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Abstract—We consider a cache network in which a single
server is connected to multiple users via a shared error free link.
The server has access to a database with N files of equal length
F , and serves K users each with a cache memory of MF bits. A
novel centralized coded caching scheme is proposed for scenarios
with more users than files N ≤ K and cache capacities satisfying
1
K

≤ M ≤
N

K
. The proposed scheme outperforms the best rate-

memory region known in the literature if N ≤ K ≤
N2+1

2
.

Index Terms—Centralized coded caching, network coding,
index coding.

I. INTRODUCTION

Content caching techniques are recently increasing attention

to combat peak hour traffic in content delivery services. The

basic idea is simple. If contents are made available at user

terminals during low traffic periods, then the peak rate can

be reduced. However, content requests are unknown to the

server and thus content caching at user memories must be

carefully chosen in order to be useful regardless of the contents

requested during peak hours. The simplest caching scheme

consists of storing each file partially at each user memory.

Then, the server transmits the remaining requested data un-

coded [1], [2]. For single user caching systems, this strategy

is optimal. However, for multi-user systems, the seminal work

in [3] by Maddah-Ali and Niesen shows that important gains

can be obtained by a new coded caching strategy. Specifically,

there authors show that, besides the local caching gain that is

obtained by placing contents at user caches before they are

requested, it is possible to obtain a global caching gain by

creating broadcast opportunities. This is, by carefully choosing

the content caches at different users, and using network coding

techniques it is possible to transform the initial multi-cast

network, where every user is requesting a different file, into a

broadcast network, where every user requests exactly the same

“coded” file, obtaining the new global caching gain.

The fundamental caching scheme developed in [3] was latter

extended to more realistic situations. The decentralized setting

was considered in [4], non-uniforms demands in [5]–[7],

and online coded caching in [8], hierarchical cache network

were considered in [9], [10], among others. In addition, new

schemes pushing further the fundamental limits of caching

systems have appeared in [11]–[19]. There have been also
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efforts to obtain theoretical lower bounds on the delivery rate.

The cut-set bound was studied in [3]. A tighter lower bound

was obtained in [20]. Through a computational approach a

lower-bound for the special case N = K = 3 is derived in

[21]. Other lower bounds have appeared in [13], [22], [23] .

The work here proposed investigates the fundamental

achievable rate for the particular situation where there are more

users than files, and the caching memories at users are small

compared to the number of files in the system. Besides its

theoretical relevance, this situation can be readily found in

the real world. For instance, global content delivery services

such a Netflix serve a few multimedia contents to millions of

users across the world. In addition, it was shown in [5] that a

near optimal caching strategy consists in dividing the files into

groups with similar popularity, and then applying the coded

caching strategy to each group separately. Since the amount of

users in each groups remains the same, when there are many

groups, the cache size dedicated to each group is small as well

as the number of files per user in each group.

The rest of this paper is organized as follows. In Section II,

we present the system model together with the more relevant

previous results. In Section III, we summarize the main results.

Section IV describes the caching scheme proposed. Finally,

conclusions are drawn in Section V.

II. SYSTEM MODEL AND PREVIOUS RESULTS

We consider a communication system with one server

connected to K users, denoted as U1, ..., UK , through a shared,

error-free link. There is a database at the server with N files,

each of length F bits, denoted as W1, ....,WN . Each user

is equipped with a local cache of capacity MF bits and is

assumed to request only one full file. Here, we consider the

special case where M ∈
[

0, N
K

]

and there are more users than

files N ≤ K. For convenience, we define parameter q = N
MK

.

We consider the communication model introduced in [3].

The caching system operates in two phases: the placement

phase and the delivery phase. In the placement phase, users

have access to the server database, and each user fills his cache.

As in [15], we allow coding in the prefetching phase. Then,

each user Uk requests a single full file Wd(k) where d =
(d(1), ....,d(K)) denotes the demand vector. We denote the

number of distinct requests in d as Ne(d). In the delivery

phase, only the server has access to the database. After being

informed of the user demands, the server transmits a signal



Y of size RF bits over the shared link to satisfy all user

requests simultaneously. The signal Y is a function of the

demand vector d, all the files in the data base W1, ....,WN ,

and the content in the user caches M = {M1, ....,Mk}.

