
A novel coded caching scheme with coded

prefetching

Jesus Gomez-Vilardebo

Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA)

Castelldefels, Spain

jesus.gomez@cttc.es

Abstract—For the caching problem, when the number of files is
no larger than that of users, the best known rate-memory region
is achieved by memory sharing between the rate-memory pairs
obtained by three schemes: the scheme proposed by Yu et al., the
scheme proposed by Gomez-Vilardebo and the scheme proposed
by Tian-Chen. While the first two schemes operate on the binary
field, the Tian-Chen scheme makes use of a finite field of order 2m

with m ≥ K log
2
(N) in some situations, for a caching systems

with K users and N files. The practical implications of this
increase in the size of the field are equivalent to an increase,
by a factor of m, in the number of subfile partitions required.
We propose a novel caching scheme that approaches the rate-
memory region achieved by the Tian-Chen scheme as the number
of users in the system increases, which only requires a field of
order 22.

Index Terms—Centralized coded caching, network coding,
index coding.

I. INTRODUCTION

The constantly increasing demand of contents has been

guiding the efforts of the industry and research communication

communities. One of the most promising techniques proposed

so far is “content caching” [1]. The most direct application

of the content caching concept is to combat peak hour traffic

in content delivery services. The simplest ‘’uncoded” caching

solutions work as follows: during low traffic periods, the

storage resources available at the edge of the network are filled

out with popular content. Then, whenever a user requests a

content that is available at the edge cache, the content is served

directly, thus, completely alleviating the backhaul network.

This uncoded caching solution is only optimal in single cache

systems. However, for multiple caches, the seminal work in [1]

showed that important gains can be obtained by a new coded

caching strategy. Specifically, there authors show that, besides

the local caching gain that is obtained by placing contents at

user caches before they are requested, it is possible to obtain a

global caching gain by creating broadcast opportunities. This

is, by carefully choosing the content caches at different users,

and using network coding techniques it is possible to transform

the initial unicast network, where every user is requesting

a different file, into a broadcast network, where every user

requests exactly the same “coded” file, obtaining the new

global caching gain.

This work was partially supported by the Catalan Government under grant
SGR2017-1479 and the Spanish Government under grant TEC2013-44591-P
(INTENSYV).

The fundamental caching scheme developed in [1] was latter

extended to more realistic situations. The decentralized setting

was considered in [2], non-uniforms demands in [3], online

coded caching in [4], and hierarchical cache network in [5],

among others. In addition, new schemes pushing further the

fundamental limits of caching systems have appeared in [6]–

[12]. There have been also efforts to obtain theoretical lower

bounds on the delivery rate. The cut-set bound was studied in

[1]. A tighter lower bound was obtained in [13]. Other lower

bounds have appeared in [7], [14], [15].

If there are more users than files and cache memories are

small, some of the best rate-memory pairs known are achieved

by the Tian-Chen coding scheme [11]. This coding scheme,

however, makes use, in some situations, of a finite field of

at least order NK . The practical implications of this increase

in the size of the field are equivalent to an increase, by a

factor of K log2 N , in the number of subfile partitions required

compared to the scheme in [1]. We propose a novel caching

scheme that approaches the rate-memory region achieved by

the Tian-Chen scheme as the number of users in the system

increases, which only requires a finite field of order 22. More-

over, instead of relying on the existence of some valid code

as in [12], we provide an explicit combinatorial construction

of the caching scheme, including, both, the prefetching, and

delivery (broadcast and decoding) phases.

The rest of this paper is organized as follows. In Section II,

we present the system model together with the more relevant

previous results. In Section III, we summarize the main results.

Section IV describes the caching scheme proposed. Finally,

conclusions are drawn in Section V.

II. SYSTEM MODEL AND PREVIOUS RESULTS

We consider a communication system with one server

connected to K users, denoted as U1, ..., UK , through a shared,

error-free link. There is a database at the server with N
files, each of length F bits, denoted as W1,,WN . Each

users is equipped with a local cache of capacity MF bits,

M ∈ [0, N], and is assumed to request only one full file.

