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Abstract:

The absence of national local geoid model in some countries has led to the determination of local geoid model in various parts
of those countries. Local geoid models are determined using the geometric and gravimetric methods amongst others. Using
the geometric method requires fitting an interpolation surface to points of known geoidal undulations which requires the
determination of the geometric geoid model parameters and its accuracy using least squares technique. Because of the
rigorous as well as the matrix nature of the technique, researcher have been experiencing difficulty in its application for the
determination of geometric geoid models’ parameters and their accuracy. This paper presents a detailed procedure for the
determination of geometric geoid models’ parameters as well as their accuracy using least squares technique. The steps to be
considered when applying the technique are enumerated in sequential order. The enumerated steps were also demonstrated
with a numerical example.
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1. Introduction

Least squares are a statistical method used to determine a line of best fit by minimizing the sum of squares created by
a mathematical function. It is a popular method for determining regression equations. Instead of trying to solve an equation
exactly, least squares method is used to determine a close approximation which is known as the estimate. Modelling methods
that are often used when fitting a function to a curve include the straight-line method, polynomial method, logarithmic method
and Gaussian method. The Least-Squares criterion is an imposed condition for obtaining a unique solution for an incompatible
system of linear equations. The term adjustment, in a statistical sense, is a method of deriving estimates for random variables
from their observed values. The application of the least-squares criterion in the adjustment problem is called the Least-
Squares Adjustment method (Mohammad-Karim, 1981). The method of least squares is a rigorous technique that can be
applied to the adjustment of horizontal geodetic network to yield the most likely values of the survey measurements. In
geodesy, it is desirable or necessary to fit a plane or curve surface to a set of points with known coordinates or heights. In
solving this type of problem, it is first necessary to decide on the appropriate functional model for the data as stated by Ghilani
(2010). The decision as to whether to use a plane or curve surface depends on the size of the application area. To determine
the best fit surface, two or more surfaces have to be applied and the one with smaller residuals after least squares solution
with the surfaces selected.

Geometric geoid models are surfaces that are fitted to the geoidal undulations of an area to enable geoid heights of
new points within the area to be interpolated. These surfaces are plane as well as curve surfaces depends on the degree. The
curve surfaces are ether quadratic or polynomial in nature. The plane surfaces are usually applied in small areas while the
curve surfaces are applied in relatively large areas. The larger the area the higher the order as well as the degree of the
polynomial model/surface. To apply any of these models in a particular area, the model parameters as well as its accuracy
have to be determined using least squares technique. Obtaining the accuracy of the model enables the reliability of the model
to be determined.

Various researchers have been experiencing difficulty in the application of least squares adjustment technique for
determination of geometric geoid models’ parameters and their accuracy. The difficulty in its application resulted from its
matrix nature. The computation of these parameters cannot be handled by Least squares adjustment software as the model
terms are not obtained directly from measurement, that is, they are not bearings, azimuth, angles, distances, change in
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northing and easting. They are normally reduced from the variables. Also, the dimension of the coefficient matrix depends on
the number of points heights and the order as well as the degree of the model. The general matrix notation of least squares
adjustment is simply the sum of the estimate and the matrix of observations equals to the residual matrix. In geoid model
parameters determination, the residual is not truly needed. Making the matrix notation of least squares adjustment for
geometric geoid parameters determination to be simply observation equal the estimate. Previous studies in which least
squares adjustment technique was applied for the determination of local geometric geoid models never presented the
breakdown of how the technique was applied in the studies. To determine the reliability of the model, the geoid heights of
points from the model are compared with their known geoid heights.

This paper presents step by step application of observation equation method of least squares adjustment technique
for determination of local geometric geoid models’ parameters and their accuracy.