Using the local cache content and the received signal Y , each

user Uk reconstructs its requested file Wd(k).

Let D = {1, ..., N}K , for a caching system (M,N,K),

given a particular prefetching M = {M1, ....,Mk} and

a particular demand d, we say that communication rate R
is achievable if and only if there exists a message Y of

length RF bits such that every user Uk is able to reconstruct

its desired file Wd(k). For a particular prefetching M and

demand d, we denote the achievable rate as R(d,M). Then,

the rate needed for the worst demand is given by R∗ (M) =
maxd∈D R(d,M). Finally, we define the rate-memory pair

(R∗,M) and the rate-memory function R∗(M).

A. Previous Results

For the special case considered here M ∈
[

0, N
K

]

and N ≤
K, the best known rate-memory function can be obtained by

memory sharing between two achievable rate-memory pairs

(R∗
GBC,MGBC) =

(

N −
N(N + 1)

2K
,
N

K

)

, (1)

and the rate-memory pairs obtained in [17]

(R∗
MDS,MMDS) =

(

N (K − t)

K
,
t [(N − 1)t+K −N ]

K (K − 1)

)

,

(2)

with t = 0, 1, ...,K. The lower convex envelope of all these

rate-memory pairs, provides the best rate-memory function in

the literature. The rate-memory pairs in (2) include as special

case the rate-memory pair

(R∗
CFL,MCFL) =

(

N −
N

K
,
1

K

)

(3)

obtained in [15]. The design of the scheme here proposed

was initially motivated to connect the schemes achieving the

rate memory-pairs in [15] and (1), beyond the simple mem-

ory sharing between both rate-memory points. The scheme

developed in [17] for situations with more users than files

K ≥ N makes use of binary codes, in particular maximum

distant separable (MDS) codes and rank metric codes to obtain

the rate-memory pairs in (2), which are shown to be optimal

at certain points. A method to obtain new rate-memory points

is described in [18]. However no explicit characterization

of these rate-memory pairs is given. There have been other

coded prefetching schemes proposed in the literature, see [14]

and [12] but either they do not improve the current best

known rate-memory trade-off or they apply to other situations.

The optimal rate-memory trade-off for a caching systems

remains an open problem. Besides the achievable rate-memory

trade-off described above, there have been efforts to obtain

theoretical lower bounds on the delivery rate. The cut-set

bound was studied in [3]. A tighter lower bound was obtained

in [20]. Through a computational approach a lower-bound for

the special case N = K = 3 is derived in [21]. Other lower

bounds have appeared in [13], [22], [23] .

III. MAIN RESULT

The following theorem presents the delivery rate obtained

by the proposed caching scheme for a particular demand d.

Theorem 1. For a caching problem with K users and N files,

local cache size of M files at each user, and parameter q =
N

MK
. Given a particular demand d, let Ne(d) be the number

of distinct file requests, then the delivery rate

R =

KNe(d)

(

N − 1
q − 1

)

− q

(

Ne(d) + 1
q + 1

)

K

(

N − 1
q − 1

) (4)

is achievable for q ∈ {1, ..., N}. Furthermore, for q ∈ [1, N ]
the rate-memory pairs in the lower convex envelope of its

values at q ∈ {1, ..., N} are achievable. .

We prove this result in the following section by describing

the new caching scheme. The delivery rate presented in

Theorem 1 is valid for any K and N , however, it is particularly

useful for K ≥ N , as we detail in the next corollaries.

The next corollary, establishes the achievable rate memory

pair for the worst case demand. The proof is provided in the

Appendix.

Corollary 1.1. For a caching problem with K users and N
files, local cache size of M files at each user, and parameter

q = N
MK

, the delivery rate-memory pairs (R∗,M)

(R∗,M) =









N̄ −
N

K

N̄ + 1

q + 1

(

N̄
q

)

(

N
q

) ,
N

Kq









(5)

with N̄ = min (N,K) are achievable for q ∈ {1, ..., N}.

Furthermore, for q ∈ [1, N ] the rate-memory pairs in the lower

convex envelope of its values at q ∈ {1, ..., N} are achievable.

Remark 1. The rate-memory function in (5) coincides with (3)

for q = N and with (1) for q = 1. For q = 1, M = N
K

our

scheme is essentially the same as the one described in [16]

and [11]. However, the scheme proposed in [15] to achieve

(3) differs slightly from the one considered here for K > N .

