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Abstract

While empirical Bayes methods thrive in the presence of the hundreds or thousands of simultaneous

hypothesis tests in genomics and other large-scale applications, significance tests and confidence intervals

are considered more appropriate for small numbers of simultaneously tested hypotheses. Indeed, for fewer

hypotheses or, more generally, fewer populations, there is more uncertainty in empirical Bayes methods of

estimating the prior distribution. Confidence distributions have been used to propagate the uncertainty

in the prior to empirical Bayes inference about a parameter, but only by combining a Bayesian posterior

distribution with a confidence distribution, a probability distribution that encodes significance tests and

confidence intervals. Combining distributions of both types has also been used to combine empirical

Bayes methods and confidence intervals for estimating a parameter of interest. To clarify the founda-

tional status of such combinations, the concept of an evidential model is proposed. In the framework

of evidential models, both Bayesian posterior distributions and confidence distributions are degenerate

special cases of evidential support distributions. Evidential support distributions, by quantifying the suf-

ficiency of the data as evidence, leverage the strengths of Bayesian posterior distributions and confidence

distributions for cases in which each type performs well and for cases benefiting from the combination

of both. Evidential support distributions also address problems of bioequivalence, bounded parameters,

and the lack of a unique confidence distribution.

Keywords: approximate confidence distribution; bioequivalence; bounded parameter; empirical Bayes

methods; epistemic probability; evidential model; evidential support distribution; fiducial model averag-

ing



1 Introduction

1.1 Empirical Bayes methods, confidence methods, and their evidential unifi-

cation

Since the beginning of the century, the need to interpret genomics data has made unprecedented demands

for innovations in multiple testing, leading to a resurgence of interest in empirical Bayes methods (e.g., Efron

et al., 2001; Smyth, 2004; Qiu et al., 2005b,a; Scheid and Spang, 2005; Pan et al., 2008; Hong et al., 2009;

Hwang et al., 2009; Ghosh, 2009; Muralidharan, 2010; Efron, 2015; Jiang and Yu, 2017; Karimnezhad and

Bickel, 2018). On another front, to take back ground lost to fuller Bayesianism over the last few decades,

a new frequentist offensive challenges its exclusive claim to posterior distributions. The long-discredited

fiducial argument of Fisher has returned as various theories of confidence distributions (e.g., Schweder and

Hjort, 2002; Singh et al., 2005; Polansky, 2007; Singh et al., 2007; Tian et al., 2011; Bityukov et al., 2011;

Kim and Lindsay, 2011; Taraldsen and Lindqvist, 2018) and related priorless posterior distributions of the

parameter of interest (e.g., Hannig et al., 2006; Hannig, 2009; Xiong and Mu, 2009; Gibson et al., 2011; Wang

et al., 2012; Zhao et al., 2012; Balch, 2012; Martin and Liu, 2013; Bickel and Padilla, 2014; Bowater, 2017).

Efron (2010), Nadarajah et al. (2015), and Schweder and Hjort (2016) provide informative expositions.

Unfortunately, neither comeback of frequentist ideas can subsume the other as a general approach to

statistical inference. Without access to Bayes’s theorem, pure confidence or fiducial theory falters in the

presence of data relevant to so many hypotheses that a prior distribution can be reliably estimated (Robbins,

1985). On the other hand, traditional empirical Bayes methods only apply in the presence of such large-scale

data sets.

Example 1. Rubin (1981) lists estimated test-score increase due to a training program for each of 8 edu-

cational sites involved in the study. The standard error of each estimate is also given, leading to a z score

of z1 = 1.91 for the first site. Thus, assuming z1 was drawn from N(µ1, 1) with the test-score increase µ1

unknown and testing the null hypothesis H0 : µ1 = 0, the p value is greater than 0.05, and 0 would fall

outside of the symmetric 95% confidence interval for µ1. However, if it were known that µ1 ∈ {0, 2}, then
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the Bayes factor would favor the alternative hypothesis H1 : µ1 = 2 over the null hypothesis:

f0 (1.91)

f1 (1.91)
=
e−(1.91−0)2/2

e−(1.91−2)2/2
= 0.16,

where f0 and f1 are the probability density functions under H0 and H1. In that case, the inference about the

effect of the training program on the test score would depend on π (0), the prior probability that µ1 = 0. The

empirical Bayes method called Type II maximum likelihood (Good, 1966) calculates the posterior probability

that µ1 = 0, which is

π (0|z1) =
π (0) f0 (z1)

π (0) f0 (z1) + (1− π (0)) f1 (z1)
(1)

according to Bayes’s theorem, by replacing π (0) with its maximum likelihood estimate based on the data

from the m = 8 sites:

π̂m (0) = arg sup
π(0)∈[0,1]

m∏

i=1

π (0) f0 (zi) + (1− π (0)) f1 (zi) .

If the study only had the first m = 2 sites, then the estimated posterior probability that µ1 = 0 would be

π̂ (0|z1) = 1.6× 10−8, representing a posterior odds of 7.8 orders of magnitude favoring H1 over H0. That is

for all practical purposes certainty that µ1 = 2 rather than µ1 = 0 in spite of the unimpressive p value. That

enormous overstatement of the evidence against the null hypothesis results from neglecting the variance in

the estimated prior probability; the variance is considerable since data for only m = 2 sites were considered

available. N

In the multiple testing literature, the posterior probability in equation (1) is known as the local false

discovery rate (LFDR). Typical empirical Bayes LFDR estimates do not reflect the uncertainty in π (0), in

f0, or in f1 (Qiu et al., 2005b), motivating standard error estimates (Efron, 2007, §5) and confidence intervals

(Scheid and Spang, 2005) for the LFDR.