1.1. Observation Equation Method of Least Squares Adjustment

Equations that relate observed quantities to both observational residuals and independent unknown parameters are
called observation equations. One equation is written for each observation and for a unique set of unknowns. For a unique
solution of unknowns, the number of equations must equal the number of unknowns. Usually, there are more observations
(and hence equations) than unknowns, and this permits determination of the most probable values for the unknowns based on
the principle of least squares (Ghilani and Wolf, 2006).
Ayeni (2001) and Okwuashi and Asuquo (2014) explained that, in the observations equation method, the adjusted
observations are expressed as a function of the adjusted parameter. The functional relationship between adjusted
observations and the adjusted parameters as given in Ono et al (2014) is:

L =F(X,) (1)
Where, L, = adjusted observations and X, = adjusted parameters. Equation (1) is linear function and the general

observation equation model was obtained.

To make the matrix expression for performing least squares adjustment, analogy will be made with the systematic
procedures. The system of observation equations is presented by matrix notation as (Mishima and Endo, 2002 and Ono et al,
2018):

V=AX-L (2)

But the residual matrix is not necessary when applying least squares adjustment technique for the determination of local
geometric geoid model parameters. Thus, the general matrix notation becomes

L = AX (3)

where, A = Design Matrix, X = Vector of Unknowns, L = Observation Matrix. That is,

a;; dp a, X L
a a e a X /
21 2 2 2 2
A= ", X = and L=
aml amZ amn xm lm

The determination of the unknown parameters, X, requires the normal matrix, N and the matrix of numeric terms, t to be
deduced. It is to be noted here that the observations are not weighted.
According to Ghilani (2010), a system of unweighted linear observation equations can be expressed in matrix notation as:

ATAX =A"L (4)
To make X the subject of the formula, both sides of equation (4) will be divided by A" A . Thus,

X=(A"TATA'L (5)
IfA"A= N, normal matrix and A'L= f, matrix of numeric terms, then equation (5) becomes

X=N"t (6)

1.2. Accuracy/Reliability of Geometric Geoid Model

The accuracy of determined local geometric geoid model is obtained using the Root Mean Squares Error, RMSE index.
To evaluate the determined local geometric geoid model accuracy, the local geoid model is used to determine the geoidal
heights of points whose geoid heights are known. The geometric geoid model geoidal undulations are compared with the
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known geoidal undulations of the points to obtain the residuals. The Root Mean Squares Error, RMSE index for the
computation of geometric geoid model accuracy as given by Kao et al (2017) is

vy
n

RMSE =+

(7)

Where,
V =N vown = Nyopr. (Residual)

N vowy = Known geoid height of point

N ,,0pe. = Model geoid height of point
n = Number of points

1.3. Bicubic Geoid Model
The bicubic surface is one of the polynomial geometric geoid models and it is given as

N=a,+ax+a,y+ a3x2 + a4y2 +asxy + a6x2y + a7xy2 + a8x3 + a9y3, (8)
Where,
y=ABS(Y -Y))
x=ABS(X -X,)
Y = Northing coordinates of observed station
X = Easting coordinates of observed station

(9)

Y = Northing coordinates of the origin (average of the northing coordinates)

X , = Easting coordinates of the origin (average of the easting coordinates)

2. Steps to Be Considered When Computing Geometric Geoid Models Parameters and Accuracy Using Observation
Equation Method of Least Squares Adjustment Technique

The steps to be considered when computing geometric geoid models’ parameters and their accuracy using the least
squares method are as follow:

¢ Deduce the coefficient matrix, A, observation matrix, L and matrix of unknown parameters, X from the given or model
of interest. It is to be noted here that the geometric geoid model is already established. The coefficients of the model
terms on one side of the equation form the matrix of unknown parameters while the terms form the coefficient matrix.
The model terms which form the coefficient matrix are deduced from the given variables. The observation matrix is
deduced from the term on the other side of the equation as well as the model. The number of points heights deduced
with respect to the centroid of the study area determines the number of observation equations. In this, the weights of
the observed heights are not truly necessary.

e Having deduced the above stated matrices, the model parameters are computed using equations (6).

e Since the parameters are computed, the next step is to substitute the computed parameters accordingly in the model.

e Having substituted the computed parameters in the model, it (the model) can now be used to develop a
program such that the geoid heights of new points in the study area can be determined if the variables of the new
points are given.

e The model accuracy has to be computed using equation (7) to determine its reliability. To determine the model
accuracy, the geoidal heights of points obtained from the model are compared with their corresponding known geoid
heights to obtained the residuals.