Here, we consider the special case where there are more users

than files N ≤ K. As in [1], the caching system operates in

two phases: the placement phase and the delivery phase. In

the placement phase, users have access to the server database,

and each user fills their cache. Then, each user Uk requests a

single full file Wd(k) where d = (d(1),,d(K)) denotes the

demand vector. We denote the number of distinct requests in

d as Ne(d). In the delivery phase, only the server has access

to the database. After being informed of the user demands,

the server transmits a signal Y of size RF bits over the

shared link to satisfy all user requests simultaneously. Let

D = {1, ..., N}K , for a caching system (M,N,K), given

a particular prefetching M = {M1,,Mk} and demand

d, we say that communication rate R(d,M) is achievable

if and only if there exists a message Y of length RF bits

such that every user Uk is able to reconstruct its desired file

Wd(k). Then, the rate needed for the worst demand is given by

R∗ (M) = maxd∈D R(d,M). Finally, we define the worst

demand rate-memory pair (R∗,M) and the worst demand rate-

memory function R∗(M).
For the centralized caching setting, the best known explicitly

characterization of the rate-memory trade-off can be obtained

by memory sharing between three rate-memory pair families:

the rate-memory pairs presented in [16, Corollari 1.1], the

rate-memory pairs obtained in [10, Corollary 1], and the rate-

memory pairs obtained in [11, Theorem 1]

(R∗
TC,MTC) =

(

N
(

1−
r

K

)

,
r

K
+ (N − 1)

r

K

r − 1

K − 1

)

,

(1)

with r ∈ {0, 1, ...,K}. The rate-memory pairs in [10, Corol-

lary 1] include as special case the rate-memory pair obtained

in [6] for M = N
K

. In addition, both [16, Corollari 1.1], and

[11, Theorem 1] include the rate-memory pair (R∗,M) =
(

N − N
K
, 1
K

)

obtained in [9]. Recently, a method to obtain

new rate-memory pairs has been developed in [12]. However,

no explicit characterization of the achievable rate-memory

pairs is provided. While the schemes in [10] and [16] only

require binary operations, the scheme developed in [11], [12]

makes use of codes in a finite field of order NK in some

situations. Finally, there have also been efforts to obtain lower

bounds on the delivery rate. The cut-set bound was studied in

[1]. A tighter lower bound was obtained in [13]. Other lower

bounds have appeared in [7], [14], [15].

III. MAIN RESULT

The following theorem presents the delivery rate obtained

by the proposed caching scheme for a particular demand d.

Theorem 1. For a caching problem with K users, N files,

and local cache size MF bits at each user. Given a particular

demand d, let Ne(d) be the number of distinct file requests,

the proposed strategy achieves the rate-memory pairs

RTC+ = min (Ne(d) + 1, N)

(

1−
r

K + 1

)

MTC+ =
r

K + 1
+ (N − 1)

r

K + 1

r − 1

K

for r ∈ {0, ...,K + 1}.

We prove this result in the following section by describing

the new caching scheme. The delivery rate presented in The-

orem 1 is valid for any K and N . However, it is particularly

useful for K ≥ N , as we detail in the next corollaries.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Cache capacity, M

2.6

2.8

3

3.2

3.4

3.6

3.8

4

D
e

liv
e

ry
 r

a
te

,
R

∗

Upper bound of [10, Corollary 1]

Upper bound of [11, Theorem 1]

Upper bound of Corollary 1.1

Upper bound of [16, Corollary 1.1]

Lower bound of [14, Remark 6]

Lower bound of [15, Theorem 1]

Lower bound of [13, Theorem 1]

Lower bound of [1, Theorem 2]

Figure 1: Rate-memory functions of the proposed scheme

compared with existing schemes and lower bounds in the

literature for N = 4 and K = 20.

Corollary 1.1. For a caching problem with K users and N
files, local cache size of MF bits at each user, given that

Ne(d) ≤ K, the proposed strategy achieves the worst demand

rate-memory pairs (R∗,M) = (R∗
TC+ ,MTC+), with

R∗
TC+ = min (N,K + 1)

(

1−
r

K + 1

)

MTC+ =
r

K + 1
+ (N − 1)

r

K + 1

r − 1

K

for r ∈ {0, ...,K + 1}.

Remark 1. Observe that, if K ≥ N the worst demand rate-

memory function in Corollary 1.1 for K users coincides with

the Tian-Chen rate-memory pair in (1) for K + 1 users. The

following corollary compares both rate-memory functions. The

proof is omitted due to space limitations it can be found in

[17].

