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Abstract—For the caching problem, when the number of files is
no larger than that of users, the best known rate-memory region
is achieved by memory sharing between the rate-memory pairs
obtained by three schemes: the scheme proposed by Yu et al., the
scheme proposed by Gomez-Vilardebo and the scheme proposed
by Tian-Chen. While the first two schemes operate on the binary
field, the Tian-Chen scheme makes use of a finite field of order 2m

with, in some situations, m ≥ K log
2
(N) for a caching systems

with K users and N files. The practical implications of this
increase in the size of the field are equivalent to an increase,
by a factor of m, in the number of subfile partitions required.
We propose a novel caching scheme that approaches the rate-
memory region achieved by the Tian-Chen scheme as the number
of users in the system increases, which only requires a field of
order 22.

Index Terms—Centralized coded caching, network coding,
index coding.

I. INTRODUCTION

Mobile data traffic has been increasing exponentially fast

for the last 5-6 years. The advent of multimedia-capable

devices such as smartphones and tablets at economical cost,

as well as the success of content based applications such as

YouTube, Facebook, Netflix, and network gaming, are the

main reasons behind this growth. All signs indicate that this

trend is likely to continue, for instance, to support HQ video

on demand streaming applications. This constantly increasing

demand of contents has been guiding the efforts of the industry

and research communication communities. One of the most

promising techniques proposed so far is “content caching” [1].

The most direct application of the content caching concept

is to combat peak hour traffic in content delivery services.

The simplest ‘’uncoded” caching solutions [2], [3] work as

follows: during low traffic periods, the storage resources

available at the edge of the network are filled out with popular

content. Then, whenever a user requests a content that is

available at the edge cache, the content is served directly, thus,

completely alleviating the backhaul network. This uncoded

caching solution is only optimal in single cache systems.

However, for multiple caches, the seminal work in [1] showed

that important gains can be obtained by a new coded caching

strategy. Specifically, in [1] authors show that, besides the local

caching gain that is obtained by placing contents at user caches

before they are requested, it is possible to obtain a global
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caching gain by creating broadcast opportunities. This is, by

carefully choosing the content caches at different users, and

using network coding techniques it is possible to transform

the initial unicast network, where every user is requesting

a different file, into a broadcast network, where every user

requests exactly the same “coded” file, obtaining the new

global caching gain.

The fundamental caching scheme developed in [1] was later

extended to more realistic situations. The decentralized setting

was considered in [4], non-uniforms demands in [5]–[7], on-

line coded caching in [8], and hierarchical cache network were

considered in [9], among others. In addition, new schemes

pushing further the fundamental limits of caching systems

have appeared in [10]–[18]. There have been also efforts to

obtain theoretical lower bounds on the delivery rate. The cut-

set bound was studied in [1]. A tighter lower bound was

obtained in [19]. Through a computational approach a lower-

bound for the special case with 3 files and 3 users is derived

in [20]. Other lower bounds have appeared in [12], [21], [22].

Perhaps the most important challenge that needs further

attention before coded caching solutions can be incorporated

into real systems is what is known as the subpacketization

level [23]–[25]. The theoretical gains of coded caching are

demonstrated with strategies that require dividing each cached

file into a number of parts that grows exponentially with

the number of caches in the system. As an example, for

the particular case where users store half of the full server

data base, the centralized strategy in [1] which constitutes

a fundamental building block for any of the current known

extensions, needs to divide each packet into 1014 subfiles

with only 50 cache-users. The practical implications of such

subpacketizaion levels are important in terms of the overall

system complexity, signaling overhead and delay [26].

A particularly interesting situation is when there are more

users K than files N . It was shown in [7] that a near optimal

caching strategy consists in dividing the files into groups

with similar popularity, and then applying the coded caching

strategy to each group separately. Since the amount of users in

each groups remains the same, when there are many groups,

the cache size dedicated to each group is small as well as the

number of files per user in each group.

If there are more users than files and cache memories are

small, some of the best rate-memory pairs known are achieved

by the Tian-Chen coding scheme [16]. This coding scheme,

however, makes use, in some situations, of a finite field of

at least order NK . The practical implications of this increase

in the size of the field are equivalent to an increase, by a

factor of K log2 N , in the number of subfile partitions required

compared to the scheme in [1]. We propose a novel caching
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scheme that approaches the rate-memory region achieved by

the Tian-Chen scheme as the number of users in the system

increases, which only requires a finite field of order 22. More-

over, instead of relying on the existence of some valid code

as in [17], we provide an explicit combinatorial construction

of the caching scheme, including, both, the prefetching, and

delivery (broadcast and decoding) phases.

The rest of this paper is organized as follows. In Section II,

we present the system model together with the more relevant

previous results. In Section III, we summarize the main results.

Section IV describes the caching scheme proposed. A detailed

example is developed in Section V. Finally, conclusions are

drawn in Section VI.

II. SYSTEM MODEL AND PREVIOUS RESULTS

We consider a communication system with one server

connected to K users, denoted as U1, ..., UK , through a shared,

error-free link. There is a database at the server with N files,

each of length F bits, denoted as W1, ....,WN . Each users is

equipped with a local cache of capacity MF bits, M ∈ [0, N ],
and is assumed to request only one full file. Here, we consider

the special case where there are more users than files N ≤ K.
We consider the communication model introduced in [1].

The caching system operates in two phases: the placement

phase and the delivery phase. In the placement phase, users

have access to the server database, and each user fills their

cache. We allow coding in the prefetching phase. Thus, at user

Uk, the caching function maps the database {W1, ...,WN} to

the cache content Mk. Then, each user Uk requests a single

full file Wd(k), where d = (d(1), ....,d(K)) denotes the

demand vector. We denote the number of distinct requests in

d as Ne(d). In the delivery phase, only the server has access

to the database. After being informed of the user demands, the

server transmits a signal Y of size RF bits over the shared

link to satisfy all user requests simultaneously. The signal Y
is a function of the demand vector d, all the files in the

data base W1, ....,WN , and the content in the user caches

M = {M1, ....,Mk}. Using the local cache content and the

received signal Y , each user Uk reconstructs its requested file

Wd(k).

Let D = {1, ..., N}K , for a caching system (M,N,K),

given a particular prefetching M = {M1, ....,Mk} and

a particular demand d, we say that communication rate R
is achievable if and only if there exists a message Y of

length RF bits such that every user Uk is able to reconstruct

its desired file Wd(k). For a particular prefetching M and

demand d, we denote the achievable rate as R(d,M). Then,

the rate needed for the worst demand is given by R∗ (M) =
maxd∈D R(d,M). Finally, we define the rate-memory pair

(R∗,M), or the rate-memory trade-off function R∗(M) as

the minim rate R∗ for different memory constraints M , i.e.

we aim to find

R∗ = min
M

R∗ (M)

where the minimization is over all caching schemes M

satisfying the memory load constrain M . Observe, that if users

have no caching capacity M = 0, the server needs to send

the full requested files and thus, the worst demand rate is

R∗ = N . Instead, if users can have a complete copy of the

server’s database M = N , then no information needs to be

transmitted from the server R∗ = 0.

As far as we known, for the centralized caching setting,

the best known explicitly characterization of the rate-memory

trade-off can be obtained by memory sharing between three

rate-memory pair families: the rate-memory pairs presented in

[27, Corollary 1.1],

(R∗
GV,MGV) =

(

N −
N

K

N + 1

q + 1
,
N

Kq

)

(1)

for q ∈ {1, ...., N}; the rate-memory pairs obtained in [15,

Corollary 1],

(R∗
YU,MYU) =

(
(

K
r+1

)

−
(

K−min{K,N}
r+1

)

(

K
r

) ,
rN

K

)

(2)

for r ∈ {0, 1, ...,K}, and the rate-memory pairs obtained in

[16, Theorem 1]

(R∗
TC,MTC) =

(

N
(

1−
r

K

)

,
r

K
+ (N − 1)

r

K

r − 1

K − 1

)

,

(3)

with r ∈ {0, 1, ...,K}.

