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ABSTRACT 

The Regression Expectation Maximization (REM) algorithm, which is a variant of 

Expectation Maximization (EM) algorithm, uses parallelly a long regression model 

and many short regression models to solve the problem of incomplete data. 

Experimental results proved resistance of REM to incomplete data, in which accuracy 

of REM decreases insignificantly when data sample is made sparse with loss ratios up 

to 80%. However, as traditional regression analysis methods, the accuracy of REM 

can be decreased if data varies complicatedly with many trends. In this research, we 

propose a so-called Mixture Regression Expectation Maximization (MREM) 

algorithm. MREM is the full combination of REM and mixture model in which we 

use two EM processes in the same loop. MREM uses the first EM process for 

exponential family of probability distributions to estimate missing values as REM 

does. Consequently, MREM uses the second EM process to estimate parameters as 

mixture model method does. The purpose of MREM is to take advantages of both 

REM and mixture model. Unfortunately, experimental result shows that MREM is 

less accurate than REM. However, MREM is essential because a different approach 

for mixture model can be referred by fusing linear equations of MREM into a unique 

curve equation. 

 

Keywords: Regression Model, Mixture Regression Model, Expectation 

Maximization Algorithm, Incomplete Data 

 

1. INTRODUCTION 

1.1. Main work 

As a convention, regression model is a linear regression function Z = α0 + α1X1 + 

α2X2 + … + αnXn in which variable Z is called response variable or dependent variable 

whereas each Xi is called regression variable, regressor, predictor, regression variable, 

or independent variable. Each αi is called regression coefficient. The essence of 

regression analysis is to calculate regression coefficients from data sample. When 

sample is complete, these coefficients are determined by least squares method [1, pp. 

452-458]. When sample is incomplete, there are some approximation approaches to 

estimate regression coefficients such as complete case method, ad-hoc method, 
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multiple imputation, maximum likelihood, weighting method, and Bayesian method 

[2]. We focus on applying expectation maximization (EM) algorithm into constructing 

regression model in case of missing data with note that EM algorithm belongs to 

maximum likelihood approach. In previous research [3], we proposed a so-called 

Regression Expectation Maximization (REM) algorithm to learn linear regression 

function from incomplete data in which some values of Z and Xi are missing. REM is 

a variant of EM algorithm, which is used to estimate regression coefficients. 

Experimental results in previous research [3] proved that accuracy of REM decreases 

insignificantly whereas loss ratios increase significantly. We hope that REM will be 

accepted as a new standard method for regression analysis in case of missing data 

when there are currently 6 standard approaches such as complete case method, ad-hoc 

method, multiple imputation, maximum likelihood, weighting method, and Bayesian 

method [2]. Here we combine REM and mixture model with expectation that the 

accuracy is improved, especially in case that data is incomplete and has many trends. 

Our proposed algorithm is called Mixture Regression Expectation Maximization 

(MREM) algorithm. The purpose of MREM is to take advantages of both REM and 

mixture model. Unfortunately, experimental result shows that MREM is less accurate 

than REM. However, MREM is essential because a different approach for mixture 

model can be referred by fusing linear equations of MREM into a unique curve 

equation [4], as discussed later. Because this research is the successive one after our 

previous research [3], they share some common contents related to research survey 

and experimental design, but we confirm that their methods are not coincide although 

MREM is derived from REM. 

Because MREM is the combination of REM and mixture model whereas REM is a 

variant of EM algorithm, we need to survey some works related to application of EM 

algorithm to regression analysis. Kokic [5] proposed an excellent method to calculate 

expectation of errors for estimating coefficients of multivariate linear regression 

model. In Kokic’s method, response variable Z has missing values. Ghitany, Karlis, 

Al-Mutairi, and Al-Awadhi [6] calculated the expectation of function of mixture 

random variable in expectation step (E-step) of EM algorithm and then used such 

expectation for estimating parameters of multivariate mixed Poisson regression model 

in the maximization step (M-step). Anderson and Hardin [7] used reject inference 

technique to estimate coefficients of logistic regression model when response variable 

Z is missing but characteristic variables (regressors Xi) are fully observed. Anderson 

and Hardin replaced missing Z by its conditional expectation on regressors Xi where 

such expectation is logistic function. Zhang, Deng, and Su [8] used EM algorithm to 

build up linear regression model for studying glycosylated hemoglobin from partial 

missing data. In other words, Zhang, Deng, and Su [8] aim to discover relationship 

between independent variables (predictors) and diabetes. 

Besides EM algorithm, there are other approaches to solve the problem of 

incomplete data in regression analysis. Haitovsky [9] stated that there are two main 

approaches to solve such problem. The first approach is to ignore missing data and to 
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apply the least squares method into observations. The second approach is to calculate 

covariance matrix of regressors and then to apply such covariance matrix into 

constructing the system of normal equations. Robins, Rotnitzki, and Zhao [10] 

proposed a class of inverse probability of censoring weighted estimators for 

estimating coefficients of regression model. Their approach is based on the 

dependency of mean vector of response variable Z on vector of regressors Xi when Z 

has missing values. Robins, Rotnitzki, and Zhao [10] assumed that the probability 

λit(α) of existence of Z at time point t is dependent on existence of Z at previous time 

point t–1 but independent from Z. Even though Z is missing, the probability λit(α) is 

also determined and so regression coefficients are calculated based on the inverse of 

λit(α) and Xi. The inverse of λit(α) is considered as weight for complete case. Robins, 

Rotnitzki, and Zhao used additional time-dependent covariates Vit to determine λit(α). 

In the article “Much ado about nothing: A comparison of missing data methods and 

software to fit incomplete data regression models”, Horton and Kleinman [2] 

classified 6 methods of regression analysis in case of missing data such as complete 

case method, ad-hoc method, multiple imputation, maximum likelihood, weighting 

method, and Bayesian method. EM algorithm belongs to maximum likelihood method. 

According to complete case method, regression model is learned from only non-

missing values of incomplete data [2, p. 3]. The ad-hoc method refers missing values 

to some common value, creates an indicator of missingness as new variable, and 

finally builds regression model from both existent variables and such new variable [2, 

p. 3]. Multiple imputation method has three steps. Firstly, missing values are replaced 

by possible values. The replacement is repeated until getting an enough number of 

complete datasets. Secondly, some regression models are learned from these complete 

datasets as usual [2, p. 4]. Finally, these regression models are aggregated together. 

The maximum likelihood method aims to construct regression model by maximizing 

likelihood function. EM algorithm is a variant of maximum likelihood method, which 

has two steps such as expectation step (E-step) and maximization step (M-step). In E-

step, multiple entries are created in an augmented dataset for each observation of 

missing values and then probability of the observation is estimated based on current 

parameter [2, p. 6]. In M-step, regression model is built from augmented dataset. The 

REM algorithm proposed in this research is different from the traditional EM for 

regression analysis because we replace missing values in E-step by expectation of 

sufficient statistics via mutual balance process instead of estimating the probability of 

observation. The weighting method determines the probability of missingness and 

then uses such probability as weight for the complete case. The aforementioned 

research of Robins, Rotnitzki, and Zhao [10] belongs to the weighting approach. 

Instead of replacing missing values by possible values like imputation method does, 

the Bayesian method imputes missing values by the estimation with a prior 

distribution on the covariates and the close relationship between the Bayesian 

approach and maximum likelihood method [2, p. 7]. 
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1.2. Related Studies 

Recall that MREM is the combination of REM and mixture model and so we need 

to survey other works related to regression model with support of mixture model. As a 

convention, such regression model is called mixture regression model. In literature, 

there are two approaches of mixture regression model: 

- The first approach is to use logistic function to estimate the mixture coefficients. 