Corollary 1.2. Let R∗
TC+(M) be the worst demand rate-

memory function achieved by memory sharing between the

rate-memory pairs in Corollary 1.1, and let R∗
TC(M) be the

worst demand rate-memory function of the Tian-Chen scheme.

For any number of files N and users K, satisfying K ≥ N

and M ∈ [0, N], we have
R∗

TC+
(M)

R∗

TC
(M) ≤ 1 + 1

(K−1)(K+1) .

In Fig. 1 for a caching system with N = 4 files and K = 20
users, we compare the rate-memory pairs in Corollary 1.1 to

the best known rate-memory functions in the literature, i.e.

the rate-memory pairs in [10, Corollary 1], [16, Corollary 1.1]

and [11, Theorem 1]. In addition, we depict for comparison,

the cut set lower bound [1, Theorem 2], the information-

theoretical lower bound obtained in [13, Theorem 1], and the

lower bounds recently appeared in [15, Theorem 1] and [14,

Remark 6]. Observe that, for the special situation considered

here, the new proposed scheme obtains a rate-memory function

overlapping almost exactly the rate-memory function in [11],

[12]. Moreover, the strategy presented here only requires a

finite field of order 22. Instead, to obtain the rate-memory

pair associated to r = 11, the Tian-Chen scheme requires a

finite field of at least order 105.

IV. PROPOSED CACHING SCHEME

We prove Theorem 1 in the following subsections. First,

we describe a caching scheme that achieves the Tian-Chen

rate-memory pairs only if all files are requested by some user.

Then, we show that the same scheme can be applied to any

demand if configured for K + 1 caches instead of K.

A. Coded caching scheme if all files are requested

Let us first consider a caching system that can only serve

demand vectors that include all files in the library.

1) Prefetching scheme: Let us define the set of users

indexes as K = {1, ...,K} and the set of file indexes as F =
{1,, N}. We partition each file Wf , f ∈ F into

(

K
r

)

non-

overlaping subfiles of equal size, Wf,S , one for each subset

S of r users, i.e. S ∈ T (r) with T (r) = {S ⊆ K : |S| = r} .
Let Tk(r) = {S ∈ T (r) : k∈ S} be the set of subsets of r
users that include user Uk. User Uk caches the binary sum of

the N subfiles associated to S

ZS =
⊕

f∈F

Wf,S (2)

for all S ∈ Tk(r). Consequently, each user caches
(

K−1
r−1

)

coded subfiles. If r ≥ 2, in addition, we need user Uk to

be able to obtain from its cache the coded subfiles

Zf,S− =
⊕

s∈K\S−

Wf,S−∪s (3)

for every file f ∈ F , and every subset S− ∈ Tk(r − 1). It

can be shown, see [17], that user Uk only needs to cache the

coded subfiles Zf,S− in (3) for all files f ∈ F\g and all sets

S− ∈ Tk(r− 1) satisfying l /∈ S−, for an arbitrary file g, and

user l. The total number of coded subfiles Zf,S− cached at

user Uk is then (N − 1)
(

K−2
r−2

)

.

2) Broadcasting scheme: Let us denote the binary sum of

the two half-subfiles of subfile Wf,S as W̄f,S = W I
f,S ⊕WQ

f,S
and the set of users requesting file Wf as K(f). The server,

first, selects one user leader uf ∈ K(f) for each file f ∈ F ,

and then broadcasts the coded subfile Yf,S =
〈

Y I
f,S , Y

Q
f,S

〉

Y I
f,S = W I

f,S ⊕
⊕

s∈S∩K(f)

W̄f,uf∪{S\s}, (4)

Y Q
f,S = W̄f,S ⊕

⊕

s∈S∩K(f)

WQ

f,uf∪{S\s} (5)

for every file f ∈ F and every set S of r users, i.e. S ∈ T (r),
excluding the user leader uf , i.e. uf /∈ S .