The rate-memory pairs in (2) include as special case the

rate-memory pair found in [10] for M = N
K . In addition,

both (1) and (3) include as special case the rate-memory pair

(R∗,M) =
(

N − N
K , 1

K

)

obtained in [14]. Recently, a method

to obtain new rate-memory pairs has been developed in [17].

However, no explicit characterization of the achievable rate-

memory pairs is provided. The optimal rate-memory trade-off

for a caching systems remains an open problem. There have

been efforts also to obtain theoretical lower bounds on the

delivery rate. The cut-set bound was studied in [1]. A tighter

lower bound was obtained in [19]. Through a computational

approach a lower-bound for the special case N = K = 3 is

derived in [20]. Other lower bounds have appeared in [12],

[21], [22].

Yu et al. [15] and Tian-Chen [16] coded caching schemes,

both define exactly the same subfile partitioning and assign-

ment strategies. Each file is divided into s =
(

K
r

)

subfiles, out

of which to every user sa =
(

K−1
r−1

)

subfiles are assigned in a

way that each subfile is assigned to r users. Since there are N
files, the total number of subfiles assigned to a user is Nsa.

Let sā = s − sa denote the number subfiles of every file not

assigned to a user. The prefetching and delivery strategies are

however quite different for both schemes. In Yu et al. uncoded

prefetching is proposed. At each user, the subfiles assigned

are directly cached without further encoding. The number of

subfiles cached is thus cYU = sa. The objective of the delivery

strategy is to efficiently transmit the sā requested subfiles

missing at each user. Observe that a “greedy” uncoded trans-

mission strategy could be to simply broadcast the sā requested

subfiles missing at each user. This “greedy” strategy requires

a total of Ksā broadcasted subfiles. The Yu et al. broadcasting

strategy finds multicast opportunities that allows a set of users

to simultaneously recover their requested subfiles, as a result

at most bYU =
(

K
r+1

)

= K
r+1sā coded broadcasted subfiles are

required. The Tian-Chen scheme, instead, make use of coded
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prefetching. At each user, coded cached subfiles are obtained

as linearly independent combinations, in some finite field, of

the sa subfiles assigned to the user. The total number of coded

cached subfiles at each user is

cTC = (N − 1)

(

K − 2

r − 2

)

+

(

K − 1

r − 1

)

.

For any coded prefetching solution, the delivery strategy

needs to, not only deliver the sā requested subfiles missing

at each user, but also to allow decoding the sa requested

subfiles encoded in the cache. The Tian-Chen delivery scheme

achieves these two objectives but, additionally, requires each

user to completely decode the Nsa subfiles encoded in its

cache1. Observe that a “greedy” delivery strategy in this case,

could be to broadcast to each user the sā missing requested

subfiles uncoded, together with Nsa−cTC linearly independent

combination of the subfiles coded in the cache, that together

with the cTC coded subfiles already in the cache could allow

the decoding of every subfile in the cache. For this greedy

scheme, the required total number of brodcasted subfiles is

bGC = K (sā +Nsa − cTC) = K

(

r
N − 1

K − 1
+ 1

)

sā.

Instead, the Tian-Chen coded caching strategy is able to solve

the same problem, broadcasting only bTC = Nsā coded sub-

files. To obtain this result, the authors in [16], [17] employed

codes, in particular maximum distant separable (MDS) codes

and/or rank metric codes, operating in a finite field of at least

order

min

(

NK , 2

(

K − 1

r − 1

)

N −

(

K − 2

r − 1

)

(N − 1)

)

. (4)

This is in contrasts to the combinatorial description of schemes

presented in [15] and [27], which only require binary opera-

tions.

III. MAIN RESULT

The following theorem presents the delivery rate obtained

by the proposed caching scheme for a particular demand d.

Theorem 1. For a caching problem with K users, N files,

and local cache size MF bits at each user. Given a particular

demand d, let Ne(d) be the number of distinct file requests,

the proposed strategy achieves the rate-memory pairs

RTC+ = min (Ne(d) + 1, N)

(

1−
r

K + 1

)

MTC+ =
r

K + 1
+ (N − 1)

r

K + 1

r − 1

K

for r ∈ {0, ...,K + 1}. Moreover, the new coded caching

strategy operates in a finite field F4.

We prove this result in the following section by describing

the new caching scheme. The delivery rate presented in The-

orem 1 is valid for any K and N . However, it is particularly

useful for K ≥ N , as we detail in the next corollaries.

1This additional condition is probably limiting the performance of the
strategy, however is a key ingredient in their result
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Figure 1: Rate-memory functions of the proposed scheme

compared with existing schemes and lower bounds in the

literature for N = 4 and K = 20.

The next corollary provides the rate-memory region for the

worst demand as a direct consequence of Theorem 1.

Corollary 1.1. For a caching problem with K users and N
files, local cache size of MF bits at each user, given that

Ne(d) ≤ K , the proposed strategy achieves the worst demand

rate-memory pairs (R∗,M) = (R∗
TC+ ,MTC+), with

R∗
TC+ = min (N,K + 1)

(

1−
r

K + 1

)

MTC+ =
r

K + 1
+ (N − 1)

r

K + 1

r − 1

K

for r ∈ {0, ...,K + 1}.

Remark 1.1. Observe that, if K ≥ N the worst demand rate-

memory function in Corollary 1.1 for K users coincides with

the Tian-Chen rate-memory pair in (3) for K + 1 users.

The following corollary compares both rate-memory func-

tions. The proof is provided in the Appendix.

Corollary 1.2. Let R∗
TC+(M) be the worst demand rate-

memory function achieved by memory sharing between the

rate-memory pairs in Corollary 1.1, and let R∗
TC(M) be the

worst demand rate-memory function of the Tian-Chen scheme.

For any number of files N and users K , satisfying K ≥ N
and M ∈ [0, N ], we have

R∗
TC+(M)

R∗
TC(M)

≤ 1 +
1

(K − 1) (K + 1)
.

Moreover, we have R∗
TC+(M) = R∗

TC(M) at

M =
r + 1

K + 1

(

1 + (N − 1)
r

K

)

for all r = {0, ...,K}, as well as, at the intervals

0 ≤ M ≤
1

K + 1
,
K − 1

K + 1
N +

1

K + 1
≤ M ≤ N.

Observe that the proposed scheme matches Tian-Chen result

for very low and very high caching ratios. For a system with

N = 2 files and K = 3 users, Fig. 2 in the appendix, shows
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the regimes where the proposed scheme and the Tian-Chen

scheme are equal and those where they differ. In Fig. 1 for

a caching system with N = 4 files and K = 20 users, we

compare the rate-memory pairs in Corollary 1.1 to the best

known rate-memory functions in the literature, i.e. the rate-

memory pairs in [15, Corollary 1], [27, Corollary 1.1] and [16,

Theorem 1]. In addition, we depict for comparison, the cut set

lower bound [1, Theorem 2], the information-theoretical lower

bound obtained in [19, Theorem 1], and the lower bounds

recently appeared in [22, Theorem 1] and [21, Remark 6].

Observe that, as expected from the result in Corollary 1.2,

the new proposed scheme obtains a rate-memory function

overlapping almost exactly the rate-memory function in [16],

[17]. Moreover, the strategy presented here only requires a

finite field of order 22. Instead, the direct evaluation of (4),

for the rate-memory pair associated to r = 11, shows us that

the Tian-Chen scheme requires a finite field of at least size

105.

IV. PROPOSED CACHING SCHEME

We prove Theorem 1 in the following subsections. First,

we introduce the main ideas of the new scheme with three

examples. Then, we describe a caching scheme that achieves

the Tian-Chen rate-memory pairs only if all files are requested

by some user. This scheme fails to satisfy other type of

demands where some files are not requested. Next, we show

how the same scheme can satisfy any demand if configured for

K+1 caches instead of K . To help following every step of the

description of the general scheme, we provide and extended

example in the next section.