Indeed, while [15] divides each file into NK subfiles, our

scheme requires only K subfiles per file.

The next corollaries compare the proposed scheme with the

scheme presented [16], the scheme in [17], the cut set bound

derived in [3], and the outer bound obtained in [20]. Due to

space limitations, theses results are proved in [24].

Corollary 1.2. For a caching problem with K users and N
files, K ≥ N , and local cache size of 1

K
≤ M ≤ N

K
, a

sufficient condition for the proposed scheme to outperform the

rate-memory region obtained by the lower convex envelope of

the rate-memory pairs in (2), is K ≤ N2+1
2 .

Corollary 1.3. Let RCB(M) denote the rate-memory function

obtained for the cut set bound. The rate difference between

the cut set rate and the rate-memory pairs in Corollary 1.1 is

RCB (M)−R∗ (M) =
N

K

(

N

q
−

N + 1

q + 1

)

.



Prefetching User Ui M Coded cached subfiles

q = 1 1
2

Z
(i)
1 = W

(i)
1 Z

(i)
2 = W

(i)
2 Z

(i)
3

= W
(i)
3

q = 2 1
4

Z
(i)
{1,2}

= W
(i)
1,{1,2}

⊕W
(i)
2,{1,2}

Z
(i)
{1,3}

= W
(i)
1,{1,3}

⊕W
(i)
3,{1,3}

Z
(i)
{2,3}

= W
(i)
2,{2,3}

⊕W
(i)
3,{2,3}

q = 3 1
6

Z
(i)
{1,2,3}

= W
(i)
1,{1,2,3}

⊕W
(i)
2,{1,2,3}

⊕W
(i)
3,{1,2,3}

TABLE I: Prefetching schemes at user Ui for the proposed coded caching scheme when K = 6, N = 3, and q ∈ {1, 2, 3}.

Subfiles T (q) = {(i, f,A) : for all i ∈ K, A ⊆ F , |A| = q and f ∈ A}
Requested subfiles R(q,d) = {(i, f,A) ∈ T (q) : for all f ∈ Ne (d)}
Requested subfiles Type I RI(q,d) = {(i, f,A) ∈ R(q,d) : A * Ne(d)}
Requested subfiles Type II RII(q,d) = {(i, f,A) ∈ R(q,d) : A ⊆ Ne(d),d(i) ∈ A}
Requested Subfiles Type III RIII(q,d) ={(i, f,A) ∈ R(q,d) : A ⊆ Ne(d),d(i) /∈ A}

TABLE II: 3-tuple sets identifying subfiles W
(i)
f,A .
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Fig. 1: Rate-memory functions of the proposed scheme in

Corollary 1.1 compared with existing schemes and lower

bounds in the literature for N = 10 and K = 15.

Observe that, as first reported in [15, Theorems 3 and 4],

for q = N , M = 1
K

the cut set lower bound is achieved by

the proposed strategy.

Corollary 1.4. Let RSTC(M) denote the outer bound on the

rate-memory function presented in [20]. For K = N and M =
N

(N−1)K = 1
N−1 , this bound is achievable by the rate-memory

function in Corollary 1.1. This is R∗
(

1
N−1

)

= RSTC

(

1
N−1

)

.

We conclude this section by illustrating in Fig. 1 the

worst demand rate-memory function for the proposed scheme

Corollary 1.1 and for the state of the art (SOTA). We consider

the case N = 10 files and K = 15 users. We provide the rate-

memory regions in [16, Corollary 1], [17, Theorem 1], the rate

memory pairs in [15, Theorem 2], [14, Theorem 1], and [11,

Theorem 1]. We also include in this figure for comparison, the

cut set lower bound [3, Theorem 2], the information-theoretical

lower bound obtained in [20, Theorem 1], and the lower

bounds recently appeared in [23, Theorem 1] and [22, Remark

6]. We observe that, for the special situation considered here,

the new proposed scheme obtains a significant improvement

with respect to the previous best SOTA.

IV. PROPOSED CACHING SCHEME

In this section, we describe the caching scheme proposed.