Unfortunately, LFDR confidence intervals do not in themselves specify how to merge the uncertainty

they convey about the LFDR with the uncertainty the LFDR conveys about H0. To clearly assess how

much support H0 has from the evidence, the confidence intervals of the LFDR must somehow propagate

uncertainty about the LFDR to uncertainty about whether the hypothesis is true. Confidence distributions

can fill that gap in empirical Bayes theory.
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Figure 1: The estimated local false discovery rate at the first site (left plot) and the estimated posterior
odds that there is an effect at the first site (right plot), with each estimate made on the basis of the first
m sites, as functions of m, the number of sites. The gray dots in both plots are plug-in estimates, and the
black dots are expected values of the LFDR (left plot) and the corresponding posterior odds (right plot).
The estimation method is specified in Example 11.

Example 2. Returning to Example 1, the uncertainty in the prior probability can be accounted for by

considering confidence intervals of that unknown probability at all levels of confidence. That induces a con-

fidence distribution of prior probabilities and thus a distribution of posterior probabilities. Again assuming

a study of 2 sites, the expectation value of the LFDR, a Bayesian posterior probability, is a non-Bayesian

posterior probability that turns out to slightly favor the alternative hypothesis:

Prob (µ1 = 0; z1) = E (π (0|z1)) = 8.4%. (2)

That conclusion reflects all sources of uncertainty present according to the available evidence as encoded

in the data, the model, and the confidence interval method. The use of confidence intervals alone or Type

II maximum likelihood alone would have lead to very different and opposite conclusions (Example 1). As

the number m of sites increases, the plug-in estimate tends to become closer to the expected LFDR (Figure

1), suggesting that the need to propagate the uncertainty in estimating the prior lessens as m increases.

That trend mirrors the success of empirical Bayes methods for large-m data while indicating the need to

supplement them with confidence distributions for small-m data. N

Example 2’s expectation value is a non-Bayesian posterior probability equal to a Bayesian posterior

probability integrated with respect to a confidence distribution. The point estimation or interval estimation

3



of a parameter of interest may instead or additionally call for the integration of a confidence distribution

with respect to a Bayesian posterior distribution.

The standing taboo against both integrations stems largely from the fact that they lead to distributions

on parameter space that in general are neither Bayesian posterior distributions nor confidence distributions.

In fact, while confidence has a clear frequentist interpretation and Bayesian posterior probability has a clear

interpretation as a limit of relative frequency when the prior distribution is essentially known from data, it

is not clear how to interpret one type of probability integrated with respect to the other type. Subjective

probability generalizes limits of relative frequencies but not confidence distributions, for they do not in

general agree with Bayes’s theorem unless the prior distribution is allowed to depend on the data.

The solution calls for a unified theory of marginalizing confidence distributions and Bayesian posterior

distributions with respect to each other. Ideally, the theory would not only reduce to confidence theory

and empirical Bayes estimation when each is appropriate but would also guide the analysis of data falling

between those two extremes.

Toward that end, this paper develops the frequentist-Bayesian framework of Hill (1990) by defining the

probability of a hypothesis about a parameter value as its evidential support, the extent to which a body of

evidence supports the hypothesis. With the body of evidence including the model and any confidence region

methods as well as the observed data, the distribution of evidential support generalizes confidence distribu-

tions and Bayesian posterior distributions. Leveraging the properties they hold as probability distributions

leads to other distributions of evidential support. As a consequence, the class of evidential support distribu-

tions, unlike the class of confidence distributions, is closed to integration with respect to other distributions

of the class.

1.2 Overview and applications

The modeling framework for evidential support distributions appears in Section 2, which defines the hier-

archical evidential model as a generalization of the frequentist model and the Bayesian model. Section 3

presents settings that call for frequentist models in conjunction with Bayesian models.

Based on an evidential model, the evidential support distribution, defined in Section 4, both unifies

confidence distributions and empirical Bayes distributions and provides an interpretation of the resulting

probability distributions on parameter space. Examples in Section 5 are divided between those using condi-
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tional confidence and those using hierarchical evidential models. Section 5.1 illustrates conditional confidence

with applications to bioequivalence and parameter restrictions without priors. Section 5.2 highlights such

applications of hierarchical evidential models as these:

• An explanation of how the evidential support for a null hypothesis is a generalization of the E (π (0|z1))

mentioned in Example 2

• Estimates based on evidential support distributions that reduce to confidence intervals and other

confidence regions when the null hypothesis has 0 prior probability

• The propagation of uncertainty involved in the lack of a unique confidence distribution given a para-

metric family of sampling distributions

The sense in which evidential support qualifies as a measure of evidence is discussed in Section 6. Specialized

remarks on confidence and epistemic probability are postponed until Section 7.

2 Evidential models: frequentist, Bayesian, and hierarchical

Bayesian models (§2.1) and confidence models (§2.2) are the building blocks of hierarchical evidential models

(§2.3).

2.1 Frequentist models, Bayesian models, and Bayesian evidential models

Given a basic parameter θ and a nonbasic parameter γ in sets Θ and Γ, let fθ,γ denote a probability density

function on a sample space X . The terms “basic parameter” and “nonbasic parameter” replace the usual

terms “parameter of interest” and “nuisance parameter” in order to define confidence intervals and other

confidence regions for θ even when it is not the target of inference (Bickel and Padilla, 2014; Bickel, 2018a).