A. Motivation Examples

Here we present three examples. The first example considers

the case when all files are requested but only by one user.

The second example considers the case when not all files are

requested. Finally, the third example considers the case when

some files are requested by more than one user.

Example 1: Consider a caching system with K = 4 users

U1,...,U4 and N = 4 files A, B, C, D. Let us fix r = 3, then

each file is partitioned into
(

4
3

)

= 4 subfiles, and each subfile

is assigned to r = 3 users. To make explicit the users to which

each subfile is assigned, we denote subfiles as A1,2,3, A1,2,4,

A1,3,4, and A2,3,4. Then, the subfiles assigned to user U1 are

A1,2,3,A1,2,4,A1,3,4,B1,2,3,B1,2,4,B1,3,4

C1,2,3,C1,2,4,C1,3,4,D1,2,3,D1,2,4,D1,3,4

For the delivery strategy, we consider the uncoded trans-

mission of the requested subfiles not encoded in the cache.

For instance, if users U1, U2, U3, U4 request A, B, C, D,

respectively. Then, the server broadcasts

A2,3,4,B1,3,4,C1,2,4,D1,2,3.

Observe that, in general, there are Ksā of these subfiles.

Observe also that, since K = N , this coincides with the

the total number of broadcasted subfiles for the Tian-Chen

schemes, i.e. bTC = Nsā. To design the prefetching scheme,

we impose, as in the Tian-Chen scheme, the decoding of all

the subfiles in the cache for any possible demand. For user U1,

observe that, for each of the files B, C, D not requested by

user U1, hereafter interfering files, the server broadcasts one

subfile coded in the cache of user U1, i.e. B1,3,4,C1,2,4,D1,2,3.

Taking this into account, we design a set of coded subfiles

only XORing subfiles of one file, such that after receiving any

subfile of this file, the rest can be decoded. For this particular

examples, for file B, we could fill the cache at user U1 with

B1,2,3 ⊕ B1,2,4,B1,2,3 ⊕ B1,3,4.

Observe that after receiving B1,3,4, user U1 can obtain all

the subfiles of file B coded in his cache. For symmetry, the

equivalent coded subfiles are cached for other other three files.

We still need to obtain the requested subfiles encoded in the

cache. However, given that all interfering subfiles are already

known, any set of coded subfiles, each XORing together

subfiles of all N files, and satisfying that each subfile is

XORed only once, will work. For instance, we can use

A1,2,3 ⊕ B1,2,3 ⊕ C1,2,3 ⊕ D1,2,3

A1,2,4 ⊕ B1,2,4 ⊕ C1,2,4 ⊕ D1,2,4

A1,3,4 ⊕ B1,3,4 ⊕ C1,3,4 ⊕ D1,3,5

Observe that we only needed binary operations.

Example 2: Next, yet assuming that each files is requested

by one user at most, we address the situation when not all

files are requested. Consider a caching system with K = 3
and N = 4 files. Observe that if we assume that there is a 4th

“virtual” user that always requests the file not requested by the

others, then we can use the coded caching strategy presented

in Example 1 for K = 4 users. In general, for a system with

K users, we can achieve the Tian-Chen rate-memory curve

for K + 1 users.

Example 3: Next, we address the situation where some files

are requested by more than one user. For this case, the binary

operation field would not be sufficient. We focus on a caching

system with N = 2 files A, B, K = 3 users, and r = 2. By

applying the coded prefetching scheme introduced in Example

1, we obtain

U1 U2 U3

A1,2 ⊕ B1,2 A1,2 ⊕ B1,2 A1,3 ⊕ B1,3

A1,3 ⊕ B1,3 A2,3 ⊕ B2,3 A2,3 ⊕ B2,3

A1,2 ⊕ A1,3 A1,2 ⊕ A2,3 A1,3 ⊕ A2,3

B1,2 ⊕ B1,3 B1,2 ⊕ B2,3 B1,3 ⊕ B2,3

Suppose file A is requested by users U1 and U3, whereas

file B is requested by user U2. Then, the uncoded broadcasting

strategy used for Example 1 transmits all the requested subfiles

not encoded at the user requesting them, i.e. A1,2,A2,3,B1,3.
Notice that these subfiles are sufficient for every user to

obtain the requested subfiles and decode all the subfiles in

the cache. However, since there are more users than files

K > N , the uncoded broadcasted scheme needs Ksā subfiles

transmission instead of the Nsā required by the Tian-Chen

scheme. To see the limitations of the uncoded broadcasted

scheme, observe that upon recovering all the subfiles in the

cache user U1 has A1,2 and user U2 has A2,3 and thus,

broadcasting A1,2⊕A2,3 would be sufficient for both to recover

the missing subfiles. However, the coded subfile A1,2 ⊕ A2,3
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is already at user U2 cache and is, thus, useless to him. To

resolve this issue, we further divide each subfiles into two

half-subfiles, A1,2 =
〈

AI
1,2,A

Q
1,2

〉

and consider the previous

prefetching scheme over the half-subfiles. Then, the cache of

users U1 and U2 read

U1 U2

AI
1,2 ⊕ BI

1,2 A
Q
1,2 ⊕ B

Q
1,2 AI

1,2 ⊕ BI
1,2 A

Q
1,2 ⊕ B

Q
1,2

AI
1,3 ⊕ BI

1,3 A
Q
1,3 ⊕ B

Q
1,3 AI

2,3 ⊕ BI
2,3 A

Q
2,3 ⊕ B

Q
2,3

AI
1,2 ⊕ AI

1,3 A
Q
1,2 ⊕ A

Q
1,3 AI

1,2 ⊕ AI
2,3 A

Q
1,2 ⊕ A

Q
2,3

BI
1,2 ⊕ BI

1,3 B
Q
1,2 ⊕ B

Q
1,3 BI

1,2 ⊕ BI
2,3 B

Q
1,2 ⊕ B

Q
2,3

Now, observe that broadcasting the half-subfiles AI
1,2 ⊕

AI
2,3 ⊕ A

Q
2,3, AI

1,2 ⊕ A
Q
1,2 ⊕ A

Q
2,3, BI

1,3, and B
Q
1,3, allows

every user to recover their requested subfiles. Observe that

U1 and U3 upon receiving BI
1,3, and B

Q
1,3 can cancel all

the interference from file B in their cache. Consequently,

U1 also obtains AI
1,2 and A

Q
1,2, which finally allows him to

obtain first A
Q
2,3 from AI

1,2 ⊕ A
Q
1,2 ⊕ A

Q
2,3 and then AI

2,3

from AI
1,2 ⊕ AI

2,3 ⊕ A
Q
2,3. U3 proceeds similarly. Observe

that U2 can also cancel the interference of file A using the

broadcasted half-subfiles and the half-subfiles in their cache,

by first computing

[

AI
1,2 ⊕ AI

2,3

]

⊕
[

AI
1,2 ⊕ AI

2,3 ⊕ A
Q
2,3

]

= A
Q
2,3

[

A
Q
1,2 ⊕ A

Q
2,3

]

⊕
[

AI
1,2 ⊕ A

Q
1,2 ⊕ A

Q
2,3

]

= AI
1,2

and then
[

A
Q
1,2 ⊕ A

Q
2,3

]

⊕ A
Q
2,3 = A

Q
1,2

[

AI
1,2 ⊕ AI

2,3

]

⊕ AI
1,2 = AI

2,3.

Finally, after removing all interference from file A, U2 obtains

the requested subfiles BI
1,2, B

Q
1,2, BI

2,3, B
Q
2,3 coded in its cache.

B. Coded caching scheme if all files are requested

Let us first consider a caching system that can only serve

demand vectors that include all files in the library.