We provide an example in the next section. Let us define the

set of user indexes as K = {1, ...,K}, and the set of file

indexes as F = {1, ..., N}. Consider a cache capacity at users

of M = N
qK

. To achieve the rate R stated in Theorem 1, we

present a prefetching and delivery scheme for q ∈ {1, ..., N},

since for general 1
K

≤ M ≤ N
K

, the minimum rate can be

achieved by memory sharing.

Prefetching scheme: Given q ∈ {1, ..., N}, consider the
(

N
q

)

possible subsets A ⊆ F of q different files, |A| = q.

First, each file Wf is partitioned into K parts, W
(i)
f , one for

each user i ∈ K. Then, each of these parts is further partitioned

into

(

N − 1
q − 1

)

subfiles W
(i)
f,A, one for each subset A of q

files that satisfies f ∈ A. Thus, we broke each file into a

total of K

(

N − 1
q − 1

)

subfiles. Finally, user Ui computes and

stores the coded cached subfiles

Z
(i)
A =

⊕

f∈A

W
(i)
f,A

for all subsets A ∈ {A ⊆F : |A| = q}. Because there are
(

N
q

)

subsets A and each subfile has F/K





N − 1
q − 1





bits, the required cache load at each user equals MF =




N
q



F/K





N − 1
q − 1



 = N
qK

F bits. The coded cached

subfiles at user Ui for a particular scenario with N = 3 and

q ∈ {1, ..., 3} are detailed in Table I.

Delivery scheme: Consider the sets defined in Table II.

Each subfile W
(i)
f,A satisfies f ∈ A and is only XORed

in one coded cached subfile Z
(i)
A . Thus, each subfile W

(i)
f,A

can be identified by a 3-tuple (i, f,A) ∈ T (q). Let Ne(d)
be the set of requested files. Then, the subfiles requested

by some user satisfy f ∈ Ne (d), and are thus, identified

by the 3-tuples (i, f,A) ∈ R(q,d). The delivery scheme

proposed here divides the requested subfiles into three types,

and obtains the requested subfiles in each type, separately.

The requested subfiles Type I, (i, f,A) ∈ RI(q,d), are



those requested subfiles, which are coded in the coded cached

subfiles Z
(i)
A together with at least one subfile not requested

by any user A *Ne(d). The requested subfiles Type II,

(i, f,A) ∈ RII(q,d), include all the requested subfiles coded

in the coded cached subfiles Z
(i)
A together with other requested

files A ⊆ Ne(d) and placed in the cache of a user Ui

requesting one of them, i.e. d(i) ∈ A. Finally, the requested

subfiles Type III, (i, f,A) ∈ RIII(q,d), include all the

requested subfiles coded in the coded cached subfiles Z
(i)
A

together with other also requested files A ⊆ Ne(d), different

from the file requested by the user caching them, i.e. d(i) /∈ A.

Delivery of requested subfiles Type I: For these subfiles, the

server simply broadcasts them one by one, i.e. Y
(i)
f,A = W

(i)
f,A

for all (i, f,A) ∈ RI(q,d). Given that

RI(q,d) = T (q,d)\ {(i, f,A) ∈ R(q,d) : A ⊆ Ne(d)} .

The total number of requested subfiles Type I, and thus of

broadcasted subfiles Type I is

TI =
∑

(i,f,A)∈T (q,d)

1−
∑

(i,f,A)∈R(q,d):A⊆Ne(d)

1

=
∑

i∈K

∑

f∈Ne(d)





∑

A:f∈A

1−
∑

A:{f∈A,A⊆Ne(d)}

1





= KNe(d)

((

N − 1
q − 1

)

−

(

Ne(d)− 1
q − 1

))

. (6)

Although not explicit written for brevity, we require A ⊆ F
and |A| = q. Equality (6) follows since, from right to left,

first, the number of sets A ⊆ F , with |A| = q that include a

particular file f ∈ A is

(

N − 1
q − 1

)

, whereas the number of

sets satisfying A ⊆ Ne(d) that include a particular file f ∈ A

is

(

Ne(d)− 1
q − 1

)

, second, there are Ne(d) files in Ne(d)

and, third, there are K users in K.