A frequentist model is a family {fθ,γ : θ ∈ Θ, γ ∈ Γ}, understood to be replaced by {fθ : θ ∈ Θ} when

there is no nonbasic parameter (Hill, 1990; Bickel, 2018a). In the context of a frequentist model, statements

involving θ and γ hold for each θ ∈ Θ and, if there is a nonbasic parameter, for each γ ∈ Γ.

With a prior probability density function π on Θ×Γ, a pair (π, {fθ,γ : θ ∈ Θ, γ ∈ Γ}) is called a Bayesian

model (Hill, 1990; Bickel, 2018a). The prior joint density of (θ, γ) is then π (θ, γ), and the prior marginal

density of θ is π (θ) = Eγ (π (θ, γ)), which is
∫
π (θ, γ) dγ if π is relative to the Lebesgue measure. By
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Bayes’s theorem, the posterior probability densities for an observed sample x are π (θ, γ|x) ∝ π (θ, γ) fθ,γ (x)

and π (θ|x) = Eγ (π (θ, γ|x)). The latter quantity defines the Bayesian evidential model as a function

(θ, x) 7→ π (θ|x).

Hill (1990) defined a statistical model to be a set of Bayesian models defined with respect to the same

parameter set, noting that it reduces to the case of a Bayesian model if the statistical model has a single

member and to the case of a frequentist model if each member of the statistical model has the same frequentist

model {fθ,γ : θ ∈ Θ, γ ∈ Γ} but a different Dirac delta function δθ,γ, defined to have all of its probability

mass at a parameter value (θ, γ) ∈ Θ× Γ. In the latter case, the statistical model is

{(δθ′,γ′ , {fθ,γ : θ ∈ Θ, γ ∈ Γ}) : θ′ ∈ Θ, γ′ ∈ Γ} .

Hill (1990) argued that other cases call for empirical Bayes methods such as those that estimate a Bayesian

model as a member of the statistical model by estimating the prior distribution.

2.2 Confidence curves, confidence densities, and confidence models

Under a frequentist model {fθ,γ : θ ∈ Θ, γ ∈ Γ}, a method of generating confidence intervals or other confi-

dence sets is concisely represented as a function called a “confidence curve.” Following Birnbaum (1961) and

Blaker (2000), an exact confidence curve is a function (θ, x) 7→ p (θ;x) such that p (θ;X) is uniform on [0, 1],

where X is drawn from fθ,γ , that is,

ProbX∼fθ,γ (p (θ;X) < α) = α (3)

for every α between 0 and 1. The function (θ, x) 7→ p (θ;x) is called an approximate confidence curve if

equation (3) holds up to some order of approximation (Bickel, 2018b; cf. Schweder and Hjort, 2016, p. 432).

It follows that p (θ0;x) is an observed p value testing H0 : θ = θ0 for any null hypothesis parameter value

θ0 ∈ Θ and observed sample x ∈ X . The curve gets its name from the fact that its inverse, p−1 (•;X),

evaluated at 1−α for an α between 0 and 1, is an exact or approximate 100% (1− α) confidence set, having
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exactly or approximately 100% (1− α) frequentist coverage:

ProbX∼fθ,γ

(
p−1 (1− α;X) ∋ θ

)
= 1− α.

In the special case that θ is a scalar, p−1 (1− α;X) is a 100% (1− α) confidence interval. Since every exact

confidence curve is a degenerate case of an approximate confidence curve, the latter term will be used to

encompass both concepts.

Let (θ;x) 7→ c (θ;x) denote a function such that c (•;x) is a probability density function on Θ for each

x ∈ X . An example in a Bayesian model is the posterior density function π (•|x) discussed in Section 2.1,

but c (•;x) may be defined in a frequentist model without any prior distribution. If

Probϑ∼c(•;x)

(
ϑ ∈ p−1 (1− α;x)

)
= 1− α (4)

for all α between 0 and 1 given an observed sample x ∈ X , then c (•;x) is an approximate confidence

density function corresponding to the approximate confidence curve (θ, x) 7→ p (θ;x) and the observation x

(cf. Efron, 1993). According to equation (4), c (•;x) is the law of the random variable ϑ. An approximate

confidence distribution corresponding to the approximate confidence curve p (•; •) and the observation x is

a probability measure that admits c (•;x) as an approximate confidence density function (Bickel, 2018b).

Thus, every posterior distribution defined by applying Bayes’s theorem to a probability matching prior is an

example of an approximate confidence distribution (Bickel, 2012c, 2018b).

Since a frequentist model does not uniquely specify a procedure of generating confidence sets, a single fre-

quentist model in general corresponds to multiple approximate confidence curves. (Pivotal models (Barnard,

1980, 1995, 1996) and structural models (Fraser, 1968, 1996) differ from frequentist models in that respect.)

In addition, unless θ is a scalar (Bickel, 2012c), a single approximate confidence curve in general corresponds

to multiple approximate confidence distributions. That is because equation (4) constrains c (•;x) without

fully determining it in the case that θ is a vector (Bickel and Padilla, 2014).

Thus, in order to achieve the uniqueness of a Bayesian evidential model π (•|•), a frequentist eviden-

tial model or confidence model corresponding to an approximate confidence curve p (•; •) is defined as the

function (θ;x) 7→ c (θ;x) such that, for every x ∈ X , c (•;x) is an approximate confidence density function

7



corresponding to p (•; •). For example, models that specify matching prior distributions (e.g., Helland, 2004,

2009) qualify as confidence models since they specify confidence methods in addition to frequentist models.