2.1. Numerical Application in Bicubic Geoid Model Parameters and Accuracy Determination

The ellipsoidal heights of eight benchmarks whose rectangular coordinates and orthometric heights are known were
determined using DGPS. The rectangular coordinates, orthometric heights, ellipsoidal heights and the geoid heights as
computed from the orthometric and ellipsoidal heights are given in table 1. To interpolate geoid heights of new points, the
bicubic geoid model, equation (8) is to be fitted to the computed geoid heights of the benchmarks. Compute the model
parameters and accuracy using least squares technique.
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Station Coordinates Orthometric Ellipsoidal Geoidal Height,
Northing Easting Height, H Height, h N (m)
ESO 01 249308.287 354033.425 175.189 209.237 34.048
ESO 02 244533.051 278026.486 291.686 326.581 34.895
ESO 03 249241.822 362785.077 222.300 256.677 34.377
ESO 04 259174974 355889.303 425.449 460.033 34.584
ESO 05 247210.935 359597.719 325.386 359.665 34.279
ESO 06 260606.174 332700.238 120.829 155.115 34.286
ESO 07 252751.094 344865.087 143.546 177.828 34.282
ESO 08 276864.558 374129.027 315.314 349.689 34.375
ESO 09 243587.154 340245.247 257.359 291.966 34.607
ESO 10 269356.441 361478.369 199.075 233.531 34.456
ESO 11 256457.248 357864.254 351.273 385.448 34.175

Table 1: Coordinates and Heights of Benchmarks

Solution
Using equation (9), ¥, and X, are computed as the mean as well as the centroid of the given positions as:

Y, =255371.976
X, =347419.476

Deduction of normal equations using equation (8)

2 2 2 2 3 3
=a,tax ta,y tax; +a,y; +asxy, +acx"y, +a;xy; +agx; +a,y,

=

2 2 2 2 3 3
=a,+ax, ta,y, +asx;, +a,y, +asxy, ta,x"y, +a;xy, +azx;, +a,y,

LS}

2 2 2 2 3 3
=a,tax;ta,y; taxy +a,y; +asxy, +a,x"y; +a;xy; +agxy +agy;

2 2 2 2 3 3
=4, Ta X, tay, Tazx, tay, Tasxy, +agxty, ta;xy, +agx, +agy,

%)

I

=a, +a,xX; +a,ys + X +a,y; +a Xy +a X" ys +a,xy; +agx; +a,y:
_ 2 2 2 2 3 3
=a,tax;ta,y, tas;xg +a,ys tasxyg+agx"yo +a,xXyq +agXg +agye

2 2 2 2 3 3
=a, +a1x7 +612y7 +a3x7 +a4y7 +a5xy7 +616)C Y, +a7xy7 +a8x7 +619y7

(=)}

~

2 z2zz=z2z2 2

2 2 2 2 3 3
=a,taxgta,ystaxg +a,yg +asxys +a,x"yg +a;xyg +agXg +agyg

=)

2 2 2 2 3 3
=a,+axyta,y, +ta;xg +a,yy tAsXyq +AcX Yy T A;XYy +dgXg T+ dg Y,

=

_ 2 2 2 2 3 3
Ny =a,+ax,+a,y,,+ax,+a,y,,+asxy,,+asx"y,, +a;xy,, +agx,, +ayy;,

_ 2 2 2 2 3 3
Ny =a,+ax, +a,y, +ax; +a,y;, +asxy, +agx"y, +a;xy;, +agx; +a,y;

Also using equation (3), the coefficient matrix, A, matrix of unknown parameters, X and observation matrix, L are:

N, 34.048 a

Lox, oy Xy oy Xy owt o)y N, | |34.895 a,

1 X, Yo -x22 y22 XYy, -x2y2 xy; x; y; N3 34.377 a,

Lo, oy X vi o, Xty owloxl ) N, | |34.584 a,

2 2 2 2 3 3

1 x, Yo Xy Va XYy4 X Yy XYy Xy Vi N5 34.279 a

Doxs ys x5 ys s xys w5 x5 s Lol (=l 34086 1 X = !

