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 Cancer is one of the major disorders with increasing rates of morbidity and mortality. Recent 

drug discovery of anti cancer drug has identified several molecular targets and tried to 

achieve a goal of therapeutic effecative and safe molecule. Amongst these, system xc
-
 

antiporter is a novel promising target to control cancer progression. This antiporter is found to 

be over expressed in majority of cancer cells and functions by transporting amino acids, 

cystine and glutamate, in opposite directions. System xc
-
 antiporter uptakes one molecule of 

cystine with the release of one molecule of glutamate in extracellular space. As already 

known cystine is precursor for the synthesis of glutathione, an in vivo antioxidant which is 

utilized by cancer cells to combat oxidative stress. At the other side the released glutamate (an 

excitatory neurotransmitter), when released in higher concentration, may over excite neurones 

(specifically and brain tumour) causing cell death to metastasise cancer cells. Therefore, 

through inhibition of system xc
-
 antiporter, it is possible to kill cancer cells by disturbing their 

redox status along with through prevention of excitotoxcity by glutamate. In context to this, 

several researches have reported diverse molecules having system xc- antiporter inhibition 

potential. Amongst these molecules, erastin and its analogues are most potent system xc- 

antiporter inhibitors but it lacks preclinical data. Moreover, sulfasalazine, a FDA approved 

drug also showed good inhibition potential against this antiporter and therefore in our study 

we have attempted to construct pharmacophore model using this series to aid in the discovery 

of potent inhibitors with desirable safety. Results of this study exhibited successful 

development of pharmacophore model with phase survival score. Additionally, fit scores of 

sulfasalazine analogues were also in acceptable range. Hence, the developed pharmacophore 

model may be used for design of potent System xc- antiporter inhibitors.  

Please cite this article in press as Dhaval V. Patel et al. Pharmacophore Modelling for the Discovery of System xc
-
 Antiporter 

Inhibitors. Indo American Journal of Pharmaceutical Research.2017:7(08). 
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INTRODUCTION 

System xc
-
 antiporter is an anionic amino acid transporter present on number of cells within body [1]. The prime function of 

System xc
-
 antiporter is to uptake one molecule of cystine with release of one molecule of glutamate in equal concentrations [2]. Thus, 

it helps in maintaining redox status of cancer cells through continuous supply of glutathione (GSH) [3]. Additionally, in CNS, system 

xc
-
 antiporter supports nerve conduction through the release of an excitatory neurotransmitter glutamate [4]. Structurally, system xc

-
 

antiporter is made up of two polypeptide chains viz. heavy chain (4F2hc) and light chain (xCT). The main functional characteristic of 

system xc
-
 antiporter is associated with light chain while the heavy chain is required for trafficking of xCT [5].  

There is ample generation of reactive oxygen species (ROS) in cancer cells due to altered metabolic state which may cause 

oxidative stress. Therefore, cancer cells need to have protective mechanism. In this regard, cancer cells over express system xc
-
 

antiporter which helps in maintaining redox status and ultimately protect cancer cells. Several in vitro experiments reported that 

system xc
-
 antiporter is over expressed in cancer cell lines like glial [7], head and neck [8], lung [9], breast [10], gastrointestinal [11], 

pancreatic [12], ovarian [13] and colon [11]. Therefore, system xc
-
 antiporter is an important target for the treatment of above 

motioned cancer.  

The system xc
-
 mediated amino acid transport is a rate limiting step for production of glutathione (GSH) in cancer cell lines 

thereby inhibition of system xc
-
 antiporter may throw cancer cells off-balance in their redox environment, causing apoptosis due to 

excessive ROS production. Two FDA-approved drugs, sulfasalazine (SSZ) and sorafenib are potent inhibitors of system xc
-
. 

Additionally, erastin was shown to have the highest potency amongst all system xc- inhibitors investigated till date [13, 14]. 

Sorafenib, a conventional molecularly-targeted anticancer drug, is associated with lot of adverse effects while erastin lacks promising 

in vivo anticancer data. Moreover, the enzymatic breakdown of SSZ in gut makes it poorly bioavailable [15]. Furthermore, many 

researchers have synthesized derivatives of amino methylisoxazole propionic acid (AMPA) and amino-3-carboxy-5-methylisoxazole 

propionic acid and analogues of SSZ to evaluate their system xc
-
 inhibitory activity [15]. Amongst these inhibitors, SSZ, an approved 

anti-inflammatory drug, is a promising lead for further chemical optimization for potency and pharmacokinetic properties since it 

inhibits system xc
-
 with moderate potency and it lacks the adverse effects associated with approved anticancer drugs. However, major 

limitations of SSZ include its very poor systemic bioavailability (approximately 12%), its rapid cleavage by colonic bacteria into 

inactive constituents and short half-life (~80 min). Its BBB permeability is also not known. 

Ligand based pharmacophore modelling is a tool which helps in identifying the chemical attributes required by related any 

molecules to have ligand specific biological activity. Since already mentioned earlier, we still lack the clinically available system xc- 

antiporter inhibitor for the treatment of variety of cancers. Therefore our main objective was to construct pharmacophore model and 

finally use the same for designing novel System xc- antiporter inhibitors.  