- The second approach is to construct a joint probability distribution as product of 

the probability distribution of response variable Z and the probability 

distribution of independent variables Xi. 

According to the first approach [11], the mixture probability distribution is 

formulated as follows: 

𝑃(𝑍|Θ) = ∑𝑐𝑘𝑃𝑘(𝑍|𝛼𝑘
𝑇𝑋, 𝜎𝑘

2)

𝐾

𝑘=1

 (1) 

Where Θ = (αk, σk
2)T is compound parameter whereas αk and σk

2 are regression 

coefficient and variance of the partial (component) probability distribution Pk(Z|αk
TX, 

σk
2). Note, mean of Pk(Z|αk

TX, σk
2) is αk

TX and mixture coefficient is ck. In the first 

approach, regression coefficients αk are estimated by least squares method whereas 

mixture coefficients ck are estimated by logistic function as follows [11, p. 4]: 

𝑐𝑘 =
exp(𝑃𝑘(𝑍|𝛼𝑘

𝑇𝑋, 𝜎𝑘
2))

∑ exp(𝑃𝑙(𝑍|𝛼𝑙
𝑇𝑋, 𝜎𝑙

2))𝐾
𝑙=1

 (2) 

The mixture regression model is: 

𝑍̂ = ∑ 𝑐𝑘𝛼𝑘
𝑇𝑋

𝐾

𝑘=1

 (3) 

According to the second approach, the joint distribution is defined as follows [12, p. 

4]: 

𝑃(𝑍|Θ) = ∑𝑐𝑘𝑃𝑘(𝑍, 𝑋|𝛼𝑘
𝑇𝑋, 𝜎𝑘

2, 𝜇𝑘 , Σ𝑘)

𝐾

𝑘=1

=∑𝑐𝑘𝑃𝑘(𝑍|𝛼𝑘
𝑇𝑋, 𝜎𝑘

2)𝑃𝑘(𝑋|𝜇𝑘 , Σ𝑘)

𝐾

𝑘=1

 

(4) 

Where αk are regression coefficients and σk
2 is variance of the conditional 

probability distribution Pk(Z|αk
TX, σk

2) whereas μk and Σk are mean vector and 

covariance matrix of the prior probability distribution Pk(X|μk, Σk), respectively. The 

mixture regression model is [12, p. 6]: 
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𝑍̂ = 𝐸(𝑍|𝑋) = ∑𝜋𝑘𝛼𝑘
𝑇𝑋

𝐾

𝑘=1

 (5) 

Where, 

𝜋𝑘 =
𝑐𝑘𝑃𝑘(𝑋|𝜇𝑘 , Σ𝑘)

∑ 𝑐𝑙𝑃𝑙(𝑋|𝜇𝑙 , Σ𝑙)
𝐾
𝑙=1

 (6) 

The joint probability can be defined by different way as follows [13, p. 21], [14, p. 

24], [15, p. 4]: 

𝑃(𝑍|Θ) = ∑𝑐𝑘𝑃𝑘(𝑍|𝑚𝑘(𝑋), 𝜎𝑘
2)𝑃𝑘(𝑋|𝜇𝑘𝑋 , Σ𝑘𝑋)

𝐾

𝑘=1

 (7) 

Where mk(X) and σk
2 are mean and variance of Z given the conditional probability 

distribution Pk(Z|mk(X), σk
2) whereas μkX and ΣkX are mean vector and covariance 

matrix of X given the prior probability distribution Pk(X|μk, Σk). When μkX and ΣkX are 

calculated from data, other parameters mk(X) and σk
2 are estimated for each kth 

component as follows [13, p. 23], [14, p. 25], [15, p. 5]: 

𝑚𝑘(𝑋) = 𝜇𝑘𝑍 + Σ𝑘𝑍𝑋Σ𝑘𝑋
−1(𝑋 − 𝜇𝑘𝑋)

𝜎𝑘
2 = Σ𝑘𝑍𝑍 − Σ𝑘𝑍𝑋Σ𝑘𝑋

−1Σ𝑘𝑍𝑋
 (8) 

For each kth component, μkZ is sample mean of Z, ΣkZX is vector of covariances of Z 

and X, and ΣkZZ is sample variance of Z. The mixture regression model becomes [14, p. 

25]: 

𝑍̂ = 𝑚(𝑋) = ∑𝜋𝑘𝑚𝑘(𝑋)

𝐾

𝑘=1

 (9) 

Where, 

𝜋𝑘 =
𝑐𝑘𝑃𝑘(𝑋|𝜇𝑘 , Σ𝑘)

∑ 𝑐𝑙𝑃𝑙(𝑋|𝜇𝑙 , Σ𝑙)
𝐾
𝑙=1

 (10) 

Grün & Leisch [16] mentioned the full application of mixture model into regression 

model in which regression coefficients are determined by inverse function of mean of 

conditional probability distribution as follows: 

𝑃(𝑍|Θ) = ∑𝑐𝑘𝑃𝑘(𝑍|𝜇𝑘 , 𝜎𝑘
2)

𝐾

𝑘=1

𝑔−1(𝜇𝑘) = 𝛼𝑘
𝑇𝑋

 (11) 

In general, the two approaches in literature do not implement regression mixture 

model according to EM process in full. They aim to simplify the estimation process in 

which mixture coefficients ck and regression coefficients αk are estimated one time. 

http://www.scientificsociety.net/
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Note that EM process is an iterative process in which parameters are improved 

gradually until convergence. The EM process is slow, but it can balance many factors 

to reach most optimal parameters. Here we proposed a so-called Mixture Regression 

Expectation Maximization (MREM) which is the full combination of REM [3] and 

mixture model in which we use two EM processes in the same loop. Firstly, we use 

the first EM process for exponential family of probability distributions to estimate 

missing values as REM does. Secondly, we use the second EM process to estimate 

parameters as the full mixture model method does. Anyway, MREM supports fully 

EM mixture model. 

In general, the ideology of combination of regression analysis and mixture model 

which produces mixture regression is not new, but our proposed MREM is different 

from other methods in literature because of followings: 

- MREM does not use the joint probability distribution. In other words, MREM 

does not concern the probability distribution of independent variables Xi. 

MREM does not either use logistic function to estimate mixture coefficients as 

the first approach does. 

- MREM is the full combination of REM [3] and mixture model in which we use 

two EM processes in the same loop for estimating missing values and 

parameters. 

- Variance σk
2 and regression coefficient αk of the probability Pk(Z|αk

TX, σk
2) in 

MREM are estimated and balanced by both full mixture model and maximum 

likelihood estimation (MLE). The most similar research to MREM is the 

weighed least squares algorithm used by Faicel Chamroukhi, Allou Samé, 

Gérard Govaert, and Patrice Aknin [4]. They firstly split the conditional 

expectation into two parts at the E-step of EM algorithm and then applied 

weighed least squares algorithm into the second part for estimate parameters at 

the M-step [4, pp. 1220-1221]. 

- Mixture regression models in literature are learned from complete data whereas 

MREM supports incomplete data. 

The methodology of MREM is described in section 2. Section 3 includes 

experimental results and discussions. Section 4 is the conclusion. 

2. METHODOLOGY 

The probabilistic Mixture Regression Model (MRM) is a combination of normal 

mixture model and linear regression model. In MRM, the probabilistic Entire 

Regression Model (ERM) is sum of K weighted probabilistic Partial Regression 

Models (PRMs). Equation (12) specifies MRM [17, p. 3]. 