6 . a

A=I1 X, Yo X Yo W, X'y Xyo X, e .

2 2 2 2 3 3 N, 34.282 a

1 x, Y X Y7 XY 4 XY, XYy X7 Yq Ns 34.375 6

Loxy vy X ys o Wy Xy Wy Xy 34.607 a;

1 2 2 2 2 3 3 N, : a

9 Yo X9 Y9 XYg X Y9 XYy X9 Yy N 34.456 8

Loxyg Yo X Yo o X Vo Wi X Vi 10 34'175 aq
L ox, oy, x121 y121 XY 11 x2y11 xyfl x131 y131 Ny )
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Considering equation (3), the above matrices are rearranged as

Deduction of values of x and y for each equation using equation (9) and the computation of coefficient matrix, A elements as

presented in table 2.

L =

= =

W

[=)) W

zzzz2zz

® 9

N=

—_
(=)

Z2 =22 =

—
—_

S S G ) ) U ) S U GH W w—y
=
(=2}

Vi xlz
D) xzz
Y3 x32
Vs xf
Vs x52
Ve 'x62
Y7 x72
Vs xsz
Yo x92
Y10 x120
Yu x121

A
)’12 XYy
)’22 XY,
)’32 XY3
yi XYy
y52 XYs
Yo o XV
)’72 XY7
)’82 XYg
)’92 XY9
y120 Y10
y121 V1

xz)ﬁ x)ﬁz
xzyZ xy;
x2y3 XY32
x2y4 xyj
x2y5 xysz
x2y6 'xy62
XZY7 XY72
xzys xy;
xzyg xy;
xzyw xy120
x2y11 xy121

Xy
X5
X5
X5
B
X6 yg
X3y
Xy Vs
Xo Vs
x130 y130
x131 y131

Vol 7 Issue 7

S/N | a, X y x?2 y? Xy X2y Xy? x3 y3
1 1 6613. | 6063. | 43744326 | 367683 | 401049 | 265251997 | 243183849 | 28932275 | 222951703
949 689 185 26.494 33.205 452.369 614.972 8332.3 593.398
2 1 69392 | 10838 | 48153870 | 117482 | 752145 | 521936195 | 815244796 | 33415410 | 127338185
.990 925 10.672 299.097 | 422.811 | 30177.900 3697.900 | 0926675.0 0100.930
3 1 15365 | 6130. | 23610170 | 375787 | 941935 | 144733985 | 577420711 | 36278446 | 230363778
.601 154 5.266 90.293 05.455 5871.900 367.821 84395.0 461.463
4 1 8469. | 3802. | 71737975 | 144627 | 322107 | 272819364 | 122497354 | 60760826 | 550019679
827 998 570 92.405 34.984 572.745 867.272 8493.0 61.395
5 1 12178 | 8161. | 14830961 | 666025 | 993871 | 121036084 | 811102588 | 18061505 | 543546505
243 041 1.424 93.171 45.613 6490.330 289.749 41087.3 687.124
6 1 14719 | 5234. | 21665595 | 273968 | 770434 | 113402013 | 403260404 | 31890105 | 143400411
.238 198 6.596 26.800 01.522 5309.530 149.425 10466.4 060.929
7 1 2554. | 2620. | 6524901. | 686902 | 669475 | 171009975 | 175461553 | 16667133 | 180029010
389 882 306 3411 1.662 69.926 43.902 748.4 64.308
8 1 26709 | 21492 | 71340013 | 461931 | 574057 | 153328107 | 123379717 | 19054597 | 992809138
.551 .582 4.047 073.211 | 218.010 50101.30 26395.30 523146.2 5353.1400
9 1 7174. | 11784 | 51469556 | 138882 | 845470 | 606559571 | 996371464 | 36925436 | 163670007
229 .822 527 033.857 | 08.771 445.613 373.840 6335.649 3254.860
10 1 14058 | 13984 | 19765248 | 195565 | 196606 | 276406418 | 274943108 | 27787751 | 273487544
.893 465 2.610 256.251 | 099.626 9287.230 3264.540 | 76073.390 5700.330
11 1 10444 | 1085. | 10909339 | 117781 | 113354 | 118395987 | 123020157 | 11394563 | 127824933
.778 272 5.065 4.919 23.605 214.349 85.887 32395.640 8.993