Delivery of requested subfiles Type II: For these subfiles,

first, the server arbitrarily selects one user leader uf ∈
K(f) for each file f ∈ F . Let K̄(f) denote the set of

users requesting a file different from Wf . Then, the server

broadcasts

Y
(i)
f,A =

{

W
(i)
f,A if i ∈ K̄(f)

W
(i)
f,A ⊕W

(uf )
f,A if i ∈ K(f)\uf

(7)

for all (i, f,A) ∈ RII(q,d) satisfying i∈ K\uf .

Next, we detail the decoding of subfiles Type II at user

Uk. This user requests file Wd(k) and, thus, is only interested

in the subfiles W
(i)
d(k),A for all 2-tuples (i,A) such that

(i,d(k),A) ∈ RII(q,d). The decoding process at user k
begins by computing

W
(i)
d(k),A = Z

(i)
A ⊕

⊕

f∈A\d(k)

Y
(i)
f,A (12)

for all (i,A) such that i = k and (i,d(k),A) ∈ RII(q,d),

and then W
(i)
d(k),A =

=



















Y
(i)
d(k),A

if i ∈ K̄(d(k))

Y
(i)
d(k),A

⊕W
(k)
d(k),A

if i ∈ K(d(k)), k = ud(k)

Y
(k)
d(k),A

⊕W
(k)
d(k),A

if i = ud(k), k 6= ud(k)

Y
(i)
d(k),A

⊕ Y
(k)
d(k),A

⊕W
(k)
d(k),A

if i ∈ K(d(k))\ud(k), k 6= ud(k)

(13)

for all 2-tuples (i,A) such that i 6= k and (i,d(k),A) ∈
RII(q,d).

To show this result, observe that for any 2-tuple (f,A)
such that (k, f,A) ∈ RII(q,d) and f ∈ A\d(k), we have

A\d(k) ⊆ K̄(d(k)) and thus, Y
(k)
f,A = W

(k)
f,A from (7). Using

the coded cached subfiles, Z
(k)
A , user Uk can compute

W
(i)
d(k),A = Z

(k)
A ⊕

⊕

f∈A\d(k)

Y
(k)
f,A

=
⊕

f∈A

W
(k)
f,A ⊕

⊕

f∈A\d(k)

W
(k)
f,A (14)

for all (i,A) such that i = k and (i,d(k),A) ∈ RII(q,d).

Next, consider the decoding of subfiles W
(i)
d(k),A in (13) for

all (i,A) such that i 6= k and (i,d(k),A) ∈ RII(q,d). User

Uk can obtain, directly, from the broadcasted subfiles Type II

in (7), the subfiles

W
(i)
d(k),A = Y

(i)
d(k),A

for all i ∈ K̄(d(k)). Next, if k = ud(k), using W
(k)
d(k),A from

(14), he obtains

W
(i)
d(k),A = Y

(i)
d(k),A ⊕W

(k)
d(k),A

= W
(i)
d(k),A ⊕W

(ud(k))

d(k),A ⊕W
(k)
d(k),A

= W
(i)
d(k),A ⊕W

(k)
d(k),A ⊕W

(k)
d(k),A

for all i ∈ K(d(k)). Instead, if k 6= ud(k), then he first

computes

W
(i)
d(k),A = W

(k)
d(k),A ⊕ Y

(k)
d(k),A

= W
(k)
d(k),A ⊕W

(k)
d(k),A ⊕W

(ud(k))

d(k),A

for i = ud(k), and for all 2-tuples (i,A) such that i 6= k and

(i,d(k),A) ∈ RII(q,d).

W
(i)
d(k),A = W

(ud(k))

d(k),A ⊕ Y
(i)
d(k),A

for all i ∈ K(d(k))\ud(k).

Next, we count the number of broadcasted subfile Type II

required. Observe that, there is a broadcasted subfile Type II,

Y
(i)
f,A, for each subfile Type II except for i = uf . The total

number of subfiles Type II is

∑

i∈K

∑

A:d(i)∈A

∑

f∈A

1 = K

(

Ne(d)− 1
q − 1

)

q (15)

here, although not explicitly written for brevity, we require

|A| = q and A ⊆ Ne(d). The result in (15) follow since,

from right to left, first, for any set A with |A| = q, we



RIII(q,d) = {(i, f,A) ∈ R(q,d) : A ⊆ Ne(d),d(i) /∈ A} (8)

