
 www.ijird.com                                                                                                                  July, 2018                                                                                                                   Vol 7 Issue 7 

   

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT                  DOI No. : 10.24940/ijird/2018/v7/i7/JUL18098 Page 251 

 

 

 
 

 
Local Geometric Geoid Models Parameters and Accuracy 

Determination Using Least Squares Technique 

 

 
 

 

 

 

 

 

 

 

 

1. Introduction 

Least squares are a statistical method used to determine a line of best fit by minimizing the sum of squares created by 

a mathematical function. It is a popular method for determining regression equations. Instead of trying to solve an equation 

exactly, least squares method is used to determine a close approximation which is known as the estimate. Modelling methods 

that are often used when fitting a function to a curve include the straight-line method, polynomial method, logarithmic method 

and Gaussian method. The Least-Squares criterion is an imposed condition for obtaining a unique solution for an incompatible 

system of linear equations. The term adjustment, in a statistical sense, is a method of deriving estimates for random variables 

from their observed values. The application of the least-squares criterion in the adjustment problem is called the Least-

Squares Adjustment method (Mohammad-Karim, 1981). The method of least squares is a rigorous technique that can be 

applied to the adjustment of horizontal geodetic network to yield the most likely values of the survey measurements. In 

geodesy, it is desirable or necessary to fit a plane or curve surface to a set of points with known coordinates or heights. In 

solving this type of problem, it is first necessary to decide on the appropriate functional model for the data as stated by Ghilani 

(2010). The decision as to whether to use a plane or curve surface depends on the size of the application area. To determine 

the best fit surface, two or more surfaces have to be applied and the one with smaller residuals after least squares solution 

with the surfaces selected. 

 Geometric geoid models are surfaces that are fitted to the geoidal undulations of an area to enable geoid heights of 

new points within the area to be interpolated. These surfaces are plane as well as curve surfaces depends on the degree. The 

curve surfaces are ether quadratic or polynomial in nature. The plane surfaces are usually applied in small areas while the 

curve surfaces are applied in relatively large areas. The larger the area the higher the order as well as the degree of the 

polynomial model/surface. To apply any of these models in a particular area, the model parameters as well as its accuracy 

have to be determined using least squares technique. Obtaining the accuracy of the model enables the reliability of the model 

to be determined. 

 Various researchers have been experiencing difficulty in the application of least squares adjustment technique for 

determination of geometric geoid models’ parameters and their accuracy. The difficulty in its application resulted from its 

matrix nature. The computation of these parameters cannot be handled by Least squares adjustment software as the model 

terms are not obtained directly from measurement, that is, they are not bearings, azimuth, angles, distances, change in 

    ISSN 2278 – 0211 (Online) 

Eteje Sylvester Okiemute 

Ph. D. Candidate, Department of Surveying and Geoinformatics, Nnamdi Azikiwe University, Awka, Nigeria 

Oduyebo Fatai Olujimi 

Ph. D. Candidate, Department of Surveying and Geoinformatics, Nnamdi Azikiwe University, Awka, Nigeria 

 

Abstract:  

The absence of national local geoid model in some countries has led to the determination of local geoid model in various parts 

of those countries. Local geoid models are determined using the geometric and gravimetric methods amongst others. Using 

the geometric method requires fitting an interpolation surface to points of known geoidal undulations which requires the 

determination of the geometric geoid model parameters and its accuracy using least squares technique. Because of the 

rigorous as well as the matrix nature of the technique, researcher have been experiencing difficulty in its application for the 

determination of geometric geoid models’ parameters and their accuracy. This paper presents a detailed procedure for the 

determination of geometric geoid models’ parameters as well as their accuracy using least squares technique. The steps to be 

considered when applying the technique are enumerated in sequential order. The enumerated steps were also demonstrated 

with a numerical example. 

Keywords: Geometric geoid, model parameters, accuracy, least squares 



 www.ijird.com                                                                                                                  July, 2018                                                                                                                   Vol 7 Issue 7 

   

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT                  DOI No. : 10.24940/ijird/2018/v7/i7/JUL18098 Page 252 

 

northing and easting. They are normally reduced from the variables. Also, the dimension of the coefficient matrix depends on 

the number of points heights and the order as well as the degree of the model. The general matrix notation of least squares 

adjustment is simply the sum of the estimate and the matrix of observations equals to the residual matrix. In geoid model 

parameters determination, the residual is not truly needed. Making the matrix notation of least squares adjustment for 

geometric geoid parameters determination to be simply observation equal the estimate. Previous studies in which least 

squares adjustment technique was applied for the determination of local geometric geoid models never presented the 

breakdown of how the technique was applied in the studies. To determine the reliability of the model, the geoid heights of 

points from the model are compared with their known geoid heights.  

 This paper presents step by step application of observation equation method of least squares adjustment technique 

for determination of local geometric geoid models’ parameters and their accuracy. 

1.1. Observation Equation Method of Least Squares Adjustment  

Equations that relate observed quantities to both observational residuals and independent unknown parameters are 

called observation equations. One equation is written for each observation and for a unique set of unknowns. For a unique 

solution of unknowns, the number of equations must equal the number of unknowns. Usually, there are more observations 

(and hence equations) than unknowns, and this permits determination of the most probable values for the unknowns based on 

the principle of least squares (Ghilani and Wolf, 2006). 

