

INDO AMERICAN JOURNAL OF PHARMACEUTICAL RESEARCH

DEVELOPMENT AND VALIDATION OF STABILITY INDICATING HPLC METHOD FOR ESTIMATION OF RELATED SUBSTANCES IN AVANAFIL

Pavani Peddi^{1*}, Dr.T.Raja Rajeswari², Dr. Ramana Reddy Ganji³

¹PVP Siddhartha Institute of Technology, Vijayawada-520010, India. ²Y.A. Govt. College for Women, Chirala. ³Acharya Nagarjuna Univ, Guntur, India.

ARTICLE INFO	ABSTRACT
Article history	The current proposal of the research is to estimation of related substances by using high-
Received 16/04/2017	performance liquid chromatographic method has been developed and validated for the
Available online	determination of Avanafil. Reversed-phase chromatography was performed on Waters 2489
30/04/2017	UV 2695 pump, Waters 2998 PDA 2695 pump Software Empower ² photodiode array detector
	using ACE C18 (250 mm × 4.6 mm, 5 µm particle size) column with pH 4.2 buffer: methanol
Keywords	in the ratio of 90:10 as mobile phase A and acetonitrile as mobile phase B at a flow rate of 1.0
Avanafil,	mL/min. by gradient elution with UV detection at 245 nm. Recovery and Linearity was
Estimation of Related	observed well within the limits (R^2 = more than 0.99 for concentration range of LOQ to 150%
Substances,	level for linearity and the % recovery was within the ICH acceptance limits of 85-115%) for
Liquid Chromatography.	all the impurities. The limit of quantitation (LOQ) and limit of detection (LOD) were found to
	be less than 0.05%. The method was validated as per ICH guidelines. The RSD for intra-day
	and inter-day (<3.0% RSD) precision were found to be less than 1 %. The percentage
	recovery was in good agreement with the labeled amount in the pharmaceutical formulations.
	from the method validation data, it can be concluded that the method is simple, specific,
	precise and accurate for the determination of Avanafil in pharmaceutical formulations.

Corresponding author

Pavani Peddi Dept. of Chemistry PVP Siddhartha Institute of Technology, Vijayawada-520010, India. pavani.peddi@yahoo.co.in

Please cite this article in press as **Pavani Peddi** et al. Development and Validation of Stability Indicating HPLC Method for Estimation of Related Substances In Avanafil . Indo American Journal of Pharmaceutical Research.2017:7(04).

 ${}^{\rm Page}8318$

Copy right © 2017 This is an Open Access article distributed under the terms of the Indo American journal of Pharmaceutical Research, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. *www.iajpr.com*

INTRODUCTION

Avanafil (Figure-1) as (S) -4-[(3-Chloro-4 methoxybenzyl) amino] - 2- [2- (hydroxymethyl) - 1 - pyrrolidinyl] - N -(2pyrimidinylmethyl) - 5-pyrimidinecarboxamide. It is a practically White crystalline powder. It is freely soluble in Methanol & in Acetonitrile, Practically insoluble in water, soluble in 0.1 mol/L hydrochloric acid. Its molecular formula C23H26ClN7O3 and calculated molecular weight of 483.95 gm/mol. The physiologic mechanism of erection of the penis involves release of nitric oxide (NO) in the corpus cavernosum during sexual stimulation. NO then activates the enzyme guanylate cyclase, which results in increased levels of cGMP, producing smooth muscle relaxation in the corpus cavernosum and allowing inflow of blood. Avanafil has no direct relaxant effect on isolated human corpus cavernosum, but enhances the effect of NO by inhibiting PDE5, which is responsible for degradation of cGMP in the corpus cavernosum. Because sexual stimulation is required to initiate the local release of nitric oxide, the inhibition of PDE5 has no effect in the absence of sexual stimulation. Studies in vitro have shown that avanafil is selective for PDE5. Its effect is more potent on PDE5 than on other known phosphodiesterases (greater than 100-fold for PDE6; greater than 1,000-fold for PDE4, PDE8 and PDE10; greater than 5,000-fold for PDE2 and PDE7; greater than 10,000-fold for PDE1, PDE3, PDE9, and PDE11). Avanafil is greater than 100- fold more potent for PDE5 than PDE6, which is found in the retina and is responsible for phototransduction. In addition to human corpus cavernosum smooth muscle, PDE5 is also found in other tissues including platelets, vascular and visceral smooth muscle, and skeletal muscle, brain, heart, liver, kidney, lung, pancreas, prostate, bladder, testis, and seminal vesicle. Erectile dysfunction (ED) is sexual dysfunction characterized by the inability to develop or maintain an erection of the penis during sexual performance. A penile erection is the hydraulic effect of blood entering and being retained in sponge-like bodies within the penis. The process is often initiated as a result of sexual arousal, when signals are transmitted from the brain to nerves in the penis. Erectile dysfunction is indicated when an erection is difficult to produce. Avanafil is an effective treatment option for males suffering from ED. Its main advantage over the other available PDE5 inhibitors is its faster onset of action.¹⁻³ Till now only some methods published on Avanafil⁴⁻⁷ but no stability indicating method published till now.