2.3 Evidential models and hierarchical evidential models

An evidential model on Θ×X is a function (θ, x) 7→ Π(θ;x) that is either a frequentist evidential model on

Θ × X or a Bayesian evidential model on Θ × X . Consider the case in which Θ is a set of other evidential

models. Then any parameter value θ ∈ Θ would be not only an index for fθ,γ but also another evidential

model. Such an evidential model is a child of Π(•; •), which is the parent of the child and a hierarchical

evidential model. The descendants of Π(•; •) are its children, its children’s children, etc.; the set of all

descendants of Π = Π(•; •) is denoted by D (Π).

3 Examples of hierarchical evidential models

These examples indicate several applications of hierarchical evidential models.

Example 3. In the simplest type of empirical Bayes estimation, an unknown prior distribution of some

parameter θi, describing the ith of a finite number of populations, is estimated from a data set x consisting

of multiple samples x1, x2, . . . Each xi is considered as if drawn from a distribution fθi representing the ith

population, where θi is in turn drawn from the unknown prior, as in Example 1.

Since point estimates of the hyperparameter φ labeling the unknown prior πφ fail to account for estimation

uncertainty, Laird and Louis (1987) represented that uncertainty by a distribution of bootstrap estimates

of φ derived from repeatedly resampling the data with replacement. That bootstrap distribution may be

interpreted as approximating a confidence distribution for φ since bootstrap distributions are asymptotic

confidence distributions (Singh et al., 2007).

More generally, for each φ in some hyperparameter space Φ, a Bayesian evidential model is (θ, x) 7→

πφ (θ|x), and the confidence model is (φ;x) 7→ c (φ;x) for some approximate confidence density function

c (•;x), not necessarily approximated by bootstrapping. That confidence model is hierarchical since each φ

is an index for a Bayesian evidential model. Example 2 is a special case. N

The multiple-population data structure of Example 3 and other empirical Bayes methods is not required
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for a confidence model to be hierarchical.

Example 4. Consider a confidence model (M , x) 7→ c (M ;x) on M×X , where M is a set of real numbers

that index evidential models on Θ. The evidential model c (•; •) is hierarchical since every M ∈ M refers to

another evidential model, either another confidence model or a Bayesian evidential model. N

While Examples 3-4 put a confidence model over other evidential models, Examples 5-6 instead put

Bayesian evidential models over other evidential models.

Example 5. Suppose confidence intervals for a parameter θi like that of Example 3 would be appropriate

if it were known that θi 6= 0 but that there is an assumed or reliably estimated probability π (0) that

θi = 0. That happens, for example, in genomics applications involving thousands of hypothesis tests, each

corresponding to a sample from a different population (Bickel, 2012b). Bayes’s theorem leads to the local

false discovery rate, the posterior probability that θ = 0:

π (0|xi) =
π (0) f0 (xi)

π (0) f0 (xi) + π (1) f1 (xi)
, (5)

for xi, the sample from the ith population, where π (1) = 1−π (0) and f0 (xi) and f1 (xi) are the probability

densities of the observation xi under θ = 0 and θ 6= 0, respectively. In that setting, data corresponding

to the multiple hypothesis tests are used to estimate π (0), f1, and sometimes even f0 (Efron, 2010). (The

uncertainty involved in such estimation is ignored here for simplicity but may be represented by following

Example 3; see Example 12.)

This example involves three evidential models. First, there is the Bayesian evidential model

(M i, xi) 7→ π (M i |xi) =





π (0|xi) if M i = 0

1− π (0|xi) if M i = 1

, (6)

where the basic parameter space is M = {0, 1} and M i ∈ M. Second, M i = 1 refers to the frequentist

evidential model (θi;xi) 7→ c1 (θi;xi), where c1 (•;xi) is the approximate confidence density function corre-

sponding to the confidence intervals that would be appropriate if it were known that θi 6= 0. Third, M i = 0

points to another Bayesian evidential model, (θi, xi) 7→ δ (θi), where δ is the Dirac delta function, for under

that model, the prior density function has all its mass at θi = 0, and likewise for the posterior density
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function defined by Bayes’s theorem. Model (6) is hierarchical since each value of M i is an index for another

evidential model.

The hierarchical model generates point and interval estimates not only for data drawn from multiple

populations, corresponding to multiple hypothesis tests, but also for data drawn from a single population,

corresponding to a single hypothesis test (Bickel, 2012b). For an instance of the latter case, assume the

Bayes factor f0 (x1) /f1 (x1) is equal to a lower bound B0 (x1) that is a function of a p value according to

one of the methods reviewed by (Held and Ott, 2018). Then the local false discovery rate is

π (0|x1) =
π (0)B0 (x1)

π (0)B0 (x1) + π (1)
=

1

1 + π(1)
π(0)B0(x1)

,

where π (0) is assumed to be known, perhaps π (0) = 1/2 by symmetry or π (0) = 10/11, as suggested by

meta-analyses (Benjamin et al., 2017). For point estimation of θ, its corresponding expected value according

to the evidential support distribution is

E (ϑ) = Prob (ϑ = 0)E (ϑ|ϑ = 0) + Prob (ϑ 6= 0)E (ϑ|ϑ 6= 0) = 0 + (1− π (0|x1))

∫
θ1c1 (θ1;xi) dθ1.

N

The next example has less of an empirical Bayes flavor.