𝑃(𝑧𝑖|𝑋𝑖, Θ) = ∑𝑐𝑘𝑃𝑘(𝑧𝑖|𝑋𝑖 , 𝛼𝑘, 𝜎𝑘
2)

𝐾

𝑘=1

 (12) 
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Where, 

∑𝑐𝑘

𝐾

𝑘=1

= 1 

Note, Θ is called entire parameter, 

Θ = (𝑐𝑘, 𝛼𝑘
𝑇 , 𝜎𝑘

2, 𝛽𝑘𝑗)
𝑇

 

The superscript “T” denotes transposition operator in vector and matrix. In equation 

(12), the probabilistic distribution P(zi|Xi, Θ) represents the ERM where zi is the 

response variable, dependent variable, or outcome variable. The probabilistic 

distribution Pk(zi|Xi, αk, σk
2) represents the kth PRM zi = αk0 + αk1xi1 + αk2xi2 + … + 

αknxin with suppose that each zi conforms to normal distribution according to equation 

(13) with mean μk = αk
TXi and variance σk

2. 

𝑃𝑘(𝑧𝑖|𝑋𝑖 , 𝛼𝑘 , 𝜎𝑘
2) =

1

√2𝜋𝜎𝑘
2
exp(−

(𝑧𝑖 − 𝛼𝑘
𝑇𝑋𝑖)

2

2𝜎𝑘
2 ) (13) 

The parameter αk = (αk0, αk1,…, αkn)
T is called the kth Partial Regression Coefficient 

(PRC) and Xi = (1, xi1, xi2,…, xin)
T is data vector. Each xij in every PRM is called a 

regressor, predictor, or independent variable. 

In equation (12), each mixture coefficient ck is the prior probability that any zi 

belongs to the kth PRM. Let Y be random variable representing PRMs, Y = 1, 2,…, K. 

The mixture coefficient ck is also called the kth weight, which is defined by equation 

(14). Of course, there are K mixture coefficients, K PRMs, and K PRCs. 

𝑐𝑘 = 𝑃(𝑌 = 𝑘) (14) 

For each kth PRM, suppose each 𝑥𝑖𝑗 ∈ 𝑋𝑖 has an inverse regression model (IRM) xij 

= βkj0 + βkj1zi. In other words, xij now is considered as the random variable conforming 

to normal distribution according to equation (15) [18, p. 8]. 

𝑃𝑘𝑗(𝑥𝑖𝑗|𝑧𝑖 , 𝛽𝑘𝑗) =
1

√2𝜋𝜏𝑘𝑗
2

exp(−
(𝑥𝑖𝑗 − 𝛽𝑘𝑗

𝑇 (1, 𝑧𝑖)
𝑇)
2

2𝜏𝑘𝑗
2 ) (15) 

Where βkj = (βkj0, βkj1)
T is an inverse regression coefficient (IRC) and (1, zi)

T 

becomes an inverse data vector. The mean and variance of each xij with regard to the 

inverse distribution Pkj(xij|zi, βkj) are βkj
T(1, zi)

T and τkj
2, respectively. Of course, for 

each kth PRM, there are n IRMs Pkj(xij|zi, βkj) and n associated IRCs βkj. Totally, there 

are n*K IRMs associated with n*K IRCs. Suppose IRMs with fixed j have the same 

mixture model as MRM does. Equation (16) specifies the mixture model of IRMs. 
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𝑃𝑗(𝑥𝑖𝑗|𝑧𝑖, 𝛽𝑗) = ∑𝑐𝑘𝑃𝑘𝑗(𝑥𝑖𝑗|𝑧𝑖, 𝛽𝑘𝑗)

𝐾

𝑘=1

 (16) 

In this research, we focus on estimating the entire parameter Θ = (ck, αk, σk
2, βkj)

T 

where k is from 1 to K. In other words, we aim to estimate ck, αk, σk
2, and βkj for 

determining the ERM in case of missing data. As a convention, let Θ* = (ck
*, αk

*, (σk
2)*, 

βkj
*)T be the estimate of Θ = (ck, αk, σk

2, βkj)
T, respectively. Let D = (X, Z) be collected 

sample in which X is a set of regressors and Z is a set of outcome variables plus 

values 1, respectively [18, p. 8] with note that both X and Z are incomplete. In other 

words, X and Z have missing values. As a convention, let zi
– and xij

– denote missing 

values of Z and X, respectively. 

𝑿 = (

𝑋1
𝑇

𝑋2
𝑇

⋮
𝑋𝑁
𝑇

) = (

1 𝑥11 𝑥12 ⋯ 𝑥1𝑛
1 𝑥21 𝑥22 ⋯ 𝑥2𝑛
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑁1 𝑥𝑁2 ⋯ 𝑥𝑁𝑛

)

𝑋𝑖 =

(

 
 

1
𝑥𝑖1
𝑥𝑖2
⋮
𝑥𝑖𝑛)

 
 
,𝑋𝑗 = (

𝑥1𝑗
𝑥2𝑗
⋮
𝑥𝑁𝑗

)

𝑍 = (

𝑧1
𝑧2
⋮
𝑧𝑁

) ,𝒁 = (𝟏, 𝑍) = (

1 𝑧1
1 𝑧2
⋮ ⋮
1 𝑧𝑁

)

 (17) 

The expectation of sufficient statistic zi regard to the kth PRM Pk(zi|Xi, αk, σk
2) is 

specified by equation (18) [3]. 

𝐸𝑘(𝑧𝑖|𝑋𝑖) = 𝛼𝑘
𝑇𝑋𝑖 =∑𝛼𝑘𝑗𝑥𝑖𝑗

𝑛

𝑗=0

 (18) 

Where xi0=1 for all i. The expectation of the sufficient statistic xij with regard to 

each IRM Pkj(xij|zi, βj) of the kth PRM Pk(zi|Xi, αk, σk
2) is specified by equation (19) [3]. 

𝐸𝑘(𝑥𝑖𝑗|𝑧𝑖) = 𝛽𝑘𝑗
𝑇 (1, 𝑧𝑖)

𝑇 = 𝛽𝑘𝑗0 + 𝛽𝑘𝑗1𝑧𝑖 (19) 

Please pay attention to equations (18) and (19) because missing values of data X 

and data Z will be estimated by these expectations later. 

Because X and Z are incomplete, we apply expectation maximization (EM) 

algorithm into estimating Θ* = (ck
*, αk

*, (σk
2)*, βkj

*)T. According to [19], EM algorithm 

has many iterations and each iteration has expectation step (E-step) and maximization 

step (M-step) for estimating parameters. Given current parameter Θ(t) = (ck
(t), αk

(t), 

(σk
2)(t), βkj

(t))T at the tth iteration, missing values zi
– and xij

– are calculated in E-step so 

http://www.scientificsociety.net/
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that X and Z become complete. In M-step, the next parameter Θ(t+1) = (ck
(t+1), αk

(t+1), 

(σk
2)(t+1), βkj

(t+1))T is determined based on the complete data X and Z fulfilled in E-step. 

Here we proposed a so-called Mixture Regression Expectation Maximization (MREM) 

which is the full combination of Regression Expectation Maximization (REM) 

algorithm [3] and mixture model in which we use two EM processes in the same loop. 

Firstly, we use the first EM process for exponential family of probability distributions 

to estimate missing values in E-step. The technique is the same to the technique of 

REM in previous research [3]. Secondly, we use the second EM process to estimate 

Θ* for full mixture model in M-step. 

Firstly, we focus on fulfilling missing values in E-step. The most important problem 

in our research is how to estimate missing values zi
– and xij

–. Recall that, for each kth 

PRM, every missing value zi
– is estimated as the expectation based on the current 

parameter αk
(t), according to equation (18) [3]. 