However no method has been published for the estimation of impurities in Avanafil tablets. the author has tried to develop a simple robust stability indicating analytical method by using HPLC for the estimation of impurities in Avanafil pharmaceutical substance. In the present work a simple estimation of impurities in Avanafil reverse phase liquid chromatographic method has been developed for the determination of impurities and validated as per ICH guidelines¹¹. In the present work we developed simple, rapid and accurate reverse phase liquid chromatographic method for the determination of Avanafil and its impurities.

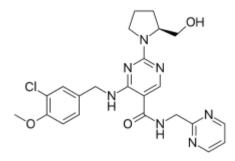


Figure: 1.1 Chemical Structure of Avanafil.

Related Substance Structures:

Figure: 1.2 Chemical Structure of related compound-1 4-(3-Chloro-4-methoxybenzylamo)-2-((S)-2-(hydroxymethyl)pyrrolidin-1-yl)pyrimidine-5-carboxylicacid Figure: 1.3 Chemical Structure of related compound-2 Ethyl-4-(3-Chloro-4-methoxybenzlamino)-2-((S)-(hydroxymethyl)pyrrolidin-1-yl)-pyrimidine-5-carboxylate Figure: 1.4 Chemical Structure of related compound-3 Ethyl-4-(3-Chloro-4methoxybenzylamino)-2-(methylsulfinyl)pyrimidine-5-carboxylate Figure: 1.5 Chemical Structure of related compound-4 Ethyl 7-((3-Chloro-4-methoxybenzyl)amino)-2-hydroxypyrimidine-5-carboxylate Figure: 1.6 Chemical Structure of related compound-5 (S)-2-(2-(Hydroxymethyl)pyrrolidin-1-yl)4-((4+-methoxybenzyl)amino)-N-(oyrimidin-2-ylmethyl)pyrimidine-5-carboxamide Figure: 1.7 Chemical Structure of related compound-6 (S)-(1-(4-((3-Chloro-4-methoxybenzyl)amino)-5-((Pyrimidin-2-ylmethyl)Carbomoyl) pyrimidin-2-yl)Pyrrolidin-2-yl)methyl acetate

Experimental

Reagents & Chemicals:

Potassium dihydrogen Phosphate, Methanol, Acetonitrile (HPLC grade), Potassium hydroxide, were obtained from Merck (India). All chemicals were of an analytical grade and used as received.

Chromatographic conditions:

Chromatographic separation was achieved by using a Waters 2489 UV 2695 pump, Waters 2998 PDA 2695 pump Software Empower² photodiode array detector using ACE C18 (250 mm × 4.6 mm, 5 μ m particle size) column with pH 4.2 buffer: methanol (95:5) as mobile phase A and Acetonitrile as mobile phase B by using gradient mode of elution at a flow rate of 1.0 mL/min. with UV detection at 245 nm. Column maintained at temprature 35 °C, sample temprature 5°C. The overall run time was 60 min. and the flow rate was 1.0 mL/min. 10 µl of sample was injected into the HPLC system. Retention times of impurities were 11.1 for RC-1, 14.1 for RC-2,21.4min. for RC-3,27.55 for RC-4, 29.64 for RC-5, 42.21 for RC-6 and about 19 min for avanafil.

Method Validation

System Suitability

Perform the system suitability by analyzing the standard solution six times and sensitivity solution once as per recommendations from US pharmacopeia. Calculate the theoretical plates and tailing for main peak and S/N ratio for sensitivity solution.