= {(i, f,A) : |A| = q,A ⊆ Ne(d),d(i) /∈ A, i ∈ K, f ∈ A}

= {(i, f,A) : |A ∪ d(i)| = q + 1,A ∪ d(i) ⊆ Ne(d),d(i) /∈ A, i ∈ K, f ∈ A}

= (i, f,A) : B = A ∪ d(i), |B| = q + 1,B ⊆ Ne(d), i ∈ K,d(i) /∈ A, f ∈ B\d(i)

= {(i, f,A) : A = B\d(i),B ⊆ Ne(d), |B| = q + 1, i ∈ K,d(i) ∈ B, f ∈ B\d(i)} (9)

= {(i, f,A) : A = B\d(i),B ⊆ Ne(d), |B| = q + 1, i ∈ K,d(i) ∈ B\f, f ∈ B}

=
{

(i, f,A) : A = B\d(i), (i, f,B) ∈ R′
III(q,d)

}

. (10)

R′
III(q,d) = {(i, f,B) : B ⊆ Ne(d), |B| = q + 1, i ∈ K,d(i) ∈ B\f, f ∈ B} (11)

have
∑

f∈A 1 = q, second, the number of sets A satisfying

A ⊆ Ne(d) and |A| = q that include a particular file d(i)

is
∑

A:d(i)∈A 1 =

(

Ne(d)− 1
q − 1

)

, and, third, there are K

users. Similarly, we can compute the total number of subfiles

Type II with no broadcasted subfile associated to, as

∑

u∈U

∑

A:d(u)∈A

∑

f=d(u)

1 = Ne(d)

(

Ne(d)− 1
q − 1

)

(16)

where the set U contains all user leaders and thus |U| =
Ne(d). Finally, subtracting (16) to (15), we have that the total

number of broadcasted subfiles Type II is

TII = (Kq −Ne(d))

(

Ne(d)− 1
q − 1

)

.

Coded cached subfiles Type III: Finally, we consider the

delivery of the requested subfiles Type III, W
(i)
f,A for all

(i, f,A) ∈ RIII(q,d). Given that for these subfiles d(i) /∈ A,

we can rewrite subfiles Type III, equivalently, as W
(i)
f,B\d(i) for

all (i, f,B) ∈ R′
III(q,d) with R′

III(q,d) given in (11). We

show this equivalence in (8)-(10). Equality (9) follows since

A = B\d(i), and d(i) ∈ B imply d(i) /∈ A and B = A∪d(i),
and vice-versa.

First, for each file f ∈ B, we select a user leader

uf ∈ K(f). Next, for each set B ⊆ Ne(d) with |B| = q+1, we

define an arbitrary one to one mapping function gB(f) which

for each file index f ∈ B returns a file index gB(f) ∈ B\f sat-

isfying gB(f1) 6= gB (f2) if f1 6= f2. e.g. if B = {0, 1, ..., q},

then we can use gB(f) = (f − 1) mod (q + 1). Then, the

server first broadcasts

Y
(i)
f,B = W

(ugB(f))

f,B\gB(f) ⊕W
(i)
f,B\d(i) (17)

for each 3-tuple (i, f,B) ∈ RIII(q,d) with i 6= ugB(f), and

then

YB =
⊕

f∈B

W
(ugB(f))

f,B\gB(f) (18)

for each set B ⊆ Ne(d) with |B| = q + 1. Although not

broadcasted, let us set Y
(i)
f,B = 0 for i = ugB(f).

Next we detail the decoding operations at user Uk to obtain

the requested subfiles Type III, W
(i)
d(k),B\d(i) for all (i,B) such

that (i,d(k),B) ∈ R′
III(q,d). The decoding process begins

by computing

C
(k)
d(k),B = Z

(k)
B\d(k) ⊕

⊕

f∈B\d(k)

Y
(k)
f,B

for all B ⊆ Ne(d) with |B| = q + 1, and d(k) ∈ B, and then

W
(i)
d(k),B\d(i) =

{

C
(k)
d(k),B ⊕ YB if i = ugB(d(k))

C
(k)
d(k),B ⊕ YB ⊕ Y

(i)
d(k),B if i 6= ugB(d(k)),

(19)

for all (i,B) such that (i,d(k),B) ∈ R′
III(q,d).