𝑧𝑖
− = 𝐸𝑘(𝑧𝑖|𝑋𝑖) = (𝛼𝑘

(𝑡))
𝑇

𝑋𝑖 =∑𝛼𝑘𝑗
(𝑡)𝑥𝑖𝑗

𝑛

𝑗=0

 

Note, xi0 = 1. Let Mi be a set of indices of missing values xij
– with fixed i for each kth 

PRM. In other words, if 𝑗 ∈ 𝑀𝑖 then, xij is missing. The set Mi can be empty. The 

equation (18) is re-written for each kth PRM as follows [3]: 

𝑧𝑖
− = ∑ 𝛼𝑘𝑗

(𝑡)𝑥𝑖𝑗
−

𝑗∈𝑀𝑖

+ ∑ 𝛼𝑘𝑙
(𝑡)𝑥𝑖𝑙

𝑙∉𝑀𝑖

 

According to equation (19), missing value xij
– is estimated by [3]: 

𝑥𝑖𝑗
− = 𝐸𝑘(𝑥𝑖𝑗|𝑧𝑖

−) = (𝛽𝑘𝑗
(𝑡))

𝑇
(1, 𝑧𝑖

−)𝑇 = 𝛽𝑘𝑗0
(𝑡) + 𝛽𝑘𝑗1

(𝑡) 𝑧𝑖
− 

Combining equation (18) and equation (19), we have [3]: 

𝑧𝑖
− = ∑ 𝛼𝑘𝑗

(𝑡)(𝛽𝑘𝑗0
(𝑡) + 𝛽𝑘𝑗1

(𝑡) 𝑧𝑖
−)

𝑗∈𝑀𝑖

+ ∑ 𝛼𝑘𝑙
(𝑡)𝑥𝑖𝑙

𝑙∉𝑀𝑖

= 𝑧𝑖
− ∑ 𝛼𝑘𝑗

(𝑡)𝛽𝑘𝑗1
(𝑡)

𝑗∈𝑀𝑖

+ ∑ 𝛼𝑘𝑗
(𝑡)𝛽𝑘𝑗0

(𝑡)

𝑗∈𝑀𝑖

+ ∑ 𝛼𝑘𝑙
(𝑡)𝑥𝑖𝑙

𝑙∉𝑀𝑖

 

It implies [3]: 

𝑧𝑖
− =

∑ 𝛼𝑘𝑗
(𝑡)𝛽𝑘𝑗0

(𝑡)
𝑗∈𝑀𝑖

+ ∑ 𝛼𝑘𝑙
(𝑡)𝑥𝑖𝑙𝑙∉𝑀𝑖

1 − ∑ 𝛼𝑘𝑗
(𝑡)𝛽𝑘𝑗1

(𝑡)
𝑗∈𝑀𝑖

 

As a result, equation (20) is used to estimate or fulfill missing values for each kth 

PRM [3]. 
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𝑧𝑖
− =

∑ 𝛼𝑘𝑗
(𝑡)𝛽𝑘𝑗0

(𝑡)
𝑗∈𝑀𝑖

+∑ 𝛼𝑘𝑙
(𝑡)𝑥𝑖𝑙𝑙∉𝑀𝑖

1 − ∑ 𝛼𝑘𝑗
(𝑡)𝛽𝑘𝑗1

(𝑡)
𝑗∈𝑀𝑖

𝑥𝑖𝑗
− = {

𝛽𝑘𝑗0
(𝑡) + 𝛽𝑘𝑗1

(𝑡) 𝑧𝑖if𝑧𝑖is not missing

𝛽𝑘𝑗0
(𝑡) + 𝛽𝑘𝑗1

(𝑡) 𝑧𝑖
−if𝑧𝑖is missing

 (20) 

Now in M-step we use EM algorithm again to estimate the next parameter Θ(t+1) = 

(ck
(t+1), αk

(t+1), (σk
2)(t+1), βkj

(t+1))T with current known parameter Θ(t) = (ck
(t), αk

(t), (σk
2)(t), 

βkj
(t+1))T given data X and data Z fulfilled in E-step. The conditional expectation 

Q(Θ|Θ(t)) with unknown Θ is determined as follows [17, p. 4]: 

𝑄(Θ|Θ(𝑡)) = ∑∑𝑃(𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖, 𝛼𝑘
(𝑡), (𝜎𝑘

2)(𝑡))log(𝑐𝑘)

𝑁

𝑖=1

𝐾

𝑘=1

+∑∑𝑃(𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖, 𝛼𝑘
(𝑡), (𝜎𝑘

2)(𝑡))log(𝑃𝑘(𝑧𝑖|𝑋𝑖 , 𝛼𝑘, 𝜎𝑘
2))

𝑁

𝑖=1

𝐾

𝑘=1

 

The next parameter Θ(t+1) is a constrained optimizer of Q(Θ|Θ(t)). This is the 

optimization problem. 

{
 
 

 
 Θ

(𝑡+1) = argmax
Θ

𝑄(Θ|Θ(𝑡))

subject to∑𝑐𝑘

𝐾

𝑘=1

= 1
 

By applying Lagrange method, each next mixture coefficient ck
(t+1) is specified by 

equation (21) [17, p. 7]. 

𝑐𝑘
(𝑡+1) =

1

𝑁
∑𝑃(𝑌 = 𝑘|𝑋𝑖, 𝑧𝑖, 𝛼𝑘

(𝑡), (𝜎𝑘
2)(𝑡))

𝑁

𝑖=1

 (21) 

Where P(Y=k | Xi, zi, αk
(t), (σk

2)(t)) is specified by equation (22) [17, p. 3]. It is the 

conditional probability of the kth PRM given Xi and zi. Please pay attention to this 

important probability. The proof of equation (22) is found in [17, p. 3], according to 

Bayes’ rule. 

𝑃(𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖 , 𝛼𝑘
(𝑡), (𝜎𝑘

2)(𝑡)) =
𝑐𝑘
(𝑡)𝑃𝑘(𝑧𝑖|𝑋𝑖 , 𝛼𝑘

(𝑡), (𝜎𝑘
2)(𝑡))

∑ 𝑐𝑙
(𝑡)𝑃𝑙(𝑧𝑖|𝑋𝑖 , 𝛼𝑘

(𝑡), (𝜎𝑘
2)(𝑡))𝐾

𝑙

 (22) 

Note, Pk(zi|Xi, αk
(t), (σk

2)(t)) is determined by equation (13). 
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𝑃𝑘(𝑧𝑖|𝑋𝑖 , 𝛼𝑘
(𝑡), (𝜎𝑘

2)(𝑡)) =
1

√2𝜋(𝜎𝑘
2)∗

exp

(

 −
(𝑧𝑖 − (𝛼𝑘

(𝑡))
𝑇

𝑋𝑖)
2

2(𝜎𝑘
2)(𝑡)

)

  

By applying Lagrange method, each next regression coefficient αk
(t+1) is solution of 

equation (23) [17, p. 7]. 