1) Prefetching scheme: Let us define the set of users

indexes as K = {1, ...,K} and the set of file indexes as

F = {1, ...., N}. We partition each file Wf , f ∈ F into
(

K
r

)

non-overlaping subfiles of equal size2, Wf,S , one for each

subset S of r ∈ {0, ...,K} users, i.e. S ∈ T (r) with

T (r) = {S ⊆ K : |S| = r} .

Let Tk(r) = {S ∈ T (r) : k∈ S} be the set of subsets of r
users that include a particular user Uk. User Uk caches the

binary sum of the N subfiles associated to the same subset S

ZS =
⊕

f∈F

Wf,S (5)

for all S ∈ Tk(r). Consequently, each user caches
(

K−1
r−1

)

coded subfiles. If r = 1 these are all the coded cached subfiles

need at the caches. If r ≥ 2, we need more coded cached

2We define
(

n

k

)

= 0 if n < k.

subfiles. Specifically, we need user Uk to be able to obtain

from its cache the coded subfiles

Zf,S− =
⊕

s∈K\S−

Wf,S−∪s (6)

for every file f ∈ F , and every subset S− ∈ Tk(r − 1).
As we show next, user Uk does not need to cache them all.

Specifically, user Uk arbitrarily selects one file index g, and

one user index l, and caches only the coded subfiles Zf,S− in

(6) for all files f ∈ F\g and all sets S− ∈ Tk(r−1) satisfying

l /∈ S−. The total number of coded subfiles Zf,S− cached at

user Uk is then (N − 1)
(

K−2
r−2

)

.

Then, whenever user Uk needs Zf,S− for any file f ∈ F\g
and any subset S− ∈ Tk(r − 1) satisfying l ∈ S−, he only

needs to XOR the coded subfiles Zf,{S−\l}∪v for all v ∈
K\S−. Observe that since l /∈ {S−\l}∪v, this coded subfiles

are cached at user Uk. Then, Zf,S−

=
⊕

v∈K\S−

Zf,{S−\l}∪v

=
⊕

v∈K\S−

⊕

s∈K\{{S−\l}∪v}

Wf,{S−\l}∪v∪s

=
⊕

v∈K\S−

Wf,S−∪v ⊕
⊕

v∈K\S−

⊕

s∈K\{S−∪v}

Wf,{S−\l}∪v∪s

=
⊕

v∈K\S−

Wf,S−∪v (7)

where equality (7) follows since in the previous equality

Wf,{S−\l}∪v∪s appear twice, and thus cancel out.

To obtain Zg,S− for any set S− ∈ Tk(r−1), user Uk XORs

the coded cached subfiles ZS−∪s for all K\S− and the coded

cached subfiles Zf,S− for all f ∈ F\g, as follows

Zg,S− =
⊕

s∈K\S−

ZS−∪s ⊕
⊕

f∈F\g

Zf,S−

=
⊕

s∈K\S−

ZS−∪s ⊕
⊕

f∈F

Zf,S− ⊕ Zg,S−

=
⊕

s∈K\S−

ZS−∪s ⊕
⊕

s∈K\S−

ZS−∪s ⊕ Zg,S− (8)

where (8) follows, since
⊕

f∈F

Zf,S− =
⊕

f∈F

⊕

s∈K\S−

Wf,S−∪s

=
⊕

s∈K\S−

⊕

f∈F

Wf,S−∪s

=
⊕

s∈K\S−

ZS−∪s.

Finally, because each subfile has F/
(

K
r

)

bits, the required

cache load at users equals MF , with

M =

(

K−1
r−1

)

+ (N − 1)
(

K−2
r−2

)

(

(

K
r

)

) =
r

K
+ (N − 1)

r

K

r − 1

K − 1
.

The server further divides each subfile Wf,S into two half-

subfiles of equal size W I
f,S and WQ

f,S . This can be seen, equiv-

alently, as extending the field of the system to F22 . Let us write
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a subfile from its half-subfiles as Wf,S =
〈

W I
f,S ,W

Q
f,S

〉

.

At the caches, users use the same partition function to also

divide the coded cached subfiles into two coded half-subfiles

ZS =
〈

ZI
S , Z

Q
S

〉

and Zf,S− =
〈

ZI
f,S−

, ZQ
f,S−

〉

. Then, the

coded half-subfiles are given by

ZI
S =

⊕

f∈F W I
f,S , ZQ

S =
⊕

f∈F WQ
f,S ,

ZI
f,S−

=
⊕

s/∈S−
W I

f,S−∪s, ZQ
f,S−

=
⊕

s/∈S−
WQ

f,S−∪s.

2) Broadcasting scheme: Let us denote the binary sum of

the two half-subfiles of subfile Wf,S as W̄f,S = W I
f,S ⊕WQ

f,S

and the set of users requesting file Wf as K(f). The server,

first, arbitrarily selects one user leader uf ∈ K(f) for each

file f ∈ F , and then broadcasts the coded subfile Yf,S =
〈

Y I
f,S , Y

Q
f,S

〉

with half-subfiles, given by

Y I
f,S = W I

f,S ⊕
⊕

s∈S∩K(f)

W̄f,uf∪{S\s}, (9)

Y Q
f,S = W̄f,S ⊕

⊕

s∈S∩K(f)

WQ
f,uf∪{S\s} (10)

for every file f ∈ F and every set S of r users, i.e. S ∈ T (r),
excluding the user leader uf , i.e. uf /∈ S.

Because, there are N files, and
(

K−1
r

)

sets S ∈ {S ∈
T (r) : uf /∈ S} for each file, we need N

(

K−1
r

)

subfile length

broadcast transmissions, thus, requiring the rate

R =
N
(

K−1
r

)

(

K
r

) = N
(

1−
r

K

)

.

In order to facilitate the decoding process described next, we

divide the broadcast of these subfiles into r + 1 consecutive

phases p ∈ {0, ...., r}. At phase p, for every file Wf , we

broadcast the subfiles Yf,S satisfying |S ∩ K(f)| = p.

Recall the definition of Tk(r) as the set of subsets of r users

that include a particular user k and define its complement in

T (r) as T̄k(r) = {S ∈ T (r) : k /∈ S}.

The decoding algorithm is summarized in Algorithm 1. User

Uk divides the decoding of all the requested subfiles Wd(k),S

for all S ∈ T (r) into two steps. First, user Uk obtains all

subfiles Wd(k),S for all sets S ∈ Tk(r). This subfiles are coded

at some coded subfile in the cache of user Uk. Then, user Uk

obtains the subfiles cached by other users, i.e. subfiles Wd(k),S

for all sets S ∈ T̄k(r).
3) Decoding of requested subfiles coded in the cache of user

Uk: We first describe how user Uk obtains subfiles Wd(k),S

for all sets S ∈ Tk(r). Recall that for any set S ∈ Tk(r), user

k caches

ZS = Wd(k),S ⊕
⊕

f∈F\d(k)

Wf,S

and thus, can obtain Wd(k),S for all sets S ∈ Tk(r) by first

obtaining all the interfering subfiles Wf,S for all f ∈ F\d(k),
and then computing

Wd(k),S = ZS ⊕
⊕

f∈F\d(k)

Wf,S . (11)

The decoding of these interfering subfiles is divided into

r consecutive phases p = 0, ..., r − 1. At phase p, for

Algorithm 1 Decoding requested subfiles.

