

DTW 0.93 0.35 0.18 0 0.16 0.21 0.29 0.30

CATS 0.13 0.28 0.37 0 0.47 0.49 0.58 0.33

EDwP 0.35 0.31 0.27 0 0.37 0.58 0.87 0.39

EDR 0.78 0.60 0.43 0 0.42 0.50 0.61 0.48

wDF 0.51 0.48 0.40 0 0.49 0.71 0.88 0.50

5.4. Scalability Evaluation

The time complexity of UMS is the same as DTW, LCSS, EDR, CATS, MSM and EDwP
(O(n ∗m)). However, UMS performs little worse than some related approaches, because
the use of ellipses instead of circles or the direct distance summing (that is based on the
euclidean distance) requires more complex equations to determine if a point is within
an ellipse (used to compute alikeness and continuity) and to compute the maximum
distance within the ellipse to normalize the distances (used to compute shareness).

In order to evaluate the scalability, we perform the naive comparison of N randomly
selected trajectories over the whole CRAWDAD dataset. Since the dataset has around 1
million trajectories, around N × 1M similarity computations were performed. All meth-
ods were implemented using dynamic programming. It is important to notice that, even
though some methods have indexing techniques to reduce the number of complete com-
parisons in some scenarios, such as top-k queries, there are other scenarios, such as in
clustering techniques, where the pairwise similarity computation of all trajectories is re-
quired. We also precomputed all the elliptical trajectories that were passed as parameter
to the UMS method, what took around 17 seconds for the whole dataset.

Figure 15 shows the results in logarithmic scale. In average, the execution times for
UMS were faster than EDwP and wDF, 1.1-1.2x slower than DTW, and 1.3-2.6x
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slower than LCSS, EDR, MSM and CATS. However, it is important to highlight that
the results of UMS are in the same order of magnitude of the other approaches and that
its results showed greater precision in the retrieval-based experiments with a relatively
small increase in the computation time, what shows a trade-off with considerable gains
in precision with a little loss in performance. In addition, the last four methods require
user-defined parameters as input, what adds the necessity of a parameter tuning step.
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Figure 15. Scalability results: running time in miliseconds for a number of pairwise similarity
computations (log10 scale)

6. Related Work

There are several methods developed for time-series similarity. The form of this kind of
data (a sequence of elements) is similar to raw trajectories, what makes the use of these
methods over raw trajectories straight-forward. Dynamic Time Warping (DTW)
(Berndt and Clifford 1994) finds the best match between the elements of two sequences,
creating a matrix with all possible combinations of two elements in the sequences and
their distance as the entries. The total distance between the two sequences is the sum of
the entries of the minimum contiguous path in the matrix. For this reason, DTW tends
to be sensitive to noise, i.e., when a trajectory R has a point that is very distant from
all the points of S, even if all the other points of R and S are close, the distance will be
dominated by the noisy point.
Longest Common Subsequence (LCSS) (Vlachos et al. 2002) introduces a match-

ing threshold when looking for the longest common subsequence. It reduces the effects
of noise by quantifying the similarity between a pair of elements to binary values: 0 if
the elements do not match and 1 otherwise. The longest matching sequence is used to
calculate the similarity. A drawback of this approach is that it looks only the similar
subsequence, ignoring possible gaps that may vary in size of the sequences.
Edit Distance on Real sequence (EDR) (Chen et al. 2005) is an evolution of LCSS,

following a similar approach, where the distance between a pair of elements is quantized
to binary values, and a matching threshold is used to avoid noise. EDR computes the
distance of two sequences by adding 1 when the elements do not match and 0 when they
match. Since this approach increases the distance for non-matching elements, it solves
the problem of the gaps pointed as a drawback in LCSS, but as it matches points on
a one-to-one basis, two similar trajectories with different number of points may have a
high distance score.
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Sequence Weighted Alignment (SWALE) (Morse and Patel 2007) presents a
threshold matching approach that combines the idea of giving rewards to each match
and penalties to matching gaps with user-defined parameters to determine the weights of
each match/non-match. However, it does have the same limitation of EDR that considers
matching points on a one-to-one basis and needs non-trivial user-defined parameters.

More recently, several other methods were proposed for raw trajectory similarity. w-
constrained discrete Frechet Distance (wDF) (Ding et al. 2008) adapts the classical
Frechet Distance (Alt and Godau 1995) to work with discrete series of points. This
method adds temporal windows to the discrete Frechet Distance, in order to consider
only the pairs of points that are within a given time-window. The distance between the
trajectory points is directly calculated by a continuous distance function (e.g., euclidean
distance). For that reason, as DTW, wDF is sensitive to noise. Another method based
on the Frechet Distance was proposed by Buchin and Purves (2013), but instead of
computing the Frechet Distance between the sampled points, it is computed over a set
of space-time prisms generated over the sampled trajectory. The problem is that the
space-time prisms are generated using the parameter vmax (maximal speed) to determine
their sizes (as in the original work ofPfoser and Jensen (1999)), what in low-sampled
trajectories tends to overestimate the size of the prisms, covering large areas and also
affecting the accuracy of the similarity results.
Normalized Weighted Edit Distance (NWED) (Dodge et al. 2012) segments a

trajectory in parts with homogeneous characteristics (e.g., same speed and/or direction),
representing it as a sequence of symbols. This method considers two trajectories as similar
if they have similar shapes or motion patterns, without considering the spatial dimension,
what makes this approach useful only in scenarios where the geographic location of the
movement is not relevant.
Clue-aware Trajectory Similarity (CATS) (Hung et al. 2015) proposes an ap-

proach that also considers matching thresholds (as LCSS and EDR), but instead of
considering only binary values for each pair of points (match or not), it uses a func-
tion that considers the euclidean distance normalized over the spatial threshold value of
the matched points. A limitation of this method is that the result is highly parameter
dependent.
Edit Distance with Projections (EDwP) (Ranu et al. 2015) is the most related

approach to our proposal. It is also a parameter-free method, that addresses the sampling
variation problem by using a dynamic interpolation approach, which projects the points
of the most dense trajectory in the interpolated lines of another trajectory to compute
the scores based on a uniform sampled representation. A limitation of this approach is
that it relies on the interpolation function, that in the absence of additional data usually
is the classical linear interpolation as in (Ranu et al. 2015).
Multidimensional Similarity Measure (MSM) was proposed in (Furtado et al.

2016) for multidimensional sequences, including multidimensional trajectories. This mea-
sure considers a user-defined matching threshold for matching elements, similarly to EDR
and LCSS, having the same limitations regarding the binary distance assumption. How-
ever, this approach is more flexible by allowing partial matchings and many-to-many
element matching.
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7. Conclusion

In this article we proposed a new trajectory parameter-free similarity measure, called
UMS, which to the best of our knowledge, is the only approach that considers the inter-
polation error uncertainty of the movement beyond the use of linear interpolation when
computing movement similarity, overcoming several limitations of the current methods
when dealing with real trajectory data. Various evaluation techniques already proposed
in the literature were used in the experiments and showed that UMS had better results
regarding precision, accuracy, and robustness to sampling rate variations in the similar-
ity assessment of uncertain trajectories when compared with state-of-the-art methods. In
summary, the main contributions of this article are: i) a new distance function to estimate
an approximate upper bound for movement uncertainty (AUB); ii) a new parameter free
spatial similarity measure that covers the gaps between trajectory sampled points and;
iii) the adaption of a classic retrieval-based evaluation technique to the movement data
domain.
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