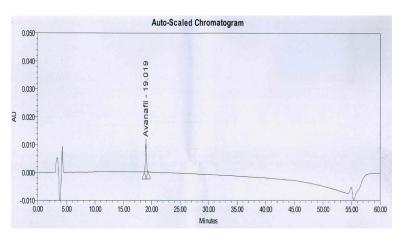


Figure: 1.5 Standard chromatogram of Avanafil by proposed method.

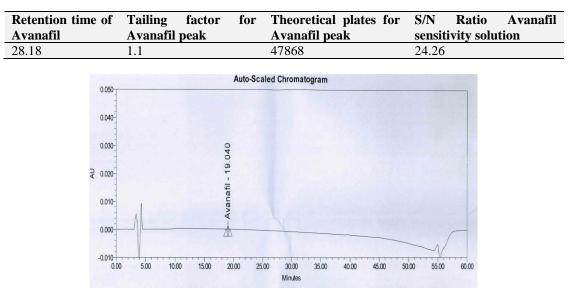
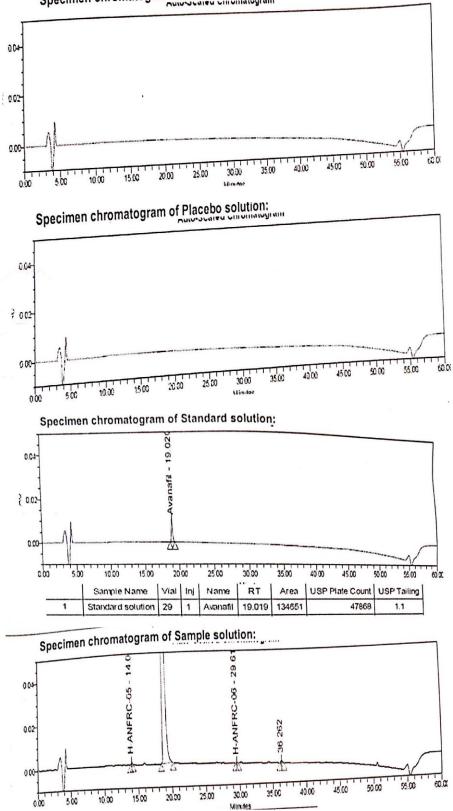
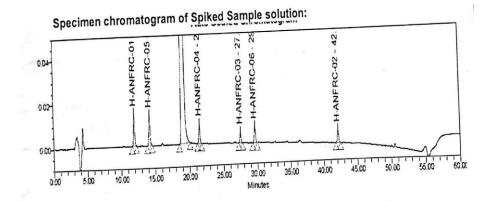


Table: 1.1 Summary of system suitability.


Figure: 1.6 Sensitivity Solution chromatogram of Avanafil.


Specificity⁸⁻¹⁴

Prepare and analyze the solutions of monohydroxy impurity, BND-VI, Isopropyl ester impurity and Avanafil each individually. Prepare a spiked solution of each potential impurity to the Avanafil drug substance and analyze. Perform the analysis using PDA detector and determine the peak purity.

$$^{\rm age}8320$$

S.No.	Condition	Purity angle	Purity threshold	Purity flag
1	Control sample	0.103	0.295	No
2	Spiked sample	0.054	0.255	No
3	5N Hydrochloric acid-7Hrs at 90°C	0.092	0.270	No
4	5N Sodium hydroxide-7Hrs at 90°C	0.087	0.252	No
5	5% Hydrogen peroxide-7Hrs at 90°C	0.087	0.249	No

Figure: 2.0 Specificity chromatogram of Spiked Solution and Forced Degradation summary.

Table: 1.3 summary of retention time, and relative retention time for known impurities.

Peak Name	Retention Time	Relative retention time(RRT)
RC-1	11.13	0.63
RC-2	14.11	0.75
Avanafil	19.00	1.00
RC-3	21.44	1.13
RC-4	27.54	1.45
RC-5	29.64	1.56
RC-6	42.18	2.22

This study showed that all the known impurities of Avanafil are adequately resolved. Therefore the method is selective for the determination of related substances in Avanafil.