1) Decode Wf,S for all S ∈ Tk(r) and f ∈ F\d(k)

a) Input:

• ZS for all S ∈ Tk(r),
• Zf,S− for all f ∈ F and S− ∈ Tk(r − 1),
• Yf,S for all f ∈ F and S ∈ Tk(r) satisfying uf /∈ S.

b) For all f ∈ F\d(k), and for p = 0, ..., r − 1,

i) For all S ∈ Tk(r) with |S ∩ K(f)| = p and uf ∈ S

A) Compute Cf,S\u for all u ∈ S ∩ K(f) as (15)

B) Compute Υf,S\uf
as in (16)

C) Compute ΥI
f,S as in (17) and ΥQ

f,S as in (18)

D) Compute Wf,S as in (19)

ii) For all S ∈ Tk(r) with |S ∩ K(f)| = p and uf /∈ S

A) Compute Wf,S according to (13) and (14)

2) Decode Wd(k),S for all S ∈ Tk(r)

a) Input:

• Wf,S for all S ∈ Tk(r) and f ∈ F\d(k)
• ZS for all S ∈ Tk(r)

b) For all S ∈ Tk(r), compute Wd(k),S as (11)

3) Decode Wd(k),S for all S ∈ T̄k(r)

a) Input:

• Wd(k),S for all S ∈ Tk(r),
• Yd(k),S for all S ∈ T̄k(r) satisfying uf /∈ S

b) Set f = d(k)
c) If k = uf ,

i) For all S ∈ T̄k(r) compute Wf,S according to (25)

and (26)

d) If k 6= uf ,

i) For all S ∈ T̄k(r) satisfying uf ∈ S compute Wf,S

according to (27) and (28)

ii) For all S ∈ T̄k(r) satisfying uf /∈ S compute Wf,S

according to (25) and (26)

every file f ∈ F\d(k), user Uk obtains subfile Wf,S for

all subsets S ∈ Tk(r) with p users requesting file Wf , i.e.

satisfying |S ∩ K(f)| = p. Let us denote this family of sets

as Tk,f (r, p) = {S ∈ Tk(r) : |S ∩ K(f)| = p} .

Consider first the decoding of the interfering subfiles at

phase p = 0. This is, subfiles Wf,S for any set S ∈ Tk,f (r, 0).
Observe that, uf /∈ S, and thus, there is a broadcasted subfile

Yf,S associated to each of the sets S ∈ Tk,f (r, 0), with

half-subfiles given by Y I
f,S = W I

f,S , and Y Q
f,S = W̄f,S .

Consequently, we can obtain Wf,S =
〈

W I
f,S ,W

Q
f,S

〉

as

W I
f,S = Y I

f,S , WQ
f,S = Y Q

f,S ⊕ Y I
f,S . (12)

Next, consider the decoding of interfering subfiles at phases

p, r > p ≥ 1. This is, interfering subfiles Wf,S for any set

S ∈ Tk,f (r, p) for p = 1, ..., r−1. At phase p, user Uk decodes

first all the interfering subfiles Wf,S also cached by the user

leader, i.e. uf ∈ S. Then, the interfering subfiles Wf,S for all

sets S ∈ Tk,f (r, p) not cached at the user leader uf /∈ S can
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be obtained as, Wf,S =
〈

W I
f,S ,W

Q
f,S

〉

with

W I
f,S = Y I

f,S ⊕
⊕

s∈S∩K(f)

W̄f,uf∪{S\s}, (13)

WQ
f,S = Y Q

f,S ⊕
⊕

s∈S∩K(f)

WQ
f,uf∪{S\s} ⊕W I

f,S . (14)

Observe that, given that uf 6∈ S, the broadcasted subfile Yf,S

exits. Moreover, for all u ∈ S∩K(f) the set uf∪S\u contains

uf and satisfies |uf ∪ S\u| = p and thus, user Uk has already

obtained Wf,uf∪S\u.

Finally, we detail the decoding of interfering subfiles Wf,S

for any set S ∈ Tk,f (r, p) with uf ∈ S. We summarize the

decoding process first, and prove it later. Observe that for all

u ∈ S ∩ K(f), we have |{S\u} ∩ K(f)| = p − 1, and thus

from decoding phase p− 1, user Uk already has Wf,{S\u}∪v

for all v ∈ K̄(f)\{S\u}. This allows user Uk to compute

Cf,S\u = Zf,S\u ⊕
⊕

v∈K̄(f)\{S\u}

Wf,{S\u}∪v (15)

for all u ∈ S ∩ K(f). Next, observe that since uf ∈ S, and

uf /∈ K(f)\S, there is a broadcasted subfile Yf,{S\uf}∪s for

all s ∈ K(f)\S. This allows user Uk to compute

Υf,S\uf
=

⊕

s∈K(f)\S

Yf,{S\uf}∪s. (16)

Next, we partition Υf,S\uf
and Cf,S\u for all u ∈ S ∩ K(f)

into half-subfiles, i.e. Υf,S\uf
=

〈

ΥI
f,S\uf

,ΥQ
f,S\uf

〉

,

Cf,S\u =
〈

CI
f,S\u, C

Q
f,S\u

〉

and define Ῡf,S\uf
= ΥI

f,S\uf
⊕

ΥQ
f,S\uf

, and C̄f,S\u = CI
f,S\u ⊕ CQ

f,S\u. Then, user Uk

computes

ΥI
f,S =ΥI

f,S\uf
⊕ CI

f,S\uf
⊕

⊕

u∈{S\uf}∩K(f)

C̄f,S\u (17)

ΥQ
f,S =ΥQ

f,S\uf
⊕ C̄f,S\uf

⊕
⊕

u∈{S\uf}∩K(f)

CQ
f,S\u (18)

and obtains subfile Wf,S =
〈

W I
f,S ,W

Q
f,S

〉

as

W I
f,S =

{

ΥQ
f,S if |K(f)\uf | is odd

ΥI
f,S otherwise

WQ
f,S =

{

ΥI
f,S if |K(f)\uf | is odd

ΥI
f,S ⊕ΥQ

f,S otherwise

(19)

In the following, we prove the correctness of this decoding

process. First, observe that for all u ∈ S ∩ K(f), we have

Cf,S\u = Zf,S\u ⊕
⊕

v∈K̄(f)\{S\u}

Wf,{S\u}∪v

=
⊕

s∈K\{S\u}

Wf,{S\u}∪s

⊕

v∈K̄(f)\{S\u}

Wf,{S\u}∪v

=
⊕

s∈K(f)\{S\u}

Wf,{S\u}∪s

= Wf,S ⊕
⊕

s∈K(f)\S

Wf,{S\u}∪s

from which we can write
⊕

s∈K(f)\S

Wf,{S\u}∪s = Cf,S\u ⊕Wf,S . (20)

Next, observe that for any s ∈ K(f)\S, we can write

Y I
f,{S\uf}∪s

= W I
f,{S\uf}∪s ⊕

⊕

u∈{{S\uf}∪s}∩K(f)

W̄f,uf∪{{S\uf}∪s}\u

= W I
f,{S\uf}∪s ⊕ W̄f,S ⊕

⊕

u∈{S\uf}∩K(f)

W̄f,{S\u}∪s (21)

where (21) follows since for u = s, we have uf ∪
{{S\uf} ∪ s} \u = S, and for u 6= s, since uf ∈ S, we

have uf ∪ {{S\uf} ∪ s} \u = {S\u} ∪ s. Similarly, we can

write Y Q
f,{S\uf}∪s

= W̄f,{S\uf}∪s ⊕WQ
f,S ⊕

⊕

u∈{S\uf}∩K(f)

WQ
f,{S\u}∪s. (22)

Now, let ΥI
f,S\uf

,
⊕

s∈K(f)\S Y I
f,{S\uf}∪s, and ΥQ

f,S\uf
,

⊕

s∈K(f)\S Y Q
f,{S\uf}∪s then, it follows from (20) and (21)

that

ΥI
f,S\uf

= CI
f,S\uf

⊕W I
f,S ⊕

⊕

s∈K(f)\S

W̄f,S

⊕
⊕

u∈{S\uf}∩K(f)

C̄f,S\u ⊕ W̄f,S (23)

and, similarly, from (20) and (22) that

ΥQ
f,S\uf

= C̄f,S\uf
⊕ W̄f,S ⊕

⊕

s∈K(f)\S

WQ
f,S

⊕
⊕

u∈{S\uf}∩K(f)

CQ
f,S\u ⊕WQ

f,S . (24)

Next observe that
⊕

s∈K(f)\S Wf,S ⊕
⊕

u∈{S\uf}∩K(f)Wf,S

=
⊕

s∈K(f)\uf

Wf,S

=

{

Wf,S if |K(f)\uf | is odd

0 otherwise.

and thus ΥI
S\uf

⊕ CI
f,S\uf

⊕

u∈{S\uf}∩K(f) C̄f,S\u

= W I
f,S ⊕

⊕

s∈K(f)\uf

W̄f,S

=

{

WQ
f,S if |K(f)\uf | is odd

W I
f,S otherwise

and ΥQ
S\uf

⊕ C̄f,S\uf

⊕

u∈{S\uf}∩K(f)C
Q
f,S\u

= W̄f,S ⊕
⊕

s∈K(f)\uf

WQ
f,S

=

{

W I
f,S if |K(f)\uf | is odd

W̄f,S otherwise.

