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Abstract—Recently, Cu(In,Ga)Se; (CIGS) solar cells have
achieved 21% world-record efficiency, partly due to the introduc-
tion of a postdeposition potassium treatment to improve the front
interface of CIGS absorber layers. However, as high-efficiency
CIGS solar cells essentially require long diffusion lengths, the
highly recombinative rear of these devices also deserves attention.
In this paper, an Al; O3 rear surface passivation layer with nano-
sized local point contacts is studied to reduce recombination at the
standard Mo/CIGS rear interface. First, passivation layers with
well-controlled grids of nanosized point openings are established
by use of electron beam lithography. Next, rear-passivated CIGS
solar cells with 240-nm-thick absorber layers are fabricated as
study devices. These cells show an increase in open-circuit voltage
(457 mV), short-circuit current (+3.8 mA/cm?), and fill factor
[9.5% (abs.)], compared with corresponding unpassivated refer-
ence cells, mainly due to improvements in rear surface passivation
and rear internal reflection. Finally, solar cell capacitance simula-
tor (SCAPS) modeling is used to calculate the effect of reduced back
contact recombination on high-efficiency solar cells with standard
absorber layer thickness. The modeling shows that up to 50-mV
increase in open-circuit voltage is anticipated.

Index Terms—Al, O3, Cu(In,Ga)Se, electron beam lithography,
local point contacts, nanosized openings, passivation layer, passi-
vated emitter and rear cell (PERC), rear internal reflection, rear
surface recombination velocity, Si.

I. INTRODUCTION

VER the past two years, CIGS solar cells have taken a
O sudden leap in world record efficiency of 1%, from around
20% to 21% [1]. Before 2013, CIGS solar cell efficiency im-
provements were mainly due to enhancements in absorber ma-
terial quality, and cell efficiencies were lingering around 20%
for a few years—as achieved by National Renewable Energy
Laboratory (NREL) and the Centre for Solar Energy and Hy-
drogen Research Baden-Wiirttemberg (ZSW) [2]. However, in
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2013, a major breakthrough to reach 20.4% has been achieved
by the Swiss Federal Laboratories for Materials Science and
Technology (Empa), which rapidly inspired ZSW, Solar Fron-
tier, and Solibro (Hanergy Group) to reach 20.8%, 20.9%, and
even 21%, respectively [3]-[5].

This rise in efficiency has been triggered by the introduction
of a postdeposition potassium (K) treatment to improve the front
interface of CIGS absorber layers. It has been shown that this K
treatment results in enhanced passivation (grain boundaries and
donor-like defects), thinning of the CdS buffer layer, increased
junction depth, and increased bandgap (larger Ga content) (see
[31, [4], and [6]). Hence, the postdeposition treatment mainly
causes improvements in open-circuit voltage (Vpc), but also
in short-circuit current density (Jsc—resulting from a higher
transparency of the CdS layer). Roughly speaking, it can be
said that all these improvements are located in the front part of
high-efficiency solar cells (buffer—absorber).

However, as high-efficiency CIGS solar cells essentially have
long diffusion lengths, the highly recombinative rear of these
devices would be the next region of attention. CIGS absorber
layer thicknesses in high-efficiency devices are between 2.5 and
3.0 um [3], [4], while effective minority carrier diffusion lengths
are anticipated to be between 1.5 and 2.0 pm [7]. Thus, absorber
layer thicknesses between 1.5 and 2.0 pm should be sufficient
from optical perspective, but thicker absorbers are required as
recombination is high at standard Mo/CIGS (absorber—rear con-
tact) rear interfaces. This highly recombinative rear interface
becomes very obvious as a loss in V¢ if the absorber thickness
is reduced [8], [9].

One method to reduce recombination at the standard
Mo/CIGS rear interface is the introduction of a rear surface
passivation layer with nanosized contacts [8]. This idea stems
from the Si solar cell industry, where at the rear of advanced
cell concepts rear surface passivation layers are combined with
micron-sized point openings—e.g., passivated emitter and rear
cells (PERC), as named in the title [10]. Such a passivation
layer is known to reduce interface recombination by chemical
[equals a reduction in interface trap density (D;;)] and field-
effect passivation (equals a fixed charge density (()s) in the
passivation layer that reduces the surface minority or majority
charge carrier concentration), while the point openings allow
for contacting [11].