∑𝑃(𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖 , 𝛼𝑘
(𝑡), (𝜎𝑘

2)(𝑡)) (𝑧𝑖 − (𝛼𝑘
(𝑡))

𝑇

𝑋𝑖)𝑋𝑖
𝑇

𝑁

𝑖=1

= 𝟎𝑇 (23) 

Where 0 = (0, 0,…, 0)T is zero vector and P(Y=k | Xi, zi, αk
(t), (σk

2)(t)) is specified by 

equation (22). Equation (23) is equivalent to equation (24): 

∑𝑃(𝑌 = 𝑘|𝑋𝑖, 𝑧𝑖 , 𝛼𝑘
(𝑡), (𝜎𝑘

2)(𝑡))𝛼𝑘
𝑇𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

=∑𝑃(𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖, 𝛼𝑘
(𝑡)
, (𝜎𝑘

2)(𝑡))𝑧𝑖𝑋𝑖
𝑇

𝑁

𝑖=1

 

(24) 

Let, 

𝑈𝑖
(𝑡) =

(

 
 

𝑢𝑖0
(𝑡)

𝑢𝑖1
(𝑡)

⋮

𝑢𝑖𝑛
(𝑡)
)

 
 
= 𝑃(𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖, 𝛼𝑘

(𝑡), (𝜎𝑘
2)(𝑡))𝑋𝑖

=

(

  
 

𝑃(𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖, 𝛼𝑘
(𝑡), (𝜎𝑘

2)(𝑡))

𝑥𝑖1𝑃(𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖 , 𝛼𝑘
(𝑡), (𝜎𝑘

2)(𝑡))

⋮

𝑥𝑖𝑛𝑃(𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖, 𝛼𝑘
(𝑡), (𝜎𝑘

2)(𝑡)))

  
 

 

Note, 

𝑢𝑖𝑗
(𝑡) = 𝑥𝑖𝑗𝑃(𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖 , 𝛼𝑘

(𝑡), (𝜎𝑘
2)(𝑡)) 

The left-hand side of equation (24) becomes: 
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∑𝛼𝑘
𝑇𝑈𝑖

(𝑡)𝑋𝑖
𝑇

𝑁

𝑖=1

= 𝛼𝑘
𝑇∑𝑈𝑖

(𝑡)𝑋𝑖
𝑇

𝑁

𝑖=1

= 𝛼𝑘
𝑇∑

(

 
 

𝑢𝑖0
(𝑡)

𝑢𝑖1
(𝑡)

⋮

𝑢𝑖𝑛
(𝑡)
)

 
 
(𝑥𝑖0, 𝑥𝑖1, … , 𝑥𝑖𝑛)

𝑁

𝑖=1

= 𝛼𝑘
𝑇∑

(

 
 

𝑢𝑖0
(𝑡)𝑥𝑖0 𝑢𝑖0

(𝑡)𝑥𝑖1 ⋯ 𝑢𝑖0
(𝑡)𝑥𝑖𝑛

𝑢𝑖1
(𝑡)𝑥𝑖0 𝑢𝑖1

(𝑡)𝑥𝑖1 ⋯ 𝑢𝑖1
(𝑡)𝑥𝑖𝑛

⋮ ⋮ ⋱ ⋮

𝑢𝑖𝑛
(𝑡)𝑥𝑖0 𝑢𝑖𝑛

(𝑡)𝑥𝑖1 ⋯ 𝑢𝑖𝑛
(𝑡)𝑥𝑖𝑛)

 
 

𝑁

𝑖=1

= 𝛼𝑘
𝑇(𝑼(𝑡))

𝑇
𝑿 

Where U(t) is specified by equation (25). 

𝑼(𝑡) =

(

 
 
 
 
(𝑈1

(𝑡))
𝑇

(𝑈2
(𝑡))

𝑇

⋮

(𝑈𝑁
(𝑡)
)
𝑇

)

 
 
 
 

=

(

 
 

𝑢10
(𝑡) 𝑢11

(𝑡) ⋯ 𝑢1𝑛
(𝑡)

𝑢20
(𝑡) 𝑢21

(𝑡) ⋯ 𝑢2𝑛
(𝑡)

⋮ ⋮ ⋱ ⋮

𝑢𝑁0
(𝑡) 𝑢𝑁1

(𝑡) ⋯ 𝑢𝑁𝑛
(𝑡)
)

 
 

𝑢𝑖𝑗
(𝑡) = 𝑥𝑖𝑗𝑃(𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖 , 𝛼𝑘

(𝑡), (𝜎𝑘
2)(𝑡))

 (25) 

Let, 

𝑉𝑖
(𝑡) =

(

 
 

𝑣𝑖0
(𝑡)

𝑣𝑖1
(𝑡)

⋮

𝑣𝑖𝑛
(𝑡)
)

 
 
= 𝑃(𝑌 = 𝑘|𝑋𝑖, 𝑧𝑖 , 𝛼𝑘

(𝑡), (𝜎𝑘
2)(𝑡))𝑍

=

(

  
 

𝑧1𝑃(𝑌 = 𝑘|𝑋1, 𝑧1, 𝛼𝑘
(𝑡), (𝜎𝑘

2)(𝑡))

𝑧2𝑃(𝑌 = 𝑘|𝑋2, 𝑧2, 𝛼𝑘
(𝑡), (𝜎𝑘

2)(𝑡))

⋮

𝑧𝑁𝑃(𝑌 = 𝑘|𝑋𝑁 , 𝑧𝑁, 𝛼𝑘
(𝑡), (𝜎𝑘

2)(𝑡)))

  
 

 

Note, 

𝑣𝑖𝑗
(𝑡) = 𝑧𝑖𝑃(𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖, 𝛼𝑘

(𝑡), (𝜎𝑘
2)(𝑡)) 

The right-hand side of equation (24) becomes: 

∑𝑉𝑖
(𝑡)𝑋𝑖

𝑇

𝑁

𝑖=1

=∑(𝑣𝑖0
(𝑡)𝑥𝑖0, 𝑣𝑖1

(𝑡)𝑥𝑖1, … , 𝑣𝑖𝑛
(𝑡)𝑥𝑖𝑛)

𝑁

𝑖=1

= (𝑉𝑖
(𝑡))

𝑇

𝑿 

Where Vi
(t) is specified by equation (26). 
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𝑉𝑖
(𝑡) =

(

 
 

𝑣𝑖0
(𝑡)

𝑣𝑖1
(𝑡)

⋮

𝑣𝑖𝑛
(𝑡)
)

 
 

𝑣𝑖𝑗
(𝑡) = 𝑧𝑖𝑃(𝑌 = 𝑘|𝑋𝑖, 𝑧𝑖 , 𝛼𝑘

(𝑡), (𝜎𝑘
2)(𝑡))

 (26) 

Equation (24) becomes: 

𝛼𝑘
𝑇(𝑼(𝑡))

𝑇
𝑿 = (𝑉𝑖

(𝑡))
𝑇

𝑿 

Which is equivalent to the following equation: 

𝑿𝑇𝑼(𝑡)𝛼𝑘 = 𝑿
𝑇𝑉𝑖

(𝑡)
 

As a result, the next regression coefficient αk
(t+1), which is solution of equation (23), 

is specified by equation (27). 

𝛼𝑘
(𝑡+1) = (𝑿𝑇𝑼(𝑡))

−1
𝑿𝑇𝑉𝑖

(𝑡)
 (27) 

Where X, U(t), and Vi
(t) are specified by equations (17), (25), and (26), respectively. 

The proposed equation (27) is most important in this research because it is the 

integration of least squares method and mixture model. If we think deeply, it is the 

key to combine REM and mixture model. In other words, it is the key to combine two 

EM processes in the same loop. 

By applying Lagrange method, each next partial variance (σk
2)(t+1) is specified by 

equation (28) [17, p. 7]. 

(𝜎𝑘
2)(𝑡+1) =

∑ (𝑧𝑖 − (𝛼𝑘
(𝑡+1))

𝑇

𝑋𝑖)
2

𝑃(𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖 , 𝛼𝑘
(𝑡), (𝜎𝑘

2)(𝑡))𝑁
𝑖=1

∑ 𝑃(𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖, 𝛼𝑘
(𝑡), (𝜎𝑘

2)(𝑡))𝑁
𝑖=1

 (28) 

Where P(Y=k | zi, αk
(t), (σk

2)(t)) is specified by equation (22) and αk
(t+1) is specified by 

equation (27).The proof of equations (21), (23), and (28) is found in [17, pp. 5-6]. 

By using maximum likelihood estimation (MLE) method [18, pp. 8-9], we retrieve 

equation (29) to estimate each next IRC βkj
(t+1) [1, p. 457]. 