Limit of detection⁸⁻¹⁴

Component	Concentration (mg/ml)	Signal to noise	LOD (%)
RC-1	0.01485	3.9:1	0.07485
RC-2	0.01867	3.9:1	0.09400
Avanafil	0.01455	3.9:1	0.07273
RC-3	0.01543	3.2:1	0.07714
RC-4	0.01400	3.3:1	0.07029
RC-5	0.01742	3.4:1	0.08677
RC-6	0.01441	3.7:1	0.07206

The limit of detection values obtained for each impurity and Avanafil are within the acceptance criteria.

Limit of Quantitation

Component	Concentration (mg/ml)	Signal to noise	LOQ (%)
RC-1	0.247	9.9:1	0.048
RC-2	0.256	9.9:1	0.049
Avanafil	0.240	9.5:1	0.048
RC-3	0.270	10.2:1	0.054
RC-4	0.246	10.3:1	0.049
RC-5	0.269	9.4:1	0.054
RC-6	0.245	9.7:1	0.049

Table: 1.5 Limit of Quantitation for Avanafil and impurities.

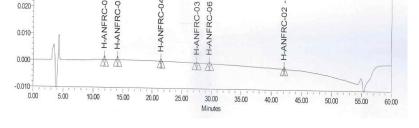
Limit of quantitation values obtained for each impurity and Avanafil are within the acceptance criteria.

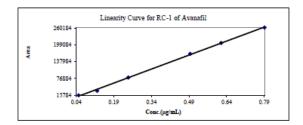
Precision at LOQ

The precision at LOQ is performed by analyzing six replicate injections of the standard solution containing all known impurities and Avanafil at LOQ level. . Determine the percentage relative standard deviation of peak areas of each impurity and Avanafil. Results of peak area of impurities and Avanafil are summarized in table 9.

RC-1 **RC-2** Avanafil RC-3 RC-4 **RC-5** RC-6 Inj. No 1 15784 8051 11867 4872 8979 15526 8108 2 15689 8093 11200 4257 8413 15631 8109 3 15789 9150 12087 4751 8319 15743 8307 4 8400 12500 4689 8719 16413 9710 15827 5 15978 8800 11126 4891 8261 16428 8327 6 16100 8200 12047 4367 8971 15783 9157 8449 8620 Mean 15861 11805 4638 8610 15921 %RSD 0.95 5.20 4.57 5.73 3.76 2.50 7.67 nuto ocurca onromatogram 0.050 0.040 H-ANFRC-01 - 11.882 H-ANFRC-05 - 14.078 H-ANFRC-04 - 21.461 H-ANFRC-03 - 27.517 639 H-ANFRC-02 - 42.108 0.030-29. 0.020

Table: 1.6 Summary of peak areas for precision at LOQ.




Fig. Typical Chromatogram at LOQ level for Avanafil and its impurities.

Linearty and Range⁸⁻¹⁴

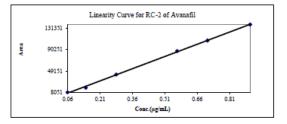
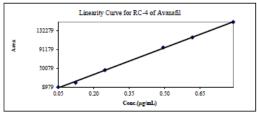
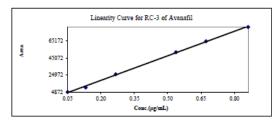
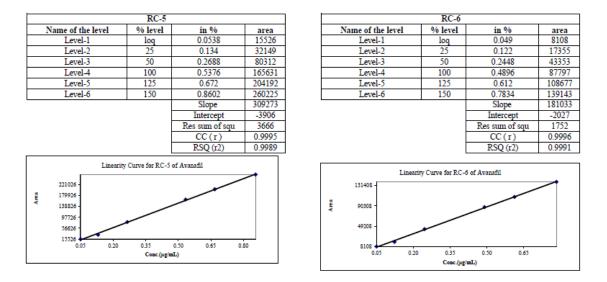

The linearty is determined by injecting the solutions in duplicate containing known impurities and Avanafil ranging from LOQ to 150% (LOQ, 20%, 40%, 80%, 100%, 120% and 150%) of the specified limit. Perform the regression analysis and determine the correlation coefficient and residual sum of squares. Determine the response factor for each impurity with respect to Avanafil. Report the linearty range as the range for determining the impurities.Results obtained are in the tables & figures show the line of best fit for peak area versus concentration for each impurity.

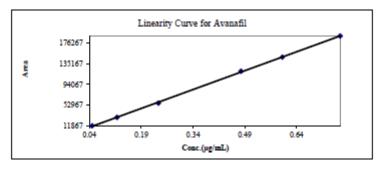
Table: 1.7 Linearity of Avanafil and Its Impurities.