Previously, two industrially viable rear surface passivation ap-
proaches have been developed as proof-of-principles, resulting
in rear-surface-passsivated CIGS solar cells with suboptimized
grids of local rear contacts. In both processes, AloOj3 is used
as CIGS surface passivation layer because of similar arguments
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made as for its use as Si surface passivation layer [8], [11]. The
processes differ in contacting 1) local point contacts are used, as
generated by the formation of nanosphere-shaped precipitates
in chemical bath deposition (CBD) of CdS [8], [9], [12], or
2) Mo nanoparticles as contacts are used, as grown in a highly
ionized pulsed plasma [13], [14]. Both approaches have been
integrated in CIGS solar cells with ultrathin (<500 nm, [15],
[16]) absorber layers showing an increase in V¢ and Js¢ com-
pared with corresponding unpassivated reference cells, which
can be explained by an improvement in rear surface passivation
and optical confinement, respectively. However, in both cases,
the point contacting grids are only suboptimized as can be seen
from an increase in series resistance (Ry) compared with the
unpassivated reference cells.

In this paper, rear-surface-passivated CIGS solar cells with
well-controlled grids of nanosized local rear point contacts
are established and studied. First, an e-beam lithography pro-
cess has been developed to generate well-controlled grids of
nanosized point openings in AlpOs passivation layers. Next,
this point-opened Al O3 rear surface passivation layer is inte-
grated in ultrathin CIGS solar cells to assess its surface passi-
vation, rear internal reflection (R;), and contacting properties.
Finally, the potential of this advanced rear contacting structure
in high-efficiency CIGS solar cells with thick absorber layers is
modeled.

II. EXPERIMENTAL RESULTS

The focus of this experimental section is on the forma-
tion of well-controlled grids of nanosized point openings in
Al,O3 passivation layers by use of electron beam lithogra-
phy. Before the patterning process, a 420-nm-thick Polymethyl
Methacrylate (PMMA) resist is deposited on soda lime glass
(SLG)/Mo/Al; O3 substrates. First, this resist is exposed in
a Vistec EBPG 5200 e-beam lithography system at 100 kV.
Each point contact is exposed as a single dot resulting about
460 nm x 220 nm. An array of 40 x 20 mm? of such dots
with reproducible dot shape and 2-pm spacing could be pro-
duced in 5.5 h. Then, this resist is developed at room tem-
perature by spray of pure methylisobutylketone (MIBK) for
40 s, using isopropanol as a stopper. Opening of the AlyO3
layer is done by reactive ion etching (SPTS ICP), where
Mo is etched at 60.8 nm/min, Al,O3 at 96.4 nm/min, and
PMMA at 297.6 nm/min. Finally, the PMMA resist is removed
by acetone.

The established rear surface passivation structures are in-
tegrated into SLG/Mo/Als O3/CIGS/CdS/i-ZnO/ZnO:Al/MgF,
solar cell devices with ultrathin (240 nm) CIGS absorber layers
([Cu]/([Ga] + [In]) = 0.80 to 0.85 and ungraded [Ga]/([Ga] +
[In]) = 0.30). These ungraded CIGS absorbers with uniform
low Ga distribution are favored to assess rear surface passivation,
because of 1) their high reproducibility, 2) their characteristic
high-minority carrier diffusion length, and 3) to exclude com-
plementary rear surface passivation effects (e.g., Ga-grading);
a detailed description of the applied cell processing steps can
be found in [8], [9], [12], and [13] and a summary is given in
Table I. Note that compared with [8], [9], [12], and [13], minor
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TABLE I
OVERVIEW OF ALL STEPS REQUIRED TO FABRICATE ALy O3 REAR-SURFACE-
PASSIVATED CIGS SOLAR CELLS WITH WELL-CONTROLLED GRIDS
OF NANOSIZED LOCAL POINT CONTACTS

Description

1 Glass cleaning

2 Mo rear contact sputtering

3 Al, O3 passivation layer deposition

4 Creation of openings in this layer by e-beam litho
5 NaF evaporation

6 Ultra-thin (240 nm) CIGS absorber co-evaporation
7 CBD CdS buffer deposition

8 (i-)ZnO(:Al) window sputtering

9 Ni/Al/Ni front contact evaporation

10 0.5 cm? solar cell scribing

11 MgF, anti reflection coating

The unpassivated reference cells have the same processing sequence, but
without steps 3 and 4.

changes have been made to the substrate heating arrangement
of the coevaporation system.