Example 6. It often occurs in applications that more than one reasonable procedure for generating confi-

dence sets corresponds to the same frequentist model. In such settings, the confidence model is not unique

even though a single frequentist model is assumed. Let M denote a finite set of confidence models that

correspond to that frequentist model. The prior probability mass function π on M reflects the weight given

to each confidence method and thus to its confidence model. If there is no known reason to choose one rea-

sonable confidence method over the other, then π assigns equal prior probability to each confidence model

M ∈ M. In general, because the likelihood function of M is constant on M, the relevant Bayesian evidential

model is (M , x) 7→ π (M |x) = π (M ). That evidential model is hierarchical since every M ∈ M is another

evidential model, in this case a frequentist evidential model. N
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4 How much support a hypothesis has from the evidence

4.1 The evidence

A pair (x,Π) is a body of evidence or simply the evidence if x ∈ X is an observed sample and Π = Π(•; •) is

an evidential model on Θ×X . It follows that a body of evidence has more information than what Birnbaum

(1962) called “an instance of statistical evidence,” a pair consisting of a frequentist model and an observed

sample. Evans et al. (1986) point out that a model with more information than a frequentist model may

falsify the premises from which Birnbaum (1962) derived the likelihood principle. Nevertheless, Bayesian

models with priors not depending on their data distributions satisfy the likelihood principle, as do certain

confidence models to the extent that their confidence sets and p values have little dependence on the choice

of a confidence curve in the sense of Pierce and Peters (1994).

How much does the body of evidence support the inference that the data-generating value of θ is in some

subset H of the parameter space? In other words, what is the degree of evidential support for the hypothesis

that θ ∈ H? That is answered in the rest of this section by defining the concept of an evidential support

distribution.

4.2 Conditional evidential support distributions given the evidence

To say a hypothesis “80% . . . supported by the data” is to leave 20% of the support for the statement

that the hypothesis is false (Bickel, 2011). That way of speaking is captured by formalizing the evidential

support for a hypothesis as a probability. More generally, the support from a body of evidence is probability

mass with some distribution across the parameter set Θ. Each measurable subset of Θ then corresponds to

a hypothesis of some amount of the support from the evidence.

A probability density function θ 7→ s (θ|x,Π) is a conditional evidential support density function given a

body of evidence (x,Π) if s (•|x,Π) = Π (•|x) in the case that Π(•; •) is a Bayesian evidential model; in the

case that Π(•; •) is a frequentist evidential model,

Probϑ∼s(•|x,Π) (ϑ ∈ H) = η
(
Probϑ∼Π(•;x) (ϑ ∈ H)

)
(7)

for every measurable H ⊂ Θ, where η is a function on [0, 1] with values in [0, 1] that satisfies the condition
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of universal calibration, that the same η applies for every frequentist evidential model.

The condition equating evidential support with posterior probability in the case of a Bayesian model

formalizes the principle that a hypothesis is supported by the data and the model to the extent that they

confer a high posterior probability to the hypothesis if the Bayesian model, including the prior, were known.

It defines what it means for a hypothesis to have a certain amount of support from the body of evidence.

The conditions governing the case of the frequentist evidential model reflect the intuition that the amount

of evidential support the hypothesis that θ lies in a 100% (1− α) confidence interval is a fixed function of

the confidence level 100% (1− α). That intuition is reasonable when the confidence procedure is enough to

assess the support from the evidence that includes x as the observation.

Theorem 1. If a probability density function θ 7→ s (θ|x,Π) is a conditional evidential support density

function given a body of evidence (x,Π), then s (•|x,Π) = Π (•;x).

Proof. Since the claim is given in the definition in the case that Π(•; •) is a Bayesian evidential model, it

suffices to prove it for the case that Π(•; •) is a frequentist evidential model. Considering the Θ to be the

real line, let P denote a finite partition of Θ such that each member of the partition has equal probability

according to Π(•;x). Then, since the total probability of Π(•;x) is 1,

Probϑ∼Π(•;x) (ϑ ∈ H) = 1/ |P|

for all H ∈ P. Because the total probability of s (•|x,Π) must also be 1,

1/ |P| = Probϑ∼s(•|x,Π) (ϑ ∈ H) = η
(
Probϑ∼Π(•;x) (ϑ ∈ H)

)

for all H ∈ P, as per equation (7). Since that holds for finite partitions of arbitrarily small 1/ |P|, it follows

that η (1− α) = 1 − α for all α ∈ [0, 1]. That can only be true if s (•|x,Π) = Π (•;x). According to the

condition of universal calibration, the same function η applies to all other frequentist evidential models,

which implies that s (•|x,Π) = Π (•;x) holds in general.

While the result pertains to support from a body of evidence, it has consequences for epistemic probability

(Remark 1). Section 6 discusses alternative ways to quantify the strength of evidence.
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4.3 Evidential support distributions given the evidence

Let ψ denote a parameter in a set Ψ such that each basic parameter of an evidential model Π(•; •) and the

basic parameters of its descendants are subparameters of ψ. A probability density function ψ 7→ s (ψ|x) is

a basic evidential support density function with respect to a body of evidence (x,Π) if it is the probability

density function on Ψ of the basic evidential support distribution, the probability measure extended by

s (•;x,Π) as a marginal probability density function and by each every conditional evidential support density

function s (•|x,Π′) for all Π′ ∈ D (Π), where the extension is such that each s (•|x,Π′) is a version of the

conditional probability density function conditional on the event that the random variable of its parent’s

conditional evidential support density function is equal to Π′. Further, all probability measures derived from

the basic evidential support distribution, including conditional probability distributions, laws of measurable

functions, and the basic evidential support distribution, are evidential support distributions. Their probability

density functions are called evidential support density functions.