	RC-1				
Name of the level	% level	in %	area		
Level-1	loq	0.0494	15784		
Level-2	25	0.124	32189		
Level-3	50	0.2476	80537		
Level-4	100	0.4944	166570		
Level-5	125	0.618	205911		
Level-6	150	0.791	262135		
		Slope	338989		
		Intercept	-4114		
		Res sum of squ	3714		
		CC(r)	0.9994		
		RSQ (r2)	0.9989		


	RC-2				
Name of the level	% level	in %	area		
Level-1	loq	0.0564	8051		
Level-2	25	0.141	16934		
Level-3	50	0.2818	42305		
Level-4	100	0.5636	87623		
Level-5	125	0.7044	107909		
Level-6	150	0.9016	138750		
		Slope	157140		
	[Intercept	-2441		
	[Res sum of squ	1811		
	[CC(r)	0.9995		
		RSQ (r2)	0.9991		



RC-4			
Name of the level	% level	in %	area
Level-1	loq	0.0492	8979
Level-2	25	0.123	18484
Level-3	50	0.2464	46304
Level-4	100	0.493	95960
Level-5	125	0.6162	117924
Level-6	150	0.7888	151711
		Slope	196235
		Intercept	-2548
		Res sum of squ	2080
	[CC(r)	0.9995
		RSQ (r2)	0.9990



	RC-3		
Name of the level	% level	in %	area
Level-1	loq	0.054	4872
Level-2	25	0.135	10298
Level-3	50	0.2704	25793
Level-4	100	0.541	51836
Level-5	125	0.6762	64764
Level-6	150	0.8656	81471
		Slope	96285
		Intercept	-961
		Res sum of squ	1198
		CC(r)	0.9994
		RSQ (r2)	0.9988

	Avanafil				
Name of the level	% level	in %	area		
Level-1	loq	0.048	11867		
Level-2	25	0.120	28489		
Level-3	50	0.2396	56979		
Level-4	100	0.479	120275		
Level-5	125	0.5988	148422		
Level-6	150	0.7664	190366		
		Slope	250245		
		Intercept	-1176		
		Res sum of squ	1327		
		CC(r)	0.9999		
		RSQ (r2)	0.9997		

The linearity results for Avanafil and all the impurities in the specified concentration range are found satisfactory, with a correlation coefficient greater than 0.99.

Accuracy⁸⁻¹⁴

Prepare Avanafil solution spiked with a known amount of each impurity at five levels each in triplicate (in total 15 determinations) and analyze as per the method. The impurities are to be spiked at LOQ, 25%, 50%, 100% and 150% of the specified limit.

Table:2.0 Summary of % recoveries for RC-1 and RC-2.

Level	% of RC- 1 (w/w)	Theoretical conc. (mg/ml.)	Measured conc.(mg/ml)	% Recovery	% RSD
		0.247	0.246	100.41	
LOQ	0.0494	0.243	0.247	98.38	1.17
		0.245	0.244	100.41	
		0.618	0.619	99.84	
25%	0.1236	0.616	0.621	99.19	0.33
		0.615	0.617	99.68	
		1.238	1.234	100.32	
50%	0.2476	1.234	1.235	99.92	0.26
		1.239	1.241	99.84	
		2.472	2.468	100.16	
100%	0.4944	2.471	2.423	101.98	1.21
		2.476	2.484	99.68	
		3.955	3.958	99.92	
150%	0.791	3.945	3.952	99.82	0.08
		3.956	3.957	99.97	

Level	% of RC- 2 (w/w) (mg/ml.)		Measured conc.(mg/ml)	% Recovery	% RSD
		0.282	0.284	99.30	
LOQ	0.0564	0.281	0.286	98.25	Ι
		0.285	0.287	99.30	I
	0.1409	0.7045	0.706	99.79	
25%		0.705	0.709	99.44	Ι
		0.704	0.715	98.46	I
	0.2818	1.409	1.411	99.86	
50%		1.408	1.412	99.72	Ι
		1.404	1.409	99.65	I
	0.5636	2.818	2.82	99.93	
100%		2.819	2.824	99.82	I
		2.912	2.921	99.69	t
150%	0.9016	4.508	4.518	99.78	
		4.507	4.52	99.71	Ι
		4.509	4.523	99.69	I

Table: 2.1 Summary of % recoveries for RC-3 and RC-4.