Light J-V and external quantum efficiency (EQE) measure-
ments, scanning electron microscopy with energy dispersive
X-ray spectroscopy analysis (SEM-EDX), and the solar cell ca-
pacitance simulator (SCAPS 3.2) modeling are performed as
described elsewhere [7], [12], [17], [18].

III. RESULTS AND DISCUSSION
A. Development of Point-Opened Aly O3 Passivation Layers

The applied e-beam lithography process successfully gen-
erates well-ordered grids of elliptically shaped nanosized point
openings in the Al, O3 passivation layers. Fig. 1 displays various
pictures of an SLG/Mo/Al, O3 (10 nm) sample after the e-beam
lithography process: a large-scale optical microscopy image [top
view, Fig. 1(a)] shows the long-range regular geometry of the
pattern with a narrow dispersion of sizes, and a tapping mode
atomic force microscopy (AFM) image [see Fig. 1(b)] shows the
elliptical shape of the openings and the regular 2-pm spacing.
The corresponding height profile obtained along the indicated
line in Fig. 1(b) is depicted in Fig. 1(c); from equivalent analysis
of several samples, the depth of these holes is determined to be
15 £+ 5 nm, thus indicating a slight overetching into the Mo
layer. Furthermore, the same sample is analyzed by SEM-EDX
and the Mo M, Al K, and O K images are shown in Fig. 1(d). In
addition, this picture shows that a grid of well-opened holes is
generated in the passivation layer after the e-beam lithography
process.

B. Integration Into Ultrathin Cu(In,Ga)Ses Solar Cells

Introduction of this well-controlled nanosized point-opened
Al, O3 rear surface passivation layer in ultrathin CIGS solar cells
leads to an increase in Vo ¢, Jsc, and even fill factor (FF), thanks
to an improvement in rear surface passivation and rear internal
reflection. Table II gives an overview of average cell character-
ization results of unpassivated reference CIGS solar cells and
Aly O3 rear-surface-passivated cells with well-controlled grids
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Fig. 1. SLG/Mo/Al; O3 (10 nm) sample after the e-beam lithography process.
(a) (Top-view) Optical microscopy image, (b) tapping mode atomic force mi-
croscopy topography image, (c) corresponding height profile obtained along
the indicated line, and (d) scanning electron microscopy with energy dispersive
X-ray spectroscopy analysis images for Mo, Al, and O.

TABLE II
AVERAGE CELL CHARACTERIZATION RESULTS (AM1.5 G) FOR 0.5 cm?
UNPASSIVATED REFERENCE CIGS SOLAR CELLS AND Aly O3 REAR-
SURFACE-PASSIVATED CELLS WITH WELL-CONTROLLED GRIDS
OF NANOSIZED LOCAL REAR POINT CONTACTS

Description #eells Voc (mV) Jsc (mA/em?) FF (%) Eff. (%)
Unpass. ref. 4 602 +6 19.6 £0.1 67.6 £2.9 8.0+0.3
Al O3 rear pass. 4 659 +5 23.3 £0.5 770 £0.6  11.8 £0.3

GGl is depth-uniform and equals 30%.
The CIGS absorber layer thickness is 240 nm.

of nanosized local rear point contacts; both cell types have the
same absorber layer thickness of 240 nm only. A cross-sectional

IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 4, NO. 6, NOVEMBER 2014

i-ZnO:Al

n-CdS

p-CIGS

Local point

contact Al,O, pafs. layer

A Y

N

Fig. 2. Transmission electron microscopy cross-section image of an Al O3
rear-surface-passivated cell with a well-controlled grid of nanosized local rear
point contacts.
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Fig. 3. Representative (a) J-V and (b) external quantum efficiency curves for
Aly O3 rear-surface-passivated CIGS solar cells with well-controlled grids of
nanosized local rear point contacts and corresponding unpassivated reference
cells. GGI is depth-uniform and equals 30%; the CIGS absorber layer thickness
is 240 nm. In (a), the dark saturation current density, ideality factor, series
resistance, and shunt conductance are presented, as estimated from the one-
diode model [19].