Because, there are N files, and
(

K−1
r

)

sets S ∈ T (r) with

uf /∈ S for each file, we need N
(

K−1
r

)

subfile length broad-

cast transmissions, thus, requiring the rate R = N(K−1

r)/(Kr) =
N

(

1− r
K

)

.
Next we describe the decoding process. Each user Uk

divides the decoding of all the requested subfiles Wd(k),S for

all S ∈ T (r) into two steps. First, user Uk obtains all subfiles

Wd(k),S for all sets S ∈ Tk(r). These subfiles are coded at

some coded subfile in the cache of user Uk. Then, user Uk

obtains the subfiles cached by other users, i.e. subfiles Wd(k),S

for all sets S ∈ T̄k(r), with T̄k(r) = {S ∈ T (r) : k /∈ S}.

3) Decoding of requested subfiles coded in the cache of user

Uk: Recall that for any set S ∈ Tk(r), user Uk caches ZS =
Wd(k),S ⊕

⊕

f∈F\d(k) Wf,S and thus, can obtain Wd(k),S for

all sets S ∈ Tk(r) by first obtaining all the interfering subfiles

Wf,S for all f ∈ F\d(k), and then computing

Wd(k),S = ZS ⊕
⊕

f∈F\d(k)

Wf,S . (8)

The decoding of these interfering subfiles is divided into

r consecutive phases p = 0, ..., r − 1. At phase p, for

every file f ∈ F\d(k), user Uk obtains subfile Wf,S for

all subsets S ∈ Tk(r) with p users requesting file Wf , i.e.

satisfying |S ∩ K(f)| = p. Let us denote this family of sets

as Tk,f (r, p) = {S ∈ Tk(r) : |S ∩ K(f)| = p} .

Consider first the decoding of the interfering subfiles at

phase p = 0. This is, subfiles Wf,S for any set S ∈ Tk,f (r, 0).
Observe that, uf /∈ S , and thus, there is a broadcasted subfile

Yf,S associated to each of the sets S ∈ Tk,f (r, 0), with

half-subfiles given by Y I
f,S = W I

f,S , and Y Q
f,S = W̄f,S .

Consequently, we can obtain Wf,S as
〈

W I
f,S ,W

Q
f,S

〉

=
〈

Y I
f,S , Y

Q
f,S ⊕ Y I

f,S

〉

. Next, consider the decoding of interfer-

ing subfiles at phases p, r > p ≥ 1. This is, interfering subfiles

Wf,S for any set S ∈ Tk,f (r, p) for p = 1, ..., r− 1. At phase

p, user Uk decodes first all the interfering subfiles Wf,S also

cached by the user leader, i.e. uf ∈ S . Then, the interfering

subfiles Wf,S for all sets S ∈ Tk,f (r, p) not cached at the user

leader uf /∈ S can be obtained as, Wf,S =
〈

W I
f,S ,W

Q
f,S

〉

W I
f,S = Y I

f,S ⊕
⊕

s∈S∩K(f)

W̄f,uf∪{S\s}, (9)

WQ
f,S = Y Q

f,S ⊕
⊕

s∈S∩K(f)

WQ

f,uf∪{S\s} ⊕W I
f,S . (10)

Observe that for all u ∈ S ∩ K(f) the set uf ∪ S\u contains

uf and satisfies |uf ∪ S\u| = p and thus, user Uk has already

obtained Wf,uf∪S\u.

Finally, we detail the decoding of interfering subfiles Wf,S

for any set S ∈ Tk,f (r, p) with uf ∈ S . We summarize the

decoding process first, and prove it later. Observe that for all

u ∈ S ∩ K(f), we have |{S\u} ∩ K(f)| = p − 1, and thus

from decoding phase p− 1, user Uk already has Wf,{S\u}∪v

for all v ∈ K̄(f)\{S\u}. This allows user Uk to compute

Cf,S\u = Zf,S\u ⊕
⊕

v∈K̄(f)\{S\u}

Wf,{S\u}∪v (11)

for all u ∈ S ∩ K(f). Next, observe that since uf ∈ S , and

uf /∈ K(f)\S , there is a broadcasted subfile Yf,{S\uf}∪s for

all s ∈ K(f)\S . This allows user Uk to compute

Υf,S\uf
=

⊕

s∈K(f)\S

Yf,{S\uf}∪s. (12)