If |K(f)\uf | is even, we obtain WQ
f,S as WQ

f,S = W̄f,S ⊕

W I
f,S . Finally, we have Wf,S =

〈

W I
f,S ,W

Q
f,S

〉

.
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4) Decoding of requested subfiles not cached: Next, we

show how user Uk obtains all the remaining requested subfiles

Wd(k),S for all sets S ∈ T̄k(r). These subfiles satisfy k /∈ S
and are, thus, not coded in the cache of user Uk. Hereafter

f = d(k). Let us first suppose user Uk is leader, i.e. k = uf .

Observe that then, associated to any set S ∈ T̄k(r), since k =
uf /∈ S, there exists a broadcasted subfile Yf,S . In addition,

user k = uf has already obtained all the requested subfiles

coded in its cache, in particular subfiles Wf,uf∪S\s for all

s ∈ S ∩ K(f), and can compute Wf,S =
〈

W I
f,S ,W

Q
f,S

〉

as

W I
f,S = Y I

f,S ⊕
⊕

s∈S∩K(f)

W̄f,uf∪S\s, (25)

WQ
f,S = W I

f,S ⊕ Y Q
f,S ⊕

⊕

s∈S∩K(f)

WQ
f,uf∪S\s. (26)

for all sets S ∈ T̄k(r). Instead, if user Uk is no leader, i.e.

k ∈ K(f)\uf he obtains, first, the subfiles Wf,S for all the set

S ∈ T̄k(r) satisfying uf ∈ S. Observe that for each of these

sets, associated to the set S∪k\uf , there exists the broadcasted

subfile Yf,S∪k\uf
with half-subfiles given by Y I

f,S∪k\uf

= W I
f,S∪k\uf

⊕
⊕

s∈{S∪k\uf}∩K(f)

W̄f,uf∪{{S∪k\uf}\s}

= W I
f,S∪k\uf

⊕ W̄f,S ⊕
⊕

s∈{S\uf}∩K(f)

W̄f,S∪k\s

and Y Q
f,S∪k\uf

= W̄f,S∪k\uf
⊕WQ

f,S ⊕
⊕

s∈{S\uf}∩K(f)

WQ
f,S∪k\s.

Given that user Uk has already obtained all the requested

subfiles coded in its own cache, in particular subfiles Wf,S∪k\s

for all s ∈ S ∩K(f), he can compute Wf,S =
〈

W I
f,S ,W

Q
f,S

〉

as

WQ
f,S =Y Q

f,S∪k\uf
⊕ W̄f,S∪k\uf

⊕
⊕

s∈{S\uf}∩K(f)

WQ
f,S∪k\s(27)

W I
f,S =WQ

f,S ⊕ Y I
f,S∪k\uf

⊕W I
f,S∪k\uf

⊕
⊕

s∈{S\uf}∩K(f)

W̄f,S∪k\s(28)

for all sets S ∈ T̄k(r) with uf ∈ S. Now user Uk can mimic

the computations performed at the user leader uf in (25) and

(26), to obtain the remaining subfiles, i.e. Wf,S for all sets

S ∈ T̄k(r) satisfying uf /∈ S.

C. Extension to arbitrary requested files

The strategy presented in previous subsection requires all

N files to be requested by at least one user. In this section,

we show that the same scheme can be applied for any request

if configured to K + 1 users instead of K .

1) Prefetching scheme: We use the subfile partitions and

prefetching scheme specified in previous section, but as if

there were K + 1 users instead of K . As a result, each file

is partitioned into
(

K+1
r

)

subfiles and thus, the required cache

load at users equals MF , with

M =
r

K + 1
+ (N − 1)

r

K + 1

r − 1

K

2) Delivery scheme: For the delivery, if all files are re-

quested, since the caching system is configured for K + 1
users, we need to add one file request for the K+1th “virtual”

user. Given that all files are already requested by some user, the

K+1th user can request any of the files in F . Then, we apply

the delivery strategy as described in previous subsections. In

that case, every user obtains their desired file, with a rate

R = N

(

1−
r

K + 1

)

. (29)

Instead, if some files are not requested, i.e. Ne(d) ≤ N−1,

we first transform the coded caching system with N files into

caching system with Ne(d) + 1 files. To that end, we define

a new file W0 as the binary sum of all files not requested

W0 =
⊕

f∈F\N
e
(d)

Wf

where Ne(d) ⊆ F . Then, the set of files in the system F is

given by F0(d) = {0 ∪ Ne(d)}. The server can obtain the

subfiles of the new file W0 from the not requested subfiles as

W0,S =
⊕

f∈F\N
e
(d)

Wf,S .

Similarly, users can consider the coded cached subfiles in (5),

as if the set of file was F0(d), since

ZS =
⊕

f∈F

Wf,S

=
⊕

f∈F\N
e
(d)

Wf,S ⊕
⊕

f∈Ne(d)

Wf,S

=
⊕

f∈0∪Ne(d)

Wf,S .

and, can obtain the coded subfiles in (6) associated to file W0

as

Z0,S− =
⊕

f∈F\N
e
(d)

Zf,S−

=
⊕

s∈K\S−

⊕

f∈F\N
e
(d)

Wf,S−∪s

=
⊕

s∈K\S−

W0,S.

Finally, since we have replaced the set of files F by F0(d),
we can assume that the K + 1 virtual user requests file W0.

Then, observe that all files in F0(d) are requested, and thus

we can apply the delivery strategy as described in previous

subsection, with a rate

R = (Ne(d) + 1)

(

1−
r

K + 1

)

. (30)

Combining (29) and (30), we can write the rate as presented

in Theorem 1.
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Coded cached subfiles at user U1

Z{1,2,3} W1,{1,2,3}⊕W2,{1,2,3}

Z{1,2,4} W1,{1,2,4}⊕W2,{1,2,4}

Z{1,2,5} W1,{1,2,5}⊕W2,{1,2,5}

Z{1,3,4} W1,{1,3,4}⊕W2,{1,3,4}

Z{1,3,5} W1,{1,3,5}⊕W2,{1,3,5}

Z{1,4,5} W1,{1,4,5}⊕W2,{1,4,5}

Z1,{1,2} W1,{1,2,3} ⊕W1,{1,2,4} ⊕W1,{1,2,5}

Z1,{1,3} W1,{1,3,2} ⊕W1,{1,3,4} ⊕W1,{1,3,5}

Z1,{1,4} W1,{1,4,2} ⊕W1,{1,4,3} ⊕W1,{1,4,5}

Coded subfiles computed at user U1

Z1,{1,5} W1,{1,5,2} ⊕W1,{1,5,3} ⊕W1,{1,5,4}

Z2,{1,2} W2,{1,2,3} ⊕W2,{1,2,4} ⊕W2,{1,2,5}

Z2,{1,3} W2,{1,3,2} ⊕W2,{1,3,4} ⊕W2,{1,3,5}

Z2,{1,4} W2,{1,4,2} ⊕W2,{1,4,3} ⊕W2,{1,4,5}

Z2,{1,5} W2,{1,5,2} ⊕W2,{1,5,3} ⊕W2,{1,5,4}

Table I: Coded cached and computable coded subfiles at user

U1 for the caching system of Example 1.