5 Examples of evidential support distributions

These examples illustrate how to apply the definition of an evidential support distribution (§4.3) given an

observation x.

5.1 Conditional confidence distribution given a subset of the parameter space

Before defining conditional confidence, it is motivated by example.

Example 7. Regulatory agencies often need to assess how much the evidence supports the hypothesis

that a parameter value θ lies in θ′ ± ∆ for some θ′ ∈ R and ∆ > 0; a value common in bioequivalence

studies is ∆ = ln (125%) with exp (θ′) as the efficacy of a medical treatment. For the purpose of deciding

whether to approve a new treatment or a genetically modified crop, estimates provided by companies with

obvious conflicts of interest must be as objective as possible. The standard frequentist framework in effect

enables conservative tests of the null hypotheses Hequivalent
0 : θ ∈ [θ′ −∆, θ′ +∆], H lower

0 : θ < θ′ −∆, and

Hhigher
0 : θ > θ′ +∆ (Wellek, 2003).

To use the approximate confidence curve corresponding to those p values to quantify the evidential
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support for each of the three null hypotheses, consider the corresponding confidence density c (•; •) as the

frequentist evidential model and (x, c (•; •)) as the evidence. Thus, the evidential support density function

is s (•|x, c (•; •)) = c (•;x) according to Theorem 1. The integrals
∫ θ′−∆

−∞ c (θ;x) dθ,
∫ θ′+∆

θ′−∆ c (θ;x) dθ, and
∫∞

θ′+∆ c (θ;x) dθ are the evidential support probabilities of Hequivalent
0 , H lower

0 , and Hhigher
0 ; they are posterior

probabilities that do not require any prior distribution. Since c (•;x) is a probability density function on the

parameter space, regulators may also consider the evidential support for the hypothesis that the effect size

is high given that it is not equivalent:

Probϑ∼c(•;x) (ϑ > θ′ +∆|ϑ /∈ θ′ ±∆) =

∫ ∞

θ′+∆

c
(
θ| [θ′ −∆, θ′ +∆]

c
;x

)
dθ

c
(
θ| [θ′ −∆, θ′ +∆]

c
;x

)
=





0 if θ′ −∆ ≤ θ ≤ θ′ +∆

c(θ;x)

1−
∫

θ′+∆

θ′−∆
c(t;x)dt

if θ /∈ θ′ ±∆

,

where [θ′ −∆, θ′ +∆]
c

is the complement of θ′ ±∆. Singh et al. (2007) also compared the use of observed

confidence levels to conventional methods of bioequivalence. N

More generally, the conditional probability density function

c (θ|R;x) =
c ({θ} ∩ R;x)∫
R
c (θ;x) dθ

for a measurable restriction set R ∈ Θ may be called an approximate conditional confidence density function.

It qualifies as an evidential support density but not as an approximate confidence density. Conditional

confidence distributions provide prior-free solutions to restricted parameter problems such as the following

bounded parameter problem, in spite of Wilkinson (1977)’s dismissing such distributions as “Bayesian.”

Example 8. Let R denote a bounded interval known to contain the value of θ, as is often appropriate in

physics (Wang, 2007). The case of sampling a single observation from a normal distribution of unknown

mean θ and known unit variance captures the essential features of the problem without obscuring them

with a nuisance parameter and other complications (Fraser, 2011). In that case, if there were no parameter

restriction, then c (•;x) would be an exact confidence density function, the probability density function of
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N(x, 1), leading to

Probϑ∼c(•;x) (ϑ ≤ θ) =

∫ θ

−∞

c (t;x) dt = 1− F (x− θ) ,

for any real θ, where F is the standard normal CDF and x is the value of the observation. If a decay rate

or neutrino mass is of interest, then R = [0,∞[ and

Probϑ∼c(•;x) (ϑ ≤ θ|ϑ ≥ 0) =

∫ θ

−∞

c (t| [0,∞[ ;x) dt =

∫ θ

0
c (t;x) dt∫∞

0
c (t;x) dt

=
Probϑ∼c(•;x) (ϑ < θ)− Probϑ∼c(•;x) (ϑ < 0)

1− Probϑ∼c(•;x) (ϑ < 0)

=
F (x)− F (x− θ)

F (x)
= 1−

F (x− θ)

F (x)

for any θ ≥ 0.

Since Probϑ∼c(•;x) (ϑ = 0|ϑ ≥ 0) = Probϑ∼c(•;x) (ϑ ≤ 0|ϑ ≥ 0) = 1 − 1 = 0, the frequentist evidential

model ascribes zero restriction-conditional posterior probability to the boundary. In sharp contrast, the

observed confidence at θ = 0 is 1 − F (x) (Fraser, 2011), the single-sided p value with the null hypothesis

at the boundary. In an investment application with θ1 representing parameter bounded at 0, Schweder

and Hjort (2016, §14.4) calculated the observed confidence at the boundary to be 90.03% and concluded,

“We should be 90.03% confident that θ1 = 0.” The conditional confidence approach avoids the problems of

interpreting a p value as a posterior probability of a point null hypothesis, instead giving it zero non-Bayesian

posterior probability.

However, the case of a non-zero posterior probability at a point in hypothesis space will arise as an eviden-

tial support probability under a Bayesian evidential model that assigns the point non-zero prior probability

(Example 11 of Section 5.2). That would better represent the evidence when θ = 0 is a viable possibility,

as when θ is a radioactive decay rate, the mass of a neutrino (Mandelkern, 2002), an effect of extra-sensory

perception (Bernardo, 2011), or the θ1 in (Schweder and Hjort, 2016, §14.4). If, as is typical, the non-zero

prior probability is unknown, then a frequentist evidential model can manage its uncertainty, as in Examples

11-12 of Section 5.2. N
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5.2 Hypothesis support according to a hierarchical evidential model

The rest of the examples of evidential support distributions involve hierarchical evidential models from

Section 3.