Next, we partition Υf,S\uf
and Cf,S\u for all u ∈ S ∩ K(f)

into half-subfiles, i.e. Υf,S\uf
=

〈

ΥI
f,S\uf

,ΥQ

f,S\uf

〉

,

Cf,S\u =
〈

CI
f,S\u, C

Q

f,S\u

〉

, and define Ῡf,S\uf
,

ΥI
f,S\uf

= CI
f,S\uf

⊕W I
f,S ⊕

⊕

s∈K(f)\S

W̄f,S ⊕
⊕

u∈{S\uf}∩K(f)

C̄f,S\u ⊕ W̄f,S (6)

ΥQ

f,S\uf
= C̄f,S\uf

⊕ W̄f,S ⊕
⊕

s∈K(f)\S

WQ
f,S ⊕

⊕

u∈{S\uf}∩K(f)

CQ

f,S\u ⊕WQ
f,S . (7)

ΥI
f,S\uf

⊕ ΥQ

f,S\uf
, and C̄f,S\u , CI

f,S\u ⊕ CQ

f,S\u. Then,

user Uk computes

ΥI
f,S = ΥI

f,S\uf
⊕ CI

f,S\uf
⊕

⊕

u∈{S\uf}∩K(f)

C̄f,S\u,

ΥQ
f,S = ΥQ

f,S\uf
⊕ C̄f,S\uf

⊕
⊕

u∈{S\uf}∩K(f)

CQ

f,S\u

and obtains subfile Wf,S =
〈

W I
f,S ,W

Q
f,S

〉

as

W I
f,S =

{

ΥQ
f,S if |K(f)\uf | is odd

ΥI
f,S otherwise

WQ
f,S =

{

ΥI
f,S if |K(f)\uf | is odd

ΥI
f,S ⊕ΥQ

f,S otherwise

In the following, we prove the correctness of this decoding

process. First, observe that for all u ∈ S ∩ K(f), we have

Cf,S\u = Zf,S\u ⊕
⊕

v∈K̄(f)\{S\u}

Wf,{S\u}∪v

=
⊕

s∈K(f)\{S\u}

Wf,{S\u}∪s

= Wf,S ⊕
⊕

s∈K(f)\S

Wf,{S\u}∪s

from which we can write
⊕

s∈K(f)\S

Wf,{S\u}∪s = Cf,S\u ⊕Wf,S . (13)

Next, for any s ∈ K(f)\S , we write Y I
f,{S\uf}∪s

= W I
f,{S\uf}∪s ⊕

⊕

u∈{{S\uf}∪s}∩K(f)

W̄f,uf∪{{S\uf}∪s}\u

= W I
f,{S\uf}∪s ⊕ W̄f,S ⊕

⊕

u∈{S\uf}∩K(f)

W̄f,{S\u}∪s (14)

Similarly, we can write Y Q

f,{S\uf}∪s

= W̄f,{S\uf}∪s ⊕WQ
f,S ⊕

⊕

u∈{S\uf}∩K(f)

WQ

f,{S\u}∪s
. (15)

Now, it follows from (13) and (14) that ΥI
f,S\uf

=
⊕

s∈K(f)\S Y I
f,{S\uf}∪s

can be written as in (6), and, from

(13) and (15) that ΥQ

f,S\uf
=

⊕

s∈K(f)\S Y Q

f,{S\uf}∪s
can be

written as in (7). Next observe that
⊕

s∈K(f)\S Wf,S ⊕
⊕

u∈{S\uf}∩K(f) Wf,S

=
⊕

s∈K(f)\uf

Wf,S

=

{

Wf,S if |K(f)\uf | is odd

0 otherwise.

and thus ΥI
S\uf

⊕ CI
f,S\uf

⊕

u∈{S\uf}∩K(f) C̄f,S\u

= W I
f,S ⊕

⊕

s∈K(f)\uf

W̄f,S

=

{

WQ
f,S if |K(f)\uf | is odd

W I
f,S otherwise

and ΥQ

S\uf
⊕ C̄f,S\uf

⊕

u∈{S\uf}∩K(f) C
Q

f,S\u

= W̄f,S ⊕
⊕

s∈K(f)\uf

WQ
f,S

=

{

W I
f,S if |K(f)\uf | is odd

W̄f,S otherwise.