𝛽𝑘𝑗
(𝑡+1)

= (𝒁𝑇𝒁)−1𝒁𝑇𝑋𝑗 (29) 

Where Z and Xj are specified in equation (17). Not Z and Xj are fulfilled in E-step. 

In general, MREM is the full combination of REM and mixture model in which two 

EM processes are applied into the same loop of E-step and M-step. These steps are 

described in Table 1. 

Table1. Mixture Regression Expectation Maximization (MREM) Algorithm. 
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1. E-step: This is the first EM process. Missing values (zi
–)k and (xij

–)k for each kth PRM are 

fulfilled by equation (20) given current parameter Θ(t). Please pay attention that each kth 

PRM owns a partial complete data (Xk, Zk). In other words, the whole sample (X, Z) has 

K versions (Xk, Zk) for K PRMs. Note, such K versions are changed over each iteration. 

(𝑧𝑖
−)𝑘 =

∑ 𝛼𝑘𝑗
(𝑡)
𝛽𝑘𝑗0
(𝑡)

𝑗∈𝑀𝑖
+∑ 𝛼𝑘𝑙

(𝑡)(𝑥𝑖𝑙)𝑘𝑙∉𝑀𝑖

1 − ∑ 𝛼𝑘𝑗
(𝑡)𝛽𝑘𝑗1

(𝑡)
𝑗∈𝑀𝑖

(𝑥𝑖𝑗
−)

𝑘
= {

𝛽𝑘𝑗0
(𝑡)
+ 𝛽𝑘𝑗1

(𝑡) (𝑧𝑖)𝑘if(𝑧𝑖)𝑘is not missing

𝛽𝑘𝑗0
(𝑡)
+ 𝛽𝑘𝑗1

(𝑡) (𝑧𝑖
−)𝑘if(𝑧𝑖)𝑘is missing

 

The whole sample (X, Z) is fulfilled to become complete data when its missing values zi
–

and xij
– are aggregated from (zi

–)k and (xij
–)k of K versions (Xk, Zk), by equations (31) and 

(16). 

𝑧𝑖
− = ∑𝑐𝑘

(𝑡)(𝑧𝑖
−)𝑘

𝐾

𝑘=1

𝑥𝑖𝑗
− =∑𝑐𝑘

(𝑡)
(𝑥𝑖𝑗

−)
𝑘

𝐾

𝑘=1

 

2. M-step: This is the second EM process. The next parameter Θ(t+1) is determined by 

equations (21), (27), (28), and (29) and the complete data (X, Z) fulfilled in E-step. 

𝑐𝑘
(𝑡+1) =

1

𝑁
∑𝑃 (𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖 , 𝛼𝑘

(𝑡), (𝜎𝑘
2)(𝑡))

𝑁

𝑖=1

𝛼𝑘
(𝑡+1) = (𝑿𝑇𝑼(𝑡))

−1
𝑿𝑇𝑉𝑖

(𝑡)

(𝜎𝑘
2)(𝑡+1) =

∑ (𝑧𝑖 − (𝛼𝑘
(𝑡+1))

𝑇

𝑋𝑖)
2

𝑃 (𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖 , 𝛼𝑘
(𝑡), (𝜎𝑘

2)(𝑡))𝑁
𝑖=1

∑ 𝑃 (𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖 , 𝛼𝑘
(𝑡), (𝜎𝑘

2)(𝑡))𝑁
𝑖=1

𝛽𝑘𝑗
(𝑡+1) = (𝒁𝑇𝒁)−1𝒁𝑇𝑋𝑗

 

Where U(t) and V(t) are specified by equations (25) and (26) and, 

𝑃 (𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖 , 𝛼𝑘
(𝑡), (𝜎𝑘

2)(𝑡)) =
𝑐𝑘
(𝑡)𝑃𝑘 (𝑧𝑖|𝑋𝑖 , 𝛼𝑘

(𝑡), (𝜎𝑘
2)(𝑡))

∑ 𝑐𝑙
(𝑡)𝑃𝑙 (𝑧𝑖|𝑋𝑖 , 𝛼𝑘

(𝑡), (𝜎𝑘
2)(𝑡))𝐾

𝑙

𝑃𝑘 (𝑧𝑖|𝑋𝑖 , 𝛼𝑘
(𝑡), (𝜎𝑘

2)(𝑡)) =
1

√2𝜋(𝜎𝑘
2)(𝑡)

exp

(

 −
(𝑧𝑖 − (𝛼𝑘

(𝑡))
𝑇
𝑋𝑖)

2

2(𝜎𝑘
2)(𝑡)

)

 

 

The next parameter Θ(t+1) becomes current parameter in the next iteration. 

EM algorithm stops if at some tth iteration, we have Θ(t) = Θ(t+1) = Θ*. At that time, 

Θ* = (ck
*, αk

*, (σk
2)*, βkj

*) is the optimal estimate of EM algorithm. Note, Θ(1) at the 
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first iteration is initialized arbitrarily. Here MREM stops if ratio deviation between Θ(t) 

and Θ(t+1) is smaller than a small enough terminated threshold ε> 0 or MREM reaches 

a large enough number of iterations. The smaller the terminated threshold is, the more 

accurate MREM is. MREM uses both the terminated threshold ε = 0.1% = 0.001 and 

the maximum number of iterations (10000). The maximum number of iterations 

prevents MREM from running for a long time. 

MREM is also a clustering method whose each resulted cluster is represented by a 

pair (αk
*, (σk

2)*). In other words, each cluster is represented by a PRM. As a 

convention, these clusters are called conditional clusters or regressive clusters because 

the mean of each cluster is μk
* = (αk

*)TXi given a data point Xi. This is an unexpecting 

but interesting result of REM. Given an observation (Xi, zi)
T = (xi0, xi1,.., xin, zi)

T, if the 

kth PRM gives out the largest condition probability, it is most likely that Xi belongs to 

the kth cluster represented by such kth PRM. Let cl(Xi, zi, k) denote the probability of 

the event that a data point (Xi, zi)
T belongs to kth cluster (kth PRM). From equation (22), 

we have: 

𝑐𝑙(𝑋𝑖, 𝑧𝑖, 𝑘) = 𝑃(𝑌 = 𝑘|𝑋𝑖 , 𝑧𝑖, 𝛼𝑘
∗ , (𝜎𝑘

2)∗) =
𝑐𝑘
∗𝑃𝑘(𝑧𝑖|𝑋𝑖 , 𝛼𝑘

∗ , (𝜎𝑘
2)∗)

∑ 𝑐𝑙
∗𝑃𝑙(𝑧𝑖|𝑋𝑖 , 𝛼𝑘

∗ , (𝜎𝑘
2)∗)𝐾

𝑙

 

We use the complete case method mentioned in [2, p. 3] to improve the 

convergence of MREM. The parameters (αk
(1), βkj

(1))T at the first iteration of EM 

process are initialized in proper way instead that they are initialized in arbitrary way 

[20]. Let Xk’ be the complete matrix, which is created by removing all rows whose 

values are missing from Xk. Similarly, let Zk’ be the complete matrix, which is created 

by removing rows whose weights are missing from Zk. The advanced parameters (αk
(1), 

βkj
(1))T are initialized by equation (30) [1, p. 457]. 

𝛼𝑘
(1) = ((𝑿𝑘

′ )𝑇𝑿𝑘
′ )−1(𝑿𝑘

′ )𝑇𝑍𝑘
′

𝛽𝑘𝑗
(1) = ((𝒁𝑘

′ )𝑇𝒁𝑘
′ )−1(𝒁𝑘

′ )𝑇𝑋𝑘𝑗
′

 (30) 

Where Zk’ is the complete vector of non-missing outcome values for each kth PRM 

and Xkj’ is the complete column vector of non-missing regressor values for each kth 

PRM. 