Table 2: Computation of Coefficient Matrix, Elements

Computation of the model parameters, X using equation (6)

matrix, L, the model parameters are computed as:
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a 34.859077901082436
a, 0.000225556443422
a, —0.000501234804656
a, —0.000000030132587
a, 0.000000003398167
as 0.000000051102750
a, 0.000000000004046
a, —0.000000000008676
g —0.000000000000149
g 0.000000000004302

Substitution of the computed parameters into the interpolation model
Having computed the model parameters, they are substituted into the geometric geoid model. Thus,

N =34.859077901082436 + 0.000225556443422 x — 0.000501234804656y —
—0.000000030132587x +0.000000003398167 y*> +0.000000051102750xy +
+0.000000000004046x y — 0.00000000000867 xy> — 0.000000000000149 x> +
+0.000000000004302 y°

Computation of the model accuracy using equation (7)
The local geometric geoid model whose parameters have been determined was used to obtain the geoid heights of the
points and compared with the known geoidal heights of the points to obtain the residual as shown in table 3.

Station Known Geoidal | Model Geoidal Differepce in Geoid
Height, N (m) Height, N (m) Height, AN
ESO 01 34.048 34.047 0.001
ESO 02 34.895 34.948 -0.053
ESO 03 34.377 34.376 0.001
ESO 04 34.584 34.584 0.000
ESO 05 34.279 34.281 -0.002
ESO 06 34.286 34.289 -0.003
ESO 07 34.282 34.282 0.000
ESO 08 34.375 34.384 -0.009
ESO 09 34.607 34.608 -0.001
ESO 10 34.456 34.457 -0.001
ESO11 34.175 34.175 0.000
Table 3: Known and Model Geoidal Heights and Residuals

0.001

-0.053

0.001

0.000

-0.002 |, v"=(0.001 -0.053 0.001 0.000 -0.002 -0.003 0.000 -0.009 -0.001 -0.001 0.000
V =|-0.003
0.000
-0.009
-0.001
-0.001
0.000
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0.001
-0.053
0.001
0.000
-0.002
V'V =(0.001 -0.053 0.001 0.000 -0.002 -0.003 0.000 -0.009 -0.001 -0.001 0.000)x| -0.003|=0.003
0.000
-0.009
-0.001
-0.001
0.000

0.003

RMSE = Accuracy = * =10.0165m

The computed local geometric geoid model accuracy is = 0.017m.This implies that geoid heights can be interpolated within
the application area with accuracy of = 17mm.

3. Conclusion

Considering that fitting a geometric geoid surface to a set of points whose geoidal heights are known to enable the
interpolation of the geoid heights of new points if the variables are known requires the determination of the model
parameters using the least squares technique which is rigorous and difficult to apply. This paper has presented the step by
step procedures to be followed when determining geometric geoid model parameters and its accuracy using the least squares
technique. The procedures were demonstrated using a numerical example. Considering the detailed procedures and the
numerical example, it is certain that the difficulty in the application of least squares adjustment technique in local geometric
geoid model parameters and accuracy determination has been simplified.
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