V. EXAMPLE

In this section, we apply the caching scheme presented

in section IV-B to a particular example. Consider a caching

system with N = 2 files, K = 5 users, and a caching capacity

of MF bits with M = 9
10 , which corresponds to r = 3.

Each file Wf , f = {1, 2} is divide into
(

K
r

)

= 10 subfiles,

i.e. Wf,{1,2,3}, Wf,{1,2,4}, Wf,{1,2,5}, Wf,{1,3,4}, Wf,{1,3,5},
Wf,{1,4,5}, Wf,{2,3,4}, Wf,{2,3,5}, Wf,{2,4,5}, and Wf,{3,4,5}.

The cache of user Uk stores a linear combination of the

subfiles Wf,S of both files satisfying k ∈ S. For the running

example, the cache of user U1 is detailed in Table I. Observe

that in this case, we have chosen to omit coded cached subfiles

Zf,S− satisfying f = 2 or 5 ∈ S−. These subfiles (see the

Table I) can be computed from the cache content at user U1

as

Z1,{1,5} = Z1,{1,2} ⊕ Z1,{1,3} ⊕ Z1,{1,4},

Z2,{1,2} = Z1,{1,2} ⊕ Z{1,2,3} ⊕ Z{1,2,4} ⊕ Z{1,2,5},

Z2,{1,3} = Z1,{1,3} ⊕ Z{1,3,2} ⊕ Z{1,3,4} ⊕ Z{1,3,5},

Z2,{1,4} = Z1,{1,4} ⊕ Z{1,4,2} ⊕ Z{1,4,3} ⊕ Z{1,4,5},

Z2,{1,5} = Z1,{1,5} ⊕ Z{1,5,2} ⊕ Z{1,5,3} ⊕ Z{1,5,4}.

Given that every file is divided into 10 subfiles, and each user

caches 9 coded subfiles, the cache load condition M = 9
10 is

satisfied.

Given the above prefetching scheme, we illustrate our

proposed delivery strategy for a representative demand, where

users U1, U3, U5 request file W1, and users U2 and U4

request file W2. This corresponds to the demand vector

d = [1, 2, 1, 2, 1], and K(1) = {1, 3, 5} and K(2) = {2, 4}.

Observe that all files are requested. First, the server selects

one user leader for each file, i.e. u1 = 1 and u2 = 2. Then,

the server broadcasts, according to (9) and (10), the coded

subfiles Yf,S =
〈

Y I
f,S , Y

Q
f,S

〉

specified in Table II. Observe

that the total number of broadcasted subfiles is N
(

K−1
r

)

= 8

Next, we detail the decoding process at user U1. He first

obtains the subfiles W1,S coded its cache, i.e. 1 ∈ S.

Y1,{2,3,4}
Y I
1,{2,3,4}

W I
1,{2,3,4}

⊕ W̄1,{1,2,4}

Y Q

1,{2,3,4}
W̄1,{2,3,4} ⊕WQ

1,{1,2,4}

Y1,{2,3,5}
Y I
1,{2,3,5}

W I
1,{2,3,5}

⊕ W̄1,{2,1,5} ⊕ W̄1,{2,3,1}

Y Q

1,{2,3,5}
W̄1,{2,3,5} ⊕WQ

1,{2,1,5}
⊕WQ

1,{2,3,1}

Y1,{2,4,5}
Y I
1,{2,4,5}

W I
1,{2,4,5}

⊕ W̄1,{2,4,1}

Y Q

1,{2,4,5}
W̄1,{2,4,5} ⊕WQ

1,{2,4,1}

Y1,{3,4,5}
Y I
1,{3,4,5}

W I
1,{3,4,5}

⊕ W̄1,{1,4,5} ⊕ W̄1,{3,4,1}

Y Q

1,{3,4,5}
W̄1,{3,4,5} ⊕WQ

1,{1,4,5}
⊕WQ

1,{3,4,1}

Y2,{1,3,4}
Y I
2,{1,3,4}

W I
2,{1,3,4}

⊕ W̄2,{1,3,2}

Y Q

2,{1,3,4}
W̄2,{1,3,4} ⊕WQ

2,{1,3,2}

Y2,{1,3,5}
Y I
2,{1,3,5}

W I
2,{1,3,5}

Y Q

2,{1,3,5}
W̄2,{1,3,5}

Y2,{1,4,5}
Y I
2,{1,4,5}

W I
2,{1,4,5}

⊕ W̄2,{1,2,5}

Y Q

2,{1,4,5}
W̄2,{1,4,5} ⊕WQ

2,{1,2,5}

Y2,{3,4,5}
Y I
2,{3,4,5}

W I
2,{3,4,5}

⊕ W̄2,{3,2,5}

Y Q

2,{3,4,5}
W̄2,{3,4,5} ⊕WQ

2,{3,2,5}

Table II: Broadcasted coded half-subfiles for the demand d =
[1, 2, 1, 2, 1]

p = |S ∩ K(2)| u2 = 2 W2,S

0 u2 /∈ S W2,{1,3,5}

1
u2 ∈ S

W2,{1,2,3}

W2,{1,2,5}

u2 /∈ S
W2,{1,3,4}

W2,{1,4,5}

2 u2 ∈ S W2,{1,2,4}

Table III: Classification of interfering subfiles W2,S at user

U1, i.e. 1 ∈ S

According to (11), user U1 can obtain these subfiles by, first,

obtaining the interfering subfile W2,S , and then computing

W1,S = ZS ⊕W2,S

for all sets S satisfying 1 ∈ S. To that end, user U1 divides

the decoding of these interfering subfiles into 3 consecutive

phases p = {0, 1, 2}. In phase p, user U1 obtains all subfiles

W2,S satisfying 1 ∈ S and p = |S ∩ K(2)|. Moreover, within

each phase he obtains, first, the subfiles that are coded cached

at the user leader, u2 = 2, i.e. 2 ∈ S. For the running

example, the interfering subfiles at user U1 are classified in

Table III according to the above decoding phases. The only

phase 0 interfering subfile is W2,{1,3,5}, which can be obtained

according to (12) as

W I
2,{1,3,5} = Y I

2,{1,3,5},

WQ
2,{1,3,5} = Y Q

2,{1,3,5} ⊕ Y I
2,{1,3,5}.

Phase 1 interfering subfiles satisfying u2 ∈ S are

W2,{1,2,3} and W2,{1,2,5}. Observe that for both sets S ∈
{{1, 2, 3} , {1, 2, 5}}, from (17) and (18), we obtain

ΥI
2,S = ΥI

2,S\2 ⊕ CI
2,S\2,

ΥQ
2,S = ΥQ

2,S\2 ⊕ C̄2,S\2

and from (15) and (16), respectively

C2,S\2 = Z2,S\2 ⊕W2,{1,3,5},

Υ2,S\2 = Y2,S\2.
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Then, given that |K(2)\uf | = 1 is odd, user U1 obtains

W2,S =
〈

W I
2,S ,W

Q
2,S

〉

as

W I
2,S = ΥQ

2,S

= Y Q
2,{S\2}∪4 ⊕

[

Z̄2,S\2 ⊕ W̄2,{1,3,5}

]

,

WQ
2,S = ΥI

2,S

= Y I
2,{S\2}∪4 ⊕

[

ZI
2,S\2 ⊕W I

2,{1,3,5}

]

.