Example 9. Example 4 leads to the two-level hierarchy

M ∼ c (•;x)

θ ∼ ΠM (•;x) ,

where M is the random index that points to the evidential model ΠM (•; •). Thus, the evidential support

density of each θ ∈ Θ is

s (θ;x) =

∫

M∈M

c (M ;x)ΠM (θ;x) dM .

Since the expectation is with respect to the approximate confidence density c (•;x), the procedure is a form

of fiducial model averaging (Bickel, 2015). It is called the fiducial averaging of frequentist models in the case

that every ΠM (•; •) is a frequentist evidential model and the fiducial averaging of Bayesian models in the

case that every ΠM (•; •) is a Bayesian evidential model (Bickel, 2018a).

In contrast, the next example explains a form of Bayesian model averaging of frequentist models or, more

precisely, confidence models.

Example 10. Example 6 results in another two-level hierarchy,

M ∼ π (•|x) = π (•)

θ ∼ cM (•;x) ,

where M is the random index referring to the confidence model cM (•; •). Thus, the evidential support

density of each θ ∈ Θ is

s (θ;x) =
∑

M∈M

π (M |x) cM (θ;x) =
∑

M∈M

π (M ) cM (θ;x) .

In the special case of the uniform prior π (•) = 1/ |M|, the evidential support distribution is the center of
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mass (Paris, 1994) of the confidence distributions, a method Bickel (2012a,c) suggested for making inferences

in the absence of a uniquely suitable confidence distribution. N

The following examples directly address the empirical Bayes concerns of Section 1.

Example 11. Example 3 generates an evidential support distribution that is a special case of Example 9’s

fiducial averaging of Bayesian models:

φ ∼ c (•;x)

M i ∼ πφ (•|xi) ,

with φ and M i in place of the M and θ of Example 9. According to the evidential support distribution of

(φ,M i), the amount of evidential support for the ith null hypothesis is

Probφ∼c(•;x),M i∼πφ(•|xi) (M i = 0) = Eφ∼c(•;x)

(
ProbM i∼πφ(•|xi) (M i = 0)

)
= Eφ∼c(•;x) (πφ (0|xi)) ,

which, as the confidence-averaged Bayesian posterior, is called the fiducial Bayes probability (Bickel, 2017).

The Eφ∼c(•;x) (πφ (0|x1)) denoted by E (π (0|z1)) in Example 2 was calculated with c (•;x) as the confi-

dence density function of the prior π (0) that is derived from the first-order confidence curve of π (0) based

on the likelihood root statistic, following Bickel (2017, Example 3). Eφ∼c(•;x) (πφ (0|x1)) is also the expected

LFDR with respect to an approximate confidence distribution of the LFDR (Remark 2). As suggested by

Figure 1 of Example 2, when the estimation uncertainty incorporated into the expected LFDR is large, it

can be much higher than the estimated LFDR. N

Example 12. Combining Example 3 with Example 5 yields the three-level hierarchy

φ ∼ c (•;x)

M i ∼ πφ (•|xi)

θi ∼ χ (M i = 0) δ + χ (M i = 1) c1 (•;xi) ,

where χ is the characteristic function and x consists of the samples x1, x2, . . . . The resulting joint distri-

bution of (φ,M i, θi) is the evidential support distribution that generates set estimates of θi, including the
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“propagated hierarchical set estimates” in Bickel (2017). By incorporating the uncertainty in φ, those set

estimates differ for from the set estimates in Bickel (2012b), which are essentially based on Example 5’s

two-level model. N

6 Sufficiency of the evidence versus relevancy of the evidence

The two quantities most often considered as the strength of evidence in the statistics literature are the Bayes

factor and the p value. They do not compete in the same league, for each measures a different sense of

evidential strength.

The Bayes factor, as the ratio of the posterior odds to the prior odds, records the degree to which the

data set, considered as the evidence, increases the support for one hypothesis over another (Lavine and

Schervish, 1999). It measures the relevancy of the data set to the question of whether or not a hypothesis

is true. In the special case that the hypotheses involved do not have nuisance parameters but correspond

to distributions that may have generated the data, the Bayes factor is called the likelihood ratio. Other

measures of the relevancy of the evidence include the relative belief ratio, the posterior probability divided

by the prior probability (Evans, 2015), and the difference between posterior and prior probabilities (Kaye

and Koehler, 2003).

The relevancy of the evidence to the truth of a hypothesis is not the same concept as the sufficiency of

the evidence, which is the extent to which there is enough evidence to warrant a conclusion about the truth

of the hypothesis (Kaye and Koehler, 2003). Thus, the posterior probability and posterior odds qualify as

measures of the sufficiency of the evidence, provided that the prior probabilities are admitted as evidence

(see Koehler, 2002). In addition, the p value is treated as the sufficiency of evidence whenever it is presented

as if a low enough p value justifies the conclusion that the null hypothesis is false (e.g., Fraser et al., 2004),

at least if there is sufficient power (Birnbaum, 1977). Similarly, Morgenthaler and Staudte (2012) argued for

a function of a variance-stabilization p value with its standard error as a measure of evidence.