If |K(f)\uf | is even, we obtain WQ
f,S as WQ

f,S = W̄f,S ⊕

W I
f,S . Finally, we have Wf,S =

〈

W I
f,S ,W

Q
f,S

〉

.

4) Decoding of requested subfiles not cached: Next, we

show how user Uk obtains all the remaining requested subfiles

Wd(k),S for all sets S ∈ T̄k(r). These subfiles satisfy k /∈ S
and are, thus, not coded in the cache of user Uk. Hereafter

f = d(k). Let us first suppose user Uk is leader, i.e. k = uf .

Observe that then, associated to any set S ∈ T̄k(r), since k =
uf /∈ S , there exists a broadcasted subfile Yf,S . In addition,

user k = uf has already obtained all the requested subfiles

coded in its cache, in particular subfiles Wf,uf∪S\s for all

s ∈ S ∩ K(f), and can compute Wf,S =
〈

W I
f,S ,W

Q
f,S

〉

as

W I
f,S = Y I

f,S ⊕
⊕

s∈S∩K(f)

W̄f,uf∪S\s, (16)

WQ
f,S = W I

f,S ⊕ Y Q
f,S ⊕

⊕

s∈S∩K(f)

WQ

f,uf∪S\s. (17)

for all sets S ∈ T̄k(r). Instead, if user Uk is no leader, i.e.

k ∈ K(f)\uf he obtains, first, the subfiles Wf,S for all the set

S ∈ T̄k(r) satisfying uf ∈ S . Observe that for each of these

sets, associated to the set S∪k\uf , there exists the broadcasted

subfile Yf,S∪k\uf
with half-subfiles given by Y I

f,S∪k\uf

= W I
f,S∪k\uf

⊕
⊕

s∈{S∪k\uf}∩K(f)

W̄f,uf∪{{S∪k\uf}\s}

= W I
f,S∪k\uf

⊕ W̄f,S ⊕
⊕

s∈{S\uf}∩K(f)

W̄f,S∪k\s

and Y Q

f,S∪k\uf

= W̄f,S∪k\uf
⊕WQ

f,S ⊕
⊕

s∈{S\uf}∩K(f)

WQ

f,S∪k\s.

Given that user Uk already has all the requested subfiles coded

in its own cache, in particular Wf,S∪k\s for all s ∈ S ∩K(f),

he can compute Wf,S =
〈

W I
f,S ,W

Q
f,S

〉

as WQ
f,S

= Y Q

f,S∪k\uf
⊕ W̄f,S∪k\uf

⊕
⊕

s∈{S\uf}∩K(f)

WQ

f,S∪k\s (18)

and W I
f,S

= WQ
f,S ⊕Y I

f,S∪k\uf
⊕W I

f,S∪k\uf
⊕

⊕

s∈{S\uf}∩K(f)

W̄f,S∪k\s

(19)

for all sets S ∈ T̄k(r) with uf ∈ S . Now user Uk can mimic

the user leader uf and obtain the remaining subfiles, i.e. Wf,S

for all sets S ∈ T̄k(r) satisfying uf /∈ S from (16) and (17).

B. Extension to arbitrary requested files

In previous subsection, we required all files to be requested.

In this section, we show that the same scheme can be applied

to any request if configured for K + 1 users instead of K.

1) Prefetching scheme: We use the subfile partitions and

prefetching scheme specified in previous section, but as if

there were K + 1 users instead of K. As a result, each file

is partitioned into
(

K+1
r

)

subfiles and thus, the required cache

load at users equals MF , with M = r
K+1 +(N−1) r

K+1
r−1
K

.

2) Delivery scheme: For the delivery, if all files are re-

quested, we add the K + 1th “virtual” user to the system

i.e. K = {1,,K + 1} and assume that the K + 1th user

requests any of the files i.e. d(K + 1) ∈ F . Then, we apply

the delivery strategy as described in previous subsections. In

that case, every user obtains their desired file, with a rate

R = N

(

1−
r

K + 1

)

. (20)

Instead, if some files are not requested, the additional user

requests the binary sum of all files not requested, i.e. W0 ,
⊕

f∈F\N e(d)
Wf where Ne(d) denotes the set of files re-

quested. Now, we can replace the set of files in the system

F by F0(d) = {0 ∪ Ne(d)}. The server can obtain the

subfiles of the new file W0 from subfiles not requested as

W0,S ,
⊕

f∈F\N e(d)
Wf,S . Similarly, users can consider the

cached subfiles in (2), as if the set of file was F0(d), since

ZS =
⊕

f∈F

Wf,S =
⊕

f∈0∪Ne(d)

Wf,S .

and, obtain the coded subfiles in (3) associated to file W0 as

Z0,S− =
⊕

f∈F\N e(d)

Zf,S−

=
⊕

s∈K\S−

⊕

f∈F\N e(d)

Wf,S−∪s

=
⊕

s∈K\S−

W0,S.