Phase 1 interfering subfiles satisfying u2 /∈ S are W2,{1,3,4}

and W2,{1,4,5}. User U1 obtains this interfering subfile accord-

ing to (13) and 14) as

W I
2,{1,3,4} = Y I

2,{1,3,4} ⊕ W̄2,{1,2,3},

WQ
2,{1,3,4} = Y Q

2,{1,3,4} ⊕WQ
2,{1,2,3} ⊕W I

2,{1,3,4},

and

W I
2,{1,4,5} = Y I

2,{1,4,5} ⊕ W̄2,{1,2,5},

WQ
2,{1,4,5} = Y Q

2,{1,4,5} ⊕WQ
2,{1,2,5} ⊕W I

2,{1,4,5}.

Finally, user U1 can obtain the remaining phase 2 subfile

W2,{1,2,4}, according to (17) and (18). However, given that

this is the only interfering subfile left, he can obtain it directly

from, either Z2,{1,4} or Z2,{1,2}, as

W2,{1,2,4} = Z2,{1,4} ⊕W2,{1,4,3} ⊕W2,{1,4,5},

W2,{1,2,4} = Z2,{1,2} ⊕W2,{1,2,3} ⊕W2,{1,2,5}.

Once all interfering subfiles W2,S for all S satisfying 1 ∈
S are decoded. User U1 decodes the requested subfiles only

available at other users’ cache. These are the subfiles W1,S

for S ∈ {{2, 3, 4} , {2, 3, 5} , {2, 4, 5}}. Given that user U1 is

leader, he obtains these subfiles according to (25) and (26), as

W I
1,{2,3,4}=Y I

1,{2,3,4} ⊕ W̄1,{1,2,4}, (31)

WQ
1,{2,3,4}=W I

1,{2,3,4} ⊕ Y Q
1,{2,3,4} ⊕WQ

1,{1,2,4}, (32)

W I
1,{2,3,5}=Y I

1,{2,3,5} ⊕ W̄1,{1,2,5} ⊕ W̄1,{1,2,3}, (33)

WQ
1,{2,3,5}=W I

1,{2,3,5}⊕Y
Q
1,{2,3,5}⊕W

Q
1,{1,2,5}⊕W

Q
1,{1,2,3}(34)

W I
1,{2,4,5}=Y I

1,{2,4,5} ⊕ W̄1,{1,2,4}, (35)

WQ
1,{2,4,5}=W I

1,{2,4,5} ⊕ Y Q
1,{2,4,5} ⊕WQ

1,1,2,4. (36)

For completeness, as the decoding of the requested subfiles

at other users’ cache depends on whether the decoding user

is leader or not, let us also consider the decoding process

at the non user leader U3. User U3 first obtains the subfiles

W1,{1,2,4}, W1,{1,2,5}, W1,{1,4,5} coded cached at the user

leader U1, according to (27) and (28) as

WQ
1,{1,2,4}=Y Q

1,{2,3,4} ⊕ W̄1,{2,3,4},

W I
1,{1,2,4}=WQ

1,{1,2,4} ⊕ Y I
1,{2,3,4} ⊕W I

1,{2,3,4},

WQ
1,{1,2,5}=Y Q

1,{2,3,5} ⊕ W̄1,{2,3,5} ⊕WQ
1,{1,2,3},

W I
1,{1,2,5}=WQ

1,{1,2,5} ⊕ Y I
1,{2,3,5} ⊕W I

1,{2,3,5} ⊕ W̄1,{1,2,3},

WQ
1,{1,4,5}=Y Q

1,{3,4,5} ⊕ W̄1,{3,4,5} ⊕WQ
1,{1,3,4},

W I
1,{1,4,5}=WQ

1,{1,4,5} ⊕ Y I
1,{3,4,5} ⊕W I

1,{3,4,5} ⊕ W̄1,{1,3,4}.
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Figure 2: Rate-memory functions of the proposed scheme and

the Tian-Chen scheme for N = 2 and K = 3.

Finally, user U3 obtains subfile W1,{2,4,5}, as in (35) and (36).

VI. CONCLUSIONS

In this work, we proposed a novel caching scheme that

approaches the rate-memory region achieved by the Tian-Chen

scheme as the number of users in the system increases, which

only requires a finite field of order 22. Moreover, instead of

relying on the existence of some valid code, we provided an

explicit combinatorial construction of the caching scheme.

APPENDIX A

PROOF OF COROLLARY 1.2

Let us define

R∗
K(r) , N

(

1−
r

K

)

,

MK(r) ,
r

K
+ (N − 1)

r (r − 1)

K (K − 1)

for all r ∈ {0, ...,K}. In a caching system with K users and N
files, the worst demand rate-memory pairs, as a function of the

parameter r, for the Tian-Chen scheme are given by RTC (r) =
RK (r) and MTC (r) = MK(r), and for the strategy presented

here by R∗
TC+ (r) = RK+1 (r) and MTC+ (r) = MK+1(r).

To support this proof, in Fig. 2 we compare the rate-memory

functions obtained by both schemes in a particular caching

system with N = 2 files and K = 3 user. We first obtain

the memory points and intervals where the Tian-Chen and the

proposed strategy coincide. By memory sharing between the

rate-memory pairs in (R∗
K(r),MK(r)) at r and r + 1, we

obtain the rate-memory pairs

R∗
K(r, y) = (1− y)R∗

K(r) + yR∗
K(r + 1)

= N
(

1−
r

K

)

− y
N

K
(37)

MK(r, y) = (1− y)MK(r) + yMK(r + 1)

=
r

K
+ (N − 1)

r (r − 1)

K (K − 1)

+y

(

1

K
+ 2

r (N − 1)

K (K − 1)

)

(38)
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for y ∈ [0, 1] and r = {0, ...,K − 1}. Next, particularizing

(37) and (38) at ŷ(r) = K−r
K+1 , we obtain

R∗
K (r, ŷ(r)) = R∗

K+1(r + 1),

MK (r, ŷ(r)) = MK+1(r + 1)

for r ∈ {0, ...K}. This is, the delivery rate for the Tian-Chen

and the proposed scheme coincide R∗
TC+(M) = R∗

TC(M)
at M = MK+1(r + 1) = r+1

K+1

(

1 + (N − 1) r
K

)

for r =
{0, ...,K}. Furthermore, at r = 0, we have R∗

K+1(0) =
R∗

K(0) = N , and MK+1(0) = MK(0) = 0 and thus, equality

holds also for the memory interval

0 ≤ M ≤ MK+1(1) =
1

K + 1
.

Similarly, we have R∗
K+1(K + 1) = R∗

K(K) = 0, and

MK+1(K + 1) = MK(K) = N, and thus, the equality holds

also for the memory interval

N ≥ M ≥
K

K + 1
+ (N − 1)

K − 1

K + 1
.

Next, we obtain the bound on the maximum rate ratio

between both strategies. It can be sown that the equality

MK(r) = MK+1(r, y) is achieved at y = y̌(r) with

y̌(r) =
r

K − 1

(

1−
2 (N − 1) + 1

K + 2 (N − 1) r

)

for r = {1, ...K − 1}. Given that both rate-memory functions

coincide at M = MK+1(r + 1), that MK+1(r) ≤ MK(r) ≤
MK+1(r+1) for r = {1...,K − 1}, and the convexity of the

two piece-wise linear rate-memory functions, we have, see Fig.

2, that the maximum rate ratio must be found at one of the

memory points MK(r) = MK+1(r, y̌(r)), r = {1, ...,K − 1},

this is

max
0≤M≤N

R∗(M)

R∗
TC(M)

= max
r∈{0,...,K−1}

RK+1 (r, y̌)

RK(r)

= 1 +
r − y̌(r)K

(K − r) (K + 1)

≤ 1 +
1

(K − 1) (K + 1)
. (39)

To obtain inequality (39), observe that y̌(r) decreases as a

function of N , and thus, as N approaches infinity, we have

for r = {1...,K − 1} limN→∞ y̌(r) = r
K−1

(

1− 1
r

)

.
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