In the case of a scalar parameter of interest, a one-sided p value is equal to an observed confidence

level, suggesting the confidence distribution’s probability of a hypothesis as the sufficiency of the evidence

supporting it. Whereas the probability of the hypothesis according to the confidence distribution is a measure

of the sufficiency of the evidence in the absence of a prior (Bickel, 2011), the Bayesian posterior probability
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is the sufficiency of the evidence in the presence of a prior. To handle other cases, both measures of the

sufficiency of the evidence are generalized to evidential support in Section 4.

Example 13. In Examples 2 and 11, the sufficiency of the evidence for the hypothesis that the training

program makes a difference at the first site is

Probφ∼c(•;x),M1∼πφ(•|x1) (M 1 = 1) = Eφ∼c(•;x) (πφ (1|x1)) = 1− Eφ∼c(•;x) (πφ (0|x1)) ,

the amount of evidential support for M 1 = 1, the first alternative hypothesis. The aptness ofEφ∼c(•;x) (πφ (1|x1))

as the sufficiency of the evidence is clear given a loss function of the form

ℓk (M 1,m1) =





0 if m1 = M 1

1 if m1 = 0,M 1 = 1

k if m1 = 1,M 1 = 0,

(8)

where m1 = 0 if it is concluded that M 1 = 0, m1 = 1 if it is concluded that M 1 = 1, and k > 0. According

to Remark 1, a decision maker whose evidence is confined to x and the hierarchical evidential model should

decide on m̂1, the value of m1 that minimizes the expected loss

Eφ∼c(•;x),M1∼πφ(•|x1) (ℓk (M 1,m1)) =





Eφ∼c(•;x) (πφ (1|x1)) if m1 = 0

kEφ∼c(•;x) (1− πφ (1|x1)) if m1 = 1.

(9)

Thus, m̂1 = 0 if Eφ∼c(•;x) (πφ (1|x1)) <
(
1 + k−1

)−1
but m̂1 = 1 if Eφ∼c(•;x) (πφ (1|x1)) >

(
1 + k−1

)−1
. In

short, the evidence is sufficient to conclude that M 1 = 1 only if Eφ∼c(•;x) (πφ (1|x1)) is high enough. In this

example, the expected loss is the expectation value with respect to the derived confidence distribution of the

loss (Remark 2). N

7 Remarks

Remark 1. The Bayesian-frequentist unification provided by Theorem 1 is an evidential analog of Wilkinson

(1977, §3.1)’s epistemic concept of an “inferential probability” that is Bayesian posterior probability in the
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presence of a prior but that is fiducial probability otherwise when confidence distributions are available (cf.

Fisher, 1973; Zabell, 1992). Wilkinson (1977, §6.2) adds the qualification that whereas the former is a known

degree of belief, the latter is an estimated degree of belief. Helland (2018) similarly proposes the concept of an

epistemic process leading to confidence or Bayesian methods, depending on the availability of a prior. From

outside of the statistics community, Franklin (2001) and Williamson (2013) instead consider confidence as a

special case of logical probability and objective Bayesian probability, respectively. Without specifying how

confidence applies in conjunction with Bayesian posterior probability, many others also interpret confidence

not only as a limiting relative frequency but also as an epistemic probability (e.g., Hampel, 2006; Dempster,

2008; Bickel, 2012c; Schweder, 2018; Taraldsen and Lindqvist, 2018).

While stated in terms of impersonal support from evidence, Theorem 1 leads directly to an epistemic

probability that encompasses confidence as well as Bayesian posterior probability. Evidential support for a

hypothesis from a body of evidence is equal to the level of belief an agent should have for the hypothesis

if the agent’s body of knowledge is identical to the body of evidence. That epistemic probability is highly

idealized, for a human agent’s relevant body of knowledge is not limited to the body of evidence as defined

in Section 4.1. For example, a statistician would be aware of limitations of the hierarchical evidential model

that, with the sample x, constitutes the evidence.

This view of epistemic probability has a clear decision-theoretic interpretation: the ideal agent chooses

the estimate or other action that minimizes expected loss with respect to the distribution of evidential

support. Special cases include Example 13, the interpretation of confidence as a truth-value estimator

(Bickel, 2012a), and empirical Bayes point estimates of the parameter of interest (Bickel, 2012b). The

distribution of evidential support follows the evidential probability of Kyburg (1974, ch. 8; 1990, pp. 180,

231-234; 2003; 2006) in that it also prescribes decisions for an agent that has a specified body of knowledge.

Remark 2. Consider a measurable, strictly monotonic function of a basic parameter that has an approximate

confidence distribution. Then the derived probability distribution of that function is itself an approximate

confidence distribution.

For instance, the π (0|xi) of Examples 2 and 11 is strictly monotonic with π (0) according to equation

5. It follows that the evidential support distribution of π (0|xi) induced by the approximate confidence

distribution of φ, which is the random variable in place of π (0), is an approximate confidence distribution

that encodes confidence intervals with approximately correct frequentist coverage of π (0|Xi).
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Analogously for Example 13, the expected loss EM1∼πφ(•|x1) (ℓc (M 1,m1)) is strictly monotonic with

πφ (1|x1) according to equation (9). Therefore, the evidential support distribution ofEM 1∼πφ(•|x1) (ℓc (M 1,m1)),

also being derived from the confidence distribution of φ, is an approximate confidence distribution that en-

codes confidence intervals with approximately correct frequentist coverage of EM 1∼πφ(•|x1) (ℓc (M 1,m1)).

Were strict monotonicity not to hold, the evidential support distributions derived from the approximate

confidence distributions would not in general be approximate confidence distributions.
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