Now, since we have replaced the set of files F by F0(d), and

all files in F0(d) are requested, we can apply the delivery

strategy as described in previous subsection, with a rate

R = (Ne(d) + 1)

(

1−
r

K + 1

)

. (21)

Combining (20) and (21), we can write the rate as presented

in Theorem 1.

V. CONCLUSIONS

In this work, we proposed a novel caching scheme that

approaches the rate-memory region achieved by the Tian-Chen

scheme as the number of users in the system increases, which

only requires a finite field of order 22. Moreover, instead of

relying on the existence of some valid code, we provided an

explicit combinatorial construction of the caching scheme.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–
2867, May 2014.

[2] ——, “Decentralized coded caching attains order-optimal memory-rate
tradeoff,” IEEE/ACM Transactions on Networking, vol. 23, no. 4, pp.
1029–1040, Aug 2015.

[3] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform
demands,” IEEE Transactions on Information Theory, vol. 63, no. 2,
pp. 1146–1158, Feb 2017.

[4] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded
caching,” IEEE/ACM Transactions on Networking, vol. 24, no. 2, pp.
836–845, April 2016.

[5] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. N. Diggavi,
“Hierarchical coded caching,” IEEE Transactions on Information The-

ory, vol. 62, no. 6, pp. 3212–3229, June 2016.
[6] M. M. Amiri, Q. Yang, and D. Gündüz, “Coded caching for a large

number of users,” in 2016 IEEE Information Theory Workshop (ITW),
Sept 2016, pp. 171–175.

[7] H. Ghasemi and A. Ramamoorthy, “Improved lower bounds for coded
caching,” in IEEE ISIT, June 2015, pp. 1696–1700.

[8] M. M. Amiri and D. Gündüz, “Fundamental limits of coded caching:
Improved delivery rate-cache capacity tradeoff,” IEEE Transactions on

Communications, vol. 65, no. 2, pp. 806–815, Feb 2017.
[9] Z. Chen, P. Fan, and K. B. Letaief, “Fundamental limits of caching:

improved bounds for users with small buffers,” IET Communications,
vol. 10, no. 17, pp. 2315–2318, 2016.

[10] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-
memory tradeoff for caching with uncoded prefetching,” IEEE Transac-

tions on Information Theory, vol. 64, no. 2, pp. 1281–1296, Feb 2018.
[11] C. Tian and J. Chen, “Caching and delivery via interference elimination,”

IEEE Transactions on Information Theory, vol. 64, no. 3, pp. 1548–
1560, March 2018.

[12] C. Tian and K. Zhang, “From uncoded prefetching to coded prefetching
in coded caching,” CoRR, vol. abs/1704.07901, 2017. [Online].
Available: http://arxiv.org/abs/1704.07901

[13] A. Sengupta, R. Tandon, and T. C. Clancy, “Improved approximation of
storage-rate tradeoff for caching via new outer bounds,” in IEEE ISIT,
June 2015, pp. 1691–1695.

[14] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the
rate-memory tradeoff in cache networks within a factor of 2,” in IEEE

ISIT, June 2017, pp. 386–390.
[15] C. Y. Wang, S. S. Bidokhti, and M. Wigger, “Improved converses and

gap-results for coded caching,” pp. 2428–2432, June 2017.
[16] J. Gómez-Vilardebó, “Fundamental Limits of Caching: Improved

Bounds with Coded Prefetching,” ArXiv e-prints, Dec. 2016.
[17] ——, “A novel centralized coded caching scheme

with coded prfetching,” Dec. 2017. [Online]. Available:
http://www.cttc.es/publication/coded-caching/