 

MATERIALS AND METHODS 

Selection of ligands 

Structurally diverse molecules with their respective system xc
-
 antiporter inhibition potential have been reported in earlier 

studies. However, we only used sulfasalazine analogues for pharmacophore modelling due to its reported safety in humans.  

 

Ligand preparation 

The molecular structures sulfasalazine and its anlogues were drawn using chemdraw office suite ultra v 9.0 software 

(CambridgeSoft Corp., UK). Schrödinger Release 2016-1: LigPrep [21] was used to assign appropriate ionization states, ring 

conformations, and stereoisomers. Finally energy minimization of all the molecules was performed before constructing 

pharmacophore model. 

 

Ligand based pharmacophore modelling 

The pharmacophore model was generated using sulfasalazine analogues using Schrödinger Release 2016-1. The common 

pharmacophore hypothesis was obtained through PHASE followed by tree based partitioning algorithm having maximum tree depth of 

four. This was performed to recognize general pharmacophoric feature to generate the possible model. The default setting with 

terminal box of 1Å was used to generate common pharmacophore. A set of SMARTs was used to represent internal pharmacophore 

site.  Briefly, three possible geometries defined the physical characteristics of sites where site is either located on single atom OR the 

site is located on a single atom as like point, but it will be assigned based on one or more vectors originating from that atom and 

according to directionality OR the site is located on the group of atoms at the centroid. So, four point pharmacophore model was 

generated where the pharmacophore includes two Hydrogen bond acceptor, one Hydrogen bond donor and one aromatic ring. 

 

Scoring 

To examine common pharmacophore hypothesis, scoring function was used. Overall maximum root mean square deviation 

(RMSD) value of 1.2 A   was used to obtain the better alignment of the ligands. Quality of alignment is measured by survival score. 

 

RESULTS AND DISCUSSION  

Sulfasalazine and its analogues were used to develop a pharmacophore model. Sulfasalazine moiety contains an aromatic 

amine attached to the diazo linker on left side and two aromatic ring having sulphonamide as a linker on right side. As mentioned 

earlier, we selected for points to develop hypothesis and considering these features in all molecules, number of models were 

generated. Amongst these several hypothesis, we selected three hypothesis based on survival score (Table 1).   
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Table 1: Three best pharmacophore hypotheses along with their respective phase survival scores. 

 

Sr. no Model Phase survival score 

1 AADR.2 2.51 

2 AADR.1 2.71 

3 AAAR.27 2.77 

 

Additionally, we also carried out PLS analysis by keeping grid spacing 1 Ǻ to derive three regression models. The best fitted  

model- I was AADR.1 with phase survival score 2.51 (Table 1). The pharmacophore hypothesis for model-I is depicted in Figure1 

where hydrogen bond donor (D) are shown in light blue sphere centred on H atom, with an arrow pointing in the direction of potential 

H bond. Hydrogen bond acceptors (A) are shown in light red sphere centred on the atom with the lone pair, with arrow pointing in the 

directions of lone pairs. The aromatic ring is shown in orange torus in the plane of the ring. 

 

 
 

Figure 1. A) Pharmacophore distances between pharmacophoric sites, B) The common pharmacophore based alignment of   

sulfasalazine analogues. 

 

According to the best hypotheses (Figure 1A), the distance between one H- bond acceptor (A1) and H-bond donor (D4) 

should be 2.48 Å while the H-bond acceptor (A1) and aromatic ring (R) should be 6.22 Å far from each other. The distance between 

two hydrogen bond acceptor (A1 and A2) and A1 to R should be 3.84 and 3.9 Å, respectively. Moreover, the distance between D4 and 

R1 should be around 4.59 Å.  We have also shown the alignment of sulfasalazine and analogues, which defines the basic 

pharmacophore (AADR model) requirement for system xc
-
 inhibition (Figure 1B). Additionally, we also calculate the fit score of each 

participating molecule (Table 2).  
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Table 2: Fit score of the sulfasalazine analogues when aligned with pharmacophore template. 
 

Sr. No Molecule name Molecule structure Fit score 

1 Sulfasalazine 6 

HO

O

S

O

O

NH

N

 

2.5 

2 Sulfasalazine 6A 

N

NHS

O

O

O

O

 

2.64 

3 Sulfasalazine 7 

N

NHS

O

O

HO

O

 

2.58 

4 Sulfasalazine 8 HO

O

HO

N
N

 

2.05 

5 Sulfasalazine 9 
HO

O

HO
 

2.96 

 

CONCLUSION 

We successfully developed pharmacophore model using sulfasalazine and its analogues.  The bottom line of our research is 

that, the generated pharmacophore model has acceptable phase survival score and hence can be used for designing novel system xc- 

inhibitors in future studies. The developed inhibitors through this model with proven biology can be further used to refine the model 

and then again used to develop more potent compounds.   
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List of abbreviations 

FDA : Food and drug administration 

ROS : Reactive oxygen species 

4F2hc : Heavy chain of system xc- antiporter 

Xct : Light chain of system xc- antiporter 

GSH : Glutathione  

SSZ : Sulfasalazine  

AMPA : Amino methylisoxazole propionic acid 

BBB : Blood brain Barrier  

RMSD : Root mean square deviation 

PLS : Partial least square 
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