The evaluation of MREM follows fully mixture model. For example, given input 

data vector X0 = (x01, x02,…, x0n), let z1, z2,…, zK be the values evaluated from K PRMs 

with optimal PRCs αk
* resulted from MREM shown in Table 1. 

𝑧𝑘 = (𝛼𝑘
∗)𝑇𝑋0 =∑𝛼𝑘𝑗

∗ 𝑥0𝑗

𝑛

𝑗=0

 

Where x00 = 1. The final evaluation z is calculated based on mixture coefficients, 

given data vector X0 = (x01, x02,…, x0n), as follows: 
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𝑧 = ∑𝑐𝑘
∗𝑧𝑘

𝐾

𝑘=1

=∑𝑐𝑘
∗(𝛼𝑘

∗)𝑇𝑋0

𝐾

𝑘=1

=∑𝑐𝑘
∗∑𝛼𝑘𝑗

∗ 𝑥0𝑗

𝑛

𝑗=0

𝐾

𝑘=1

 (31) 

In general, equation (31) is the final regression model of MREM. Following is the 

proof of equation (31). From equation (12), let 𝑧̂ be the estimate of response variable z, 

we have: 

𝑧̂ = 𝐸(𝑧|𝑃(𝑧|𝑋, Θ∗)) = ∑𝑐𝑘
∗𝐸𝑘(𝑧|𝑃𝑘(𝑧|𝑋, 𝛼𝑘

∗ , (𝜎𝑘
2)∗))

𝐾

𝑘=1

=∑𝑐𝑘
∗(𝛼𝑘

∗)𝑇𝑋

𝐾

𝑘=1

∎ 

We have assumed until now that the number K of PRMs is pre-defined and thus, 

another problem of MREM is how to determine K. Here we propose a so-called 

increasing algorithm without pre-defining K. In other words, REM associated with 

increasing algorithm can automatically determine K. Let k be initilized by 1, 

Followings are two steps of increasing algorithm: 

1. Executing MREM with k PRMs and then, calculating the fitness f(k) of the 

resulted mixture model with k PRMs. The fitness f(k) measures adequacy of 

given mixture model. 

2. Let l = k + 1, trying to execute MREM with k PRMs and then, to calculate the 

fitness f(l) of the resulted mixture model with l PRMs. If f(l) > f(k) then, setting k 

= l and going back step 1; otherwise, the increasing algorithm stops with k PRMs. 

The essence of increasing algorithm is how to calculate the fitness f(k) because the 

final mixture model is the one whose fitness is largest. We define f(k) as the sum of 

optimal partial probabilities Pc(zc | Xi, αc
*, (σc

2)*) over all Xi. Equation (32) is the 

definition of f(k). 

𝑓(𝑘) =∑ max
𝑐=1,2,…,𝑘

𝑃𝑐(𝑧𝑐|𝑋𝑖 , 𝛼𝑐
∗, (𝜎𝑐

2)∗)

𝑋𝑖

 (32) 

Where, 

𝑧𝑐 = (𝛼𝑐
∗)𝑇𝑋𝑖 =∑𝛼𝑐𝑗

∗ 𝑥𝑖𝑗

𝑛

𝑗=0

 

For explanation, according to equation (32), for each data point Xi, we determine 

the largest partial probability Pc(zc | Xi, αc
*, (σc

2)*) over c = 1, 2,…, k as the optimal 

partial probability. Later one, the fitness f(k) is the sum of all optimal partial 

probabilities over all Xi. We make experiment on MREM associated with increasing 

algorithm. I feel that increasing algorithm is not optimal because it seems to be a 

work-around solution for determining the number K of PRMs but I currently cannot 

think out better algorithm. In furture, we can research hiearchical clustering or BIC 

criterion [12] as alternative solution. 
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3. RESULTS AND DISCUSSIONS 

The purpose of the experiment here is to compare MREM and REM. We use xclara 

sample of R statistical environment for testing MREM and REM. The xclara dataset 

was edited and published by Vincent Arel-Bundock [21]. It has 3000 points with 3 

clusters. There are two numerical variables V1 and V2 as x and y coordinates of points 

in the xclara dataset. We consider V1 as regressor and V2 as response variable. The 

xclara dataset was originally used for clustering by Anja Struyf, Mia Hubert, and 

Peter Rousseeuw [22] but here it is used for regression analysis. 

The dataset is split separately into one training dataset (50% sample) and one 

testing dataset (50% sample). Later on, the training dataset is made sparse with loss 

ratios 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%, which is similar to our 

previous research [20]. Missing values are made randomly regardless of regressors or 

response variable. For example, the xclara training dataset (50% xclara sample) has 

50%*3000=1500 rows and each row has 2 columns (V1 and V2) and so the training 

dataset has 1500*5 = 7500 cells. If loss ratio is 10%, there are only 10%*7500=750 

missing values which are made randomly among such 7500 cells. In other words, the 

incomplete training dataset with loss ratio 10% has 7500 – 750 = 6750 non-missing 

values. Of course, the testing dataset (50% sample) is not made sparse. Each pair of 

incomplete training dataset and testing dataset is called testing pair. There are ten 

testing pairs for each sample. As a convention, the origin testing pair which has no 

missing value in training dataset is the 0th pair. The 0th pair is called complete pair 

whereas the 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, and 9th pairs are called incomplete pairs. 

Firstly, we test MREM and REM with xclara sample. Table 2 [20] shows ten testing 

pairs of xclara sample. 

Table 2. Ten testing pairs of gestational sample. 

Pair Training dataset Testing dataset Loss ratio 

0 xclara.base xclara.test 0% 

1 xclara.base.0.1.miss xclara.test 10% 

2 xclara.base.0.2.miss xclara.test 20% 

3 xclara.base.0.3.miss xclara.test 30% 

4 xclara.base.0.4.miss xclara.test 40% 

5 xclara.base.0.5.miss xclara.test 50% 

6 xclara.base.0.6.miss xclara.test 60% 

7 xclara.base.0.7.miss xclara.test 70% 

8 xclara.base.0.8.miss xclara.test 80% 

9 xclara.base.0.9.miss xclara.test 90% 
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Table 3 shows ten resulted regression models of REM corresponding to ten testing 

pairs of xclara sample. 

Table 3. Ten resulted regression models of REM given xclara sample.  

Pair Regression model 

0 V2 = 34.0445 - 0.2790*(V1) 

1 V2 = 36.8255 - 0.3384*(V1) 

2 V2 = 36.5624 - 0.3393*(V1) 

3 V2 = 37.4537 - 0.4022*(V1) 

4 V2 = 45.8814 - 0.5830*(V1) 

5 V2 = 48.8888 - 0.6477*(V1) 

6 V2 = 55.9764 - 0.8593*(V1) 

7 V2 = 48.8888 - 0.6477*(V1) 

8 V2 = 69.1886 - 1.0823*(V1) 

9 V2 = 62.2939 - 1.1417*(V1) 

Table 4 shows ten resulted mixture regression models of MREM corresponding to 

ten testing pairs of xclara sample. 

Table 4. Ten resulted mixture regression models of MREM given xclara sample.  