Level	% of RC- 3 (w/w)	Theoretical conc. (mg/ml.)	Measured conc.(mg/ml)	% Recovery	% RSD
		0.270	0.274	98.54	
LOQ	0.054	0.271	0.276	98.19	0.36
		0.268	0.271	98.89	
		0.676	0.676	100.00	
25%	0.1352	0.675	0.673	100.30	0.7
		0.671	0.678	98.97	
	0.2704	1.352	1.357	99.63	
50%		1.358	1.351	100.52	0.59
		1.351	1.359	99.41	
		2.705	2.712	99.74	
100%	0.541	2.709	2.711	99.93	0.17
		2.704	2.715	99.59	
150%		4.328	4.335	99.84	
	0.8656	4.324	4.329	99.88	0.06
		4.329	4.331	99.95	

Level	% of RC- 4 (w/w)	Theoretical conc. (mg/ml.)	Measured conc.(mg/ml)	% Recovery	% RSD
		0.246	0.246	100.00	
LOQ	0.0492	0.248	0.244	101.64	1.24
		0.247	0.249	99.20	
		0.616	0.619	99.52	
25%	0.1232	0.618	0.612	100.98	1.15
		0.621	0.629	98.73	
		1.232	1.239	99.44	
5096	0.2464	1.237	1.224	101.06	0.92
		1.239	1.245	99.52	
		2.465	2.461	100.16	
100%	0.493	2.461	2.472	99.56	0.2
		2.469	2.477	99.68	
		3.944	3.951	99.82	
150%	0.7888	3.943	3.956	99.67	0.09
		3.958	3.965	99.82	

Table: 2.2 Summary of % recoveries for RC-5 and RC-6.

Level	% of RC- 5 (w/w)	Theoretical conc. (mg/ml.)	Measured conc.(mg/ml)	% Recovery	% RSD
		0.269	0.267	100.75	
LOQ	0.0538	0.268	0.271	98.89	1.08
		0.266	0.269	98.88	
		0.672	0.679	98.97	
25%	0.134	0.671	0.678	98.97	0.00
		0.674	0.681	98.97	
	0.2688	1.344	1.349	99.63	
50%		1.347	1.352	99.63	0.08
		1.351	1.358	99.48	
	0.5376	2.688	2.695	99.74	
100%		2.689	2.681	100.30	0.58
		2.699	2.675	100.90	
	0.8602	4.301	4.309	99.81	
150%		4.311	4.304	100.16	0.18
		4.307	4.312	99.88	

Level	% of RC- 6 (w/w)	Theoretical conc. (mg/ml.)	Measured conc.(mg/ml)	% Recovery	% RSD	
		0.245	0.241	101.66		
LOQ	0.049	0.248	0.252	98.41	2.01	
		0.246	0.251	98.01		
		0.612	0.618	99.03	0.41	
25%	0.122	0.612	0.621	98.55		
		0.615	0.619	99.35		
	0.2448	1.224	1.214	100.82		
50%		1.249	1.241	100.64	0.8	
		1.243	1.251	99.36		
	0.4896	2.448	2.453	99.80		
100%		2.443	2.459	99.35	0.69	
		2.418	2.456	98.45		
	0.7834	3.917	3.924	99.82		
150%		3.919	3.921	99.95	0.44	
		3.317	3.296	100.64		

The percentage recovery values obtained for each impurity are in the range of about 91.2-108.5, which are within the specified criteria. The relative standard deviation values of recoveries obtained for all impurities are found less than 2%.

Precision⁸⁻¹⁴

System precision

Perform the analysis of reference solution six times and determine the percentage relative standard deviation of peak area of replicate injections of each impurity and Avanafil.

Table 2.2: Summary of peak areas of the Avanafil standard.

Injection No	Avanafil
1	122028
2	122448
3	122010
4	122781
5	121815
6	122293
Mean area	122229
%RSD	1.58

The relative standard deviation observed for Avanafil and impurities are less than 10%. The results comply with the acceptance criteria and indicate acceptable precision of the system.

Method precision

The precision of the method is determined by analyzing a sample of Avanafil solution spiked with impurities at 100% of the specification limit.