TEM picture of such an Al,O3-rear-passivated cell is shown in
Fig. 2, which clearly displays the Al,O3 passivation layer (25—
30 nm) and a local point contact (also showing an unchanged
Mo layer after etching). Additionally, Fig. 3 shows representa-
tive J-V and EQE curves for the rear-passivated cells and corre-
sponding unpassivated reference cells of Table II. In Fig. 3(a),
also the dark saturation current density (.Jy), ideality factor (n),
Ry, and shunt conductance (Gg,) are given, as estimated from
the one-diode model [19]. Comparing the rear-passivated cell
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Fig. 4. Simulated open-circuit voltage as a function of surface recombination
velocity applying a SCAPS model of high-efficiency CIGS solar cells made at
the Angstrém Solar Center (without KF post-deposition treatment). This SCAPS
model has been described in [7].

results with the corresponding reference cell results, there is 1)
a clear increase in Voc (457 mV), mainly due to significant
improvement in rear surface passivation as indicated by a clear
decrease in Jy (see also [8] for a discussion based on SCAPS
modeling); 2) a clear increase in Jg¢ (43.8 mA/cm?), mainly
due to significant improvement in rear internal reflection as in-
dicated by a clear increase in EQE for all wavelengths >550 nm
[see Fig. 3(b)]; see also [8], [9], and [12] for detailed R;, calcu-
lations); and 3) a clear increase in FF (4+9.5% (abs.)), as the R,
is the same for both cells while the rear-passivated cells show
an increased V¢ and decreased n and Gy, . Hence, the aver-
age efficiency of the rear-passivated cells is 3.9% (abs.) higher
than the efficiency of the corresponding unpassivated reference
cells. Note that initial results indicate that the larger Gy, for
unpassivated thin CIGS solar cells is caused by light-dependent
shunt-like behavior, but a discussion is left out of this paper as
its investigation is still ongoing.

C. Modeling of Thick Cu(In,Ga)Ses Solar Cells

SCAPS simulations indicate that the rear surface passivation
approach also has potential to considerably increase Vo of
high-efficiency CIGS solar cells (with standard absorber layer
thickness), due to their inherent long diffusion lengths. The
best CIGS solar cell (without KF posttreatment) made at the
;\ngstrém Solar Center, has Vo 693 mV, Jsc 36.3 mA/cm?, FF
76.8%, and thus an efficiency of 19.3%, as independently con-
firmed by FhG-ISE CalLab. These cells have been extensively
modeled using SCAPS [7], and in Fig. 4 this model is used to see
the effect of decreased rear surface recombination velocity (.5)
on Vo c. The figure indicates that up to 50 mV increase in V¢
can be expected if 5}, is between 100 and 1000 cm/s. This large
Vo enhancement for rear-passivated high-efficiency CIGS so-
lar cells is to be expected since these cells should—according to
the modeling—have long diffusion lengths. Therefore, reducing
recombination at the rear will have a substantial impact. Note
that 1) for the presented rear surface passivation approach .S,
below 1000 cm/s is considered to be viable, as already discussed
in [8], and 2) the CIGS thickness has not been fine tuned in this
modeling, which could increase V¢ even further.
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IV. CONCLUSION AND OUTLOOK

In summary, Al, O3 rear-surface-passivated CIGS solar cells
with well-controlled grids of nanosized local rear point contacts
are developed using e-beam lithography technology. Using thin
CIGS absorber layers, these cells show a clear increase in all
cell characteristics compared with corresponding unpassivated
reference cells. The most important advances are a clear in-
crease in V¢ due to improved rear surface passivation, a clear
increase in Jgc due to enhanced rear internal reflection, and a
clear increase in FF due to the higher Vi and more ideal cell
behavior. Additionally, SCAPS has been used to model the im-
pact of this rear surface passivation approach on high-efficiency
solar cells with standard absorber layer thickness. Also in this
case, the modeling results indicate a significant increase in V¢
for the rear-passivated high-efficiency CIGS solar cells, due to
their inherent long diffusion lengths.

In the future, this established rear surface passivation ap-
proach will be used to 1) optimize the size of and distance be-
tween the local point openings and 2) fabricate solar cell devices
to study current transport in the absorber layers. Additionally, 3)
integration of the rear surface passivation structure in tangible
high-efficiency solar cells is ongoing.
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