Pair Mixture regression model 

0 {V2 = 34.0445 - 0.2790*(V1): coeff=1.0000, var=962.0000} 

1 
{V2 = 16.6425 - 0.3065*(V1): coeff=0.6654, var=188.4319}, {V2 = 62.3919 - 0.0429*(V1): 

coeff=0.3346, var=86.8709} 

2 
{V2 = 13.2805 - 0.3332*(V1): coeff=0.4909, var=124.9130}, {V2 = 64.0639 - 0.0980*(V1): 

coeff=0.3031, var=102.6651}, {V2 = 32.5172 - 0.2432*(V1): coeff=0.2060, var=0.0573} 

3 
{V2 = 13.2047 - 0.3220*(V1): coeff=0.4410, var=138.2844}, {V2 = 66.5083 - 0.1668*(V1): 

coeff=0.2424, var=91.6464}, {V2 = 31.9337 - 0.2667*(V1): coeff=0.3166, var=0.0323} 

4 
{V2 = 14.5836 - 0.3404*(V1): coeff=0.3772, var=132.5547}, {V2 = 65.9884 - 0.1683*(V1): 

coeff=0.2224, var=99.6319}, {V2 = 33.3280 - 0.2766*(V1): coeff=0.4004, var=0.0547} 

5 
{V2 = 33.5698 - 0.2666*(V1): coeff=0.5096, var=0.0346}, {V2 = 65.8616 - 0.1536*(V1): 

coeff=0.1906, var=83.6705}, {V2 = 13.6946 - 0.3393*(V1): coeff=0.2998, var=152.4883} 

6 
{V2 = 73.1729 - 1.1518*(V1): coeff=0.8835, var=49.5093}, {V2 = 7.3758 + 1.0052*(V1): 

coeff=0.1165, var=296.8865} 

7 
{V2 = 33.5698 - 0.2666*(V1): coeff=0.5096, var=0.0346}, {V2 = 65.8616 - 0.1536*(V1): 

coeff=0.1906, var=83.6705}, {V2 = 13.6946 - 0.3393*(V1): coeff=0.2998, var=152.4883} 

8 {V2 = 69.1886 - 1.0823*(V1): coeff=1.0000, var=58.6193} 

9 {V2 = 62.2939 - 1.1417*(V1): coeff=1.0000, var=21.6927} 
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In Table 4, each PRM is wrapped in two brackets “{.}”. Notation “coeff” denotes 

mixture coefficient and notation “var” denotes the variance of a PRM. Note, MREM 

is also a clustering method where each regressive cluster is represented by a PRM. In 

other words, each PRM is considered as a regressive mean or regressive 

representative of a regressive cluster. However, regressive clustering with MREM is 

different from usual clustering. When data is visualized, we will see that the good 

number of regressive clusters is 2 whereas the best number of usual clusters in xclara 

sample is 3 [21]. Figure 1 shows the unique regressive cluster of the training dataset 

of the 0th testing pair. 

 

Figure 1. Unique cluster of the training dataset of the 0th pair. 

The PRM is drawn as a thin and solid line going through the unique regressive 

cluster. Of course, such solid line shows the line equation of the PRM, V2 = 34.0445 - 

0.2790*(V1). 

Figure 2 shows two regressive clusters of the training dataset of the 1st testing pair. 

Note, missing values in the 1st training dataset are fulfilled after MREM finished. 
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Figure 2. Two regressive clusters of the training dataset of the 1st pair. 

As seen in figure 2, there are two solid lines which represents two PRMs. The upper 

solid line represents the PRM V2 = 64.0639 - 0.0980*(V1) whereas the lower solid 

line represents the PRM V2 = 62.3919 - 0.0429*(V1). 

Given xclara sample, we compare MREM with REM with regard to the ratio mean 

absolute error (RMAE). Let W = {w1, w2,…, wK} and V = {v1, v2,…, vK} be sets of 

actual weights and estimated weights, respectively. Equation (33) specifies the RMAE 

metric [23, p. 814]. 

𝑅𝑀𝐴𝐸 =
1

𝐾
∑|

𝑣𝑖 − 𝑤𝑖
𝑤𝑖

|

𝐾

𝑖=1

 (33) 

The smaller the RMAE is, the more accurate the algorithm is. Table 5 is the 

comparison of REM and MREM with regard to RMAE given xclara sample. 

Table 5. Comparison of REM and MREM regarding RMAE, given xclara sample 

Pair RMAE 

(REM) 

RMAE 

(MREM) 

0 5.4722 5.4722 

1 5.3672 5.7804 

2 5.2846 5.6044 

3 4.6337 5.1166 
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4 4.3681 5.3686 

5 4.3025 5.5701 

8 4.912 5.2689 

7 4.3025 5.5701 

8 6.1709 6.1709 

9 7.2932 7.2932 

Average 5.2107 5.7215 

From Table 5, given xclara sample, MREM is less accurate than REM according 

RMAE metric. When I test MREM with other samples, it is also not better than REM 

in accuracy. This is an unexpected result which is easy to lead a conclusion that 

MREM is not useful. The reason of this unexpected result is that we cannot choose a 

right regressive cluster for given regressors X to estimate response value z. The 

equation (31) is the average formula for evaluating mixture model orver K PRMs and 

so it will produce unexpected bias. For example, I generate a sample in which there is 

only one regressor x and only one response variable z. There are 1000 points (x, z) in 

the generated sample. The variable x is randomized from 0 to 1. From 0 to 0.5, x and z 

satisfy the linear equation z = x with variance 0.001. From 0.5 to 1, x and z satisfy the 

linear equation z = 1 – x with variance 0.001. The probability of the equation z = x is 

equal to the probability of the equation z = 1 – x, which is 0.5. MREM with pre-

defined K = 2 produces the mixture model {{z = 0.0036 + 0.9765*(x), coeff=0.4634, 

var=0.0011}, {z = 0.9767 - 0.9713*(x), coeff=0.5366, var=0.0009}} which is an 

approximation of such two linear equations. Without loss of generity, training dataset 

is also used as testing dataset. Figure 3 shows the mixture model (K = 2) with 

regressive clusters. 
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Figure 3. Regressive clusters of the generated sample. 

In figure 3, the approximation of the equation z = x is z = 0.0036 + 0.9765*(x) with 

mixture coefficient c1 = 0.4634 whereas the approximation of the equation z = 1 – x is 

z = 0.9767 - 0.9713*(x) with mixture coefficient c2 = 0.5366. Given generated sample, 

the RMAE of MREM is 5.3957 which is worse than the RMAE of REM (2.5790). 

Obviously, although MREM produces a good approximation of the linear equations z 

= x and z = 1 – x such as z = 0.0036 + 0.9765*(x) and z = 0.9767 - 0.9713*(x), 

respectively but it cannot select the right one for estimating response values. MREM 

instead produces average values according equation (31). As a result, MREM gives 

out worse accuracy. If MREM can select the equation z = 0.0036 + 0.9765*(x) and the 

equation z = 0.9767 - 0.9713*(x) for estimating response values for 0 ≤ x < 0.5 and 

0.5 ≤ x ≤ 1, respectively then, the RMAE of MREM becomes 0.4 which is better the 

RMAE of REM (2.5790). In general, MREM is still useful because a different 

approach for mixture model can be referred by fusing linear equations of MREM into 

a unique curve equation. The curve modeling with regression analysis was proposed 

by Faicel Chamroukhi, Allou Samé, Gérard Govaert, and Patrice Aknin [4]. 

4. CONCLUSIONS 

In general, the essence of MREM is to integrate two EM processes (one for 

exponential estimation of missing values and one for mixture model estimation of 

parameters) into the same loop with expectation that MREM will take advantages of 

both REM in fulfilling incomplete data and mixture model in processing 

complicatedly varied data. The proposed equation (27) is the key to combine REM 

and mixture model. Unfortunately, experimental result shows that MREM is less 

accurate than REM because MREM causes biases in estimating response values by 
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average formula specified by equation (31). However, MREM is essential because for 

further research, we will research some approximation techniques to fuse linear 

equations of mixture model into a unique curve equation. The curve modeling with 

regression analysis was poposed by Faicel Chamroukhi, Allou Samé, Gérard Govaert, 

and Patrice Aknin [4]. 
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