To show this result, observe that

Cd(k),B

= Z
(k)
B\d(k) ⊕

⊕

f∈B\d(k)

Y
(k)
f,B

=
⊕

f∈B\d(k)

W
(k)
f,B\d(k) ⊕

⊕

f∈B\d(k)

W
(ugB(f))

f,B\gB(f) ⊕W
(k)
f,B\d(k)

=
⊕

f∈B\d(k)

W
(ugB(f))

f,B\gB(f)

and, that XORing Cd(k),B and YB, we can obtain

W
(i)
d(k),B\d(i) = Cd(k),B ⊕ YB

= W
(ugB(d(k)))

d(k),B\gB(d(k))

for all (i,B) such that i = ugB(d(k)) and (i,d(k),B) ∈
R′

III(q,d). Then, he can obtain the remaining subfiles, as

W
(i)
d(k),B\d(i) = W

(ugB(d(k)))

d(k),B\gB(d(k)) ⊕ Y
(i)
d(k),B

for all (i,B) such that i 6= ugB(d(k)) and (i,d(k),B) ∈
R′

III(q,d) .

Next, we compute the total number of broadcasted

subfiles Type III. For brevity, although not explicitly

written, the summations over B require B ⊆ Ne(d) and

|B| = q + 1. Observe that there is one broadcasted subfile

YB for each set B ⊆ Ne(d) with |B| = q + 1, and one

broadcasted subfile Y
(i)
f,B for all (i, f,B) ∈ RIII(q,d)

with i 6= ugB(f), or more explicitly for all (i, f,B) ∈
{

B ⊆ Ne(d), |B| = q + 1, i ∈ K\ugB(f),d(i) ∈ B\f, f ∈ B
}

.



Thus, the total number of broadcasted subfiles Type III is

TIII

=
∑

B





∑

f∈B





∑

d∈B\f

∑

i∈K(d)\ugB(f)

1



+ 1





=
∑

B





∑

f∈B





∑

d∈B\f

K(d)− 1



+ 1



 (20)

=
∑

B

∑

f∈B

∑

d∈B\f

K(d)−
∑

B

∑

f∈B

1 +
∑

B

1

=
∑

B

∑

f∈B

∑

d∈B

K(d)−
∑

B

∑

f∈B

(K(g) + 1) +
∑

B

1

= (qK −Ne(d))

(

Ne(d)− 1
q

)

+

(

Ne(d)
q + 1

)

(21)

=

(

qK −

(

1−
1

q

)

Ne(d)

)(

Ne(d)− 1
q

)

(22)

where (20) follow since for each f , ugB(f) is only found in

K(d) for d = gB(f), and (21) follows since

∑

B

1 =

(

Ne(d)
q + 1

)

,

∑

B

∑

f∈B

(K(f) + 1) =
∑

f∈Ne(d)

(K(f) + 1)
∑

B:f∈B,

1

= (K +Ne(d))

(

Ne(d)− 1
q

)

,

∑

B

∑

f∈B

∑

d∈B

K(d) = (q + 1)
∑

B

∑

d∈B

K(d)

= (q + 1)
∑

d∈Ne(d)

K(d)
∑

B:d∈B

1

= (q + 1)K

(

Ne(d)− 1
q

)

.

Next, (22) follow since

(

n
k

)

= n
k

(

n− 1
k − 1

)

. Finally,

adding together TI , TII , and TIII , we obtain

T = KNe(d)

(

N − 1
q − 1

)

−Ne(d)

(

Ne(d) + 1

q + 1

)(

Ne(d)− 1
q − 1

)

which leads to the rate (4) stated in Theorem 1.

V. CONCLUSIONS

In this work, we proposed a novel centralized coded caching

scheme for the case where there are more users than files

K ≥ N and users are equipped with small memories M ≤ N
K

.

The scheme uses coded prefetching and outperforms previ-

ously proposed schemes for moderate-high number of users,

N ≤ K ≤ N2+1
2 . Due to the limited region of applicability,

the practical interest of this scheme might be small. However,

the ideas and strategy here presented may motivate further

developments in the coded caching problem. Our current and

future work is in this direction, and includes the extension of

the proposed coded prefetching technique to larger memories

and scenarios with more users than files
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