Inj. No	% of RC-1	% of RC-2	% of RC-3	% of RC-4	% of RC-5	% of RC-6	% of Any other individual impurity	% of total impurities
1	0.486	0.478	0.529	0.501	0.539	0.531	0.07	0.52
2	0.485	0.475	0.519	0.491	0.511	0.533	0.09	0.52
3	0.471	0.460	0.502	0.477	0.535	0.516	0.06	0.51
4	0.482	0.478	0.519	0.492	0.550	0.529	0.08	0.51
5	0.484	0.472	0.518	0.492	0.552	0.532	0.07	0.52
6	0.489	0.483	0.536	0.500	0.558	0.537	0.07	0.52
Mean (%)	0.483	0.474	0.520	0.492	0.548	0.530	0.07	0.52
% RSD	1.28	1.67	2.35	1.71	1.59	1.36	0.15	1.00

Table 2.3: Summary of results for precision of the method.

Similarly solution stability and robustness also established and found that the method is robust enough for the estimation of related substances in Avanafil.

Vol 7, Issue 04, 2017.

CONCLUSION

A simple, economic, accurate and precise HPLC method was successfully developed. In this method it was carried out by using ACE C18, $(250 \times 4.6 \text{mm})$ with 5µm particle size. Injection volume of 10µl is injected and eluted with the mobile phase A as Methanol and buffer of KH₂PO₄ pH 4.2 with potassium hydroxide and Acetonitrile as mobile phase B over gradient program, which is pumped at a flow rate of 1.0 ml/min. Detection, was carried out at 235 nm. all impurities are well resolved from the main peak and there is no interference from blank and placebo. The results obtained were accurate and reproducible. The method developed was statistically validated in terms of Selectivity, accuracy, linearity, precision, robustness, and stability of solution.

For Selectivity, the chromatograms were recorded for standard and sample solutions of Avanafil and its related substances. Selectivity studies reveal that the peak is well separated from each other. Therefore the method is selective for the determination of related substances in Avanafil.

The limit of detection (LOD) and limit of quantitation (LOQ) was found to be for RC-1 0.0148 μ g/ml,0.048 μ g/ml, for RC-2 0.0186 μ g/ml,0.049 μ g/ml, for Avanafil n0.0148 μ g/ml,0.048 μ g/ml, for RC-3 0.0154 μ g/ml,0.054 μ g/ml, for RC-4 0.0140 μ g/ml, 0.049 μ g/ml, for RC-5 0.0174 μ g/ml,0.054 μ g/ml and for RC-6 0.0149 μ g/ml, 0.049 μ g/ml respectively. The linearity results for Avanafil and all the impurities in the specified concentration range are found satisfactory, with a correlation coefficient greater than 0.99.Calibration curve was plotted and correlation coefficient for Avanafil and its impurities found to be more than 0.999.

The accuracy studies were shown as % recovery for Avanafil and its impurities at 25%, 50%, 100% and 150%. The limit of % recovered shown is in the range of 90 and 110% and the results obtained were found to be within the limits. Hence the method was found to be accurate. The accuracy studies showed % recovery of the Avanafil and its related substances in the range 91.2-108.5 respectively.

For Precision studies six (6) replicate injections were performed. %RSD was determined from the peak areas of Avanafil and its impurities. The acceptance limit should be not more than 10, and the results were found to be within the acceptance limits. For intermediate precision the bias is not more than ± 0.03 , the bias observed for individual impurities are within the acceptance criteria.

Hence, the chromatographic method developed for Avanafil and its related substances are rapid, simple, sensitive, precise, and accurate. Therefore, the proposed method can be successfully applied for the routine analysis of the active pharmaceutical ingredients for assurance of its quality during its formulation.

Further as part of future course of extended research, the method can be further applied directly for estimating impurities in pharmaceutical substances and formulation in commercial labs as well as can be extended for identifying the impurities in the drug substances.

REFERENCES

- 1. Neil M.J.O', The Merck Index, Merck Research Laboratories, Whitehouse Station, NJ (2006)
- 2. Friedberg J. W., Cohen P., Chen L., et al., Avanafil in Patients with Rituximab-Refractory Indolent and Transformed Non-Hodgkin's Lymphoma: Results from a Phase II Multicenter, Single-Agent Study, J. Clinical Oncology, 26(2), 204-210 (2008)
- 3. Lissitchkov T., Arnaudov G., Peytchev D., Merkle Kh., Phase-I/II Study to Evaluate Dose Limiting Toxicity, Maximum Tolerated Dose, and Tolerability of Avanafil in Pre-Treated Patients with B-Chronic Lymphocytic Leukaemia (Binet Stages B and C) Requiring Therapy, J. Cancer Research and Clinical Oncology, 132(2), 99-104 (2006)
- 4. Teichert J., Sohr R., Baumann F., Hennig L., et al., Synthesis and Characterization of Some New Phase II Metabolites of the Alkylator Avanafil and their Identification in Human Bile, Urine, and Plasma from Patients with Cholangiocarcinoma, Drug Metabolism and Disposition, 33(7), 984-992 (2005)
- 5. Matt Kalaycio, Clinical Experience with Avanafil : A new treatment for patients with chronic lymphocytic leukemia, Clin Leukemia, 2(4), 223-229 (2008)
- 6. Teichert J., Baumann F., Chao Q., Franklin C., et al., Characterization of two phase I metabolites of Avanafil in human liver microsomes and in cancer patients treated with Avanafil, Cancer Chemother. Pharmacol, 59(6), 759-770 (2007)
- Rasschaert M., Schrijvers D., Van den Brande J. et al., A Phase I Study of Avanafil Administered Once Every Three Weeks in Patients With Solid Tumors, British Journal of Cancer, 96, 1692–1698 (2007)
- Development and Validation of a Rapid UV-Spectroscopic method for the estimation of Ziprasidone HCl in drug substance and Its Dosage forms, Ganji Ramanaiah, D. Ramachandran, G Srinivas, Jayapal Gowardhane, Purnachandra Rao, Int J Pharm Pharm Sci, 2012, Vol 4, Issue 2, 741-743
- Development and Validation of a UV-Spectroscopic method for the estimation of Ranolozine in Bulk and Its Pharmaceutical Formulation, Ganji Ramanaiah, D. Ramachandran, G Srinivas, Jayapal Gowardhane, Purnachandra Rao, V Srilakshmi ISSN: 2249-3387, American Journal of PharmTech Research. 2012; 2(2) 2, 355-361
- 10. Development and Validation of Stability Indication RP-LC method for the estimation of Ranolazine in Bulk and Its Pharmaceutical Formulations, Ganji Ramanaiah, D. Ramachandran, G Srinivas, Jayapal Gowardhane, Purnachandra Rao, V Srilakshmi, ISSN: 2156-8251, American Journal of Analytical Chemistry, 2012, 3, 378-384
- 11. Development and Validation of Stability Indication RP-LC method for the estimation of Lacosamide in Bulk and Its Pharmaceutical Formulation, Ganji Ramanaiah, D. Ramachandran, G Srinivas, Srilakshmi V, Purnachandra Rao, V Srilakshmi, ISSN: 2249-3387, American Journal of PharmTech Research. 2012; 2(2) 2, 556-564
- 12. Development and Validation of UV-Spectroscopic method for the estimation of Lacosamide in in Bulk and Its Pharmaceutical Formulation, Ganji Ramanaiah, D. Ramachandran, G Srinivas, Srilakshmi V, Purnachandra Rao, V Srilakshmi-ISSN No: 0976-5263, Int J Pharm Biomed Sci 2012, 3(1), 10-12

- 13. Preiss R., Sohr R., Matthias M., Brockmann B., Huller H., The Pharmacokinetics of Avanafil (Cytostasane) in Humans, Pharmazie, 40, 782-784 (1985)
- Ivanka Pencheva, Anita Bogomilova, Neli Koseva, Danka Obreshkova, Kolio Troev, HPLC Study on the Stability of Avanafil Immobilized onto Polyphosphoesters, J. Pharm. Biomed. Analysis, 48(4), 1143–1150 (2008)
- 15. Mathrusri Annapurna M., Pavani S., Anusha S., Harika Mahanti and Venkatesh B., New Analytical Methods for the Determination of Avanafil An Anti-Neoplastic Drug, Journal of Chemical and Pharmaceutical Research, 4(3), 1696-1701 (2012)
- 16. ICH Validation of analytical procedures: Text and methodology Q2(R1), International Conference on Harmonization, (2005)
- 17. ICH Stability Testing of New Drug Substances and Products Q1A (R2), International Conference on Harmonization, (2003).