Ayeni (2001) and Okwuashi and Asuquo (2014) explained that, in the observations equation method, the adjusted 

observations are expressed as a function of the adjusted parameter. The functional relationship between adjusted 

observations and the adjusted parameters as given in Ono et al (2014) is: 

 )( aa XFL =          (1) 

Where, aL  = adjusted observations and aX  = adjusted parameters. Equation (1) is linear function and the general 

observation equation model was obtained. 

 To make the matrix expression for performing least squares adjustment, analogy will be made with the systematic 

procedures. The system of observation equations is presented by matrix notation as (Mishima and Endo, 2002 and Ono et al, 

2018): 

 LAXV −=           (2)  

But the residual matrix is not necessary when applying least squares adjustment technique for the determination of local 

geometric geoid model parameters. Thus, the general matrix notation becomes 

 AXL =          (3) 

where, A = Design Matrix, X = Vector of Unknowns, L = Observation Matrix. That is, 
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The determination of the unknown parameters, X, requires the normal matrix, N and the matrix of numeric terms, t to be 

deduced. It is to be noted here that the observations are not weighted. 

According to Ghilani (2010), a system of unweighted linear observation equations can be expressed in matrix notation as: 

 LAAXA TT
=          (4) 

To make X the subject of the formula, both sides of equation (4) will be divided by AAT
. Thus,  

 LAAAX
TT 1)( −

=         (5) 

If ,NAA
T

=  normal matrix and ,tLA
T

=  matrix of numeric terms, then equation (5) becomes 

 tNX
1−

=          (6) 

1.2. Accuracy/Reliability of Geometric Geoid Model 

The accuracy of determined local geometric geoid model is obtained using the Root Mean Squares Error, RMSE index. 

To evaluate the determined local geometric geoid model accuracy, the local geoid model is used to determine the geoidal 

heights of points whose geoid heights are known. The geometric geoid model geoidal undulations are compared with the 
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known geoidal undulations of the points to obtain the residuals. The Root Mean Squares Error, RMSE index for the 

computation of geometric geoid model accuracy as given by Kao et al (2017) is 

 
n

VV
RMSE

T

±=         (7) 

Where,  

 (Residual)MODELKNOWN NNV −=  

 point ofheight  geoidKnown =KNOWNN  

 point ofheight  geoid Model=MODELN  

 points ofNumber  =n  

1.3. Bicubic Geoid Model 

 The bicubic surface is one of the polynomial geometric geoid models and it is given as  
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Y = Northing coordinates of observed station 

X = Easting coordinates of observed station 

oY = Northing coordinates of the origin (average of the northing coordinates) 

oX = Easting coordinates of the origin (average of the easting coordinates) 

 

2. Steps to Be Considered When Computing Geometric Geoid Models Parameters and Accuracy Using Observation 

Equation Method of Least Squares Adjustment Technique 

The steps to be considered when computing geometric geoid models’ parameters and their accuracy using the least 

squares method are as follow: 

• Deduce the coefficient matrix, A, observation matrix, L and matrix of unknown parameters, X from the given or model 

of interest. It is to be noted here that the geometric geoid model is already established. The coefficients of the model 

terms on one side of the equation form the matrix of unknown parameters while the terms form the coefficient matrix. 

The model terms which form the coefficient matrix are deduced from the given variables. The observation matrix is 

deduced from the term on the other side of the equation as well as the model. The number of points heights deduced 

with respect to the centroid of the study area determines the number of observation equations. In this, the weights of 

the observed heights are not truly necessary. 

• Having deduced the above stated matrices, the model parameters are computed using equations (6). 

• Since the parameters are computed, the next step is to substitute the computed parameters accordingly in the model. 

• Having substituted the computed parameters in the model, it (the model) can now be  used to develop a 

program such that the geoid heights of new points in the study area can be determined if the variables of the new 

points are given. 

• The model accuracy has to be computed using equation (7) to determine its  reliability. To determine the model 

accuracy, the geoidal heights of points obtained from the model are compared with their corresponding known geoid 

heights to obtained the residuals. 

2.1. Numerical Application in Bicubic Geoid Model Parameters and Accuracy Determination 

The ellipsoidal heights of eight benchmarks whose rectangular coordinates and orthometric heights are known were 

determined using DGPS. The rectangular coordinates, orthometric heights, ellipsoidal heights and the geoid heights as 

computed from the orthometric and ellipsoidal heights are given in table 1. To interpolate geoid heights of new points, the 

bicubic geoid model, equation (8) is to be fitted to the computed geoid heights of the benchmarks. Compute the model 

parameters and accuracy using least squares technique. 
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Station Coordinates Orthometric 

Height, H 

(m) 

Ellipsoidal 

Height, h 

(m) 

Geoidal Height, 

N (m) Northing Easting 

ESO 01 249308.287 354033.425 175.189 209.237 34.048 

ESO 02 244533.051 278026.486 291.686 326.581 34.895 

ESO 03 249241.822 362785.077 222.300 256.677 34.377 

ESO 04 259174.974 355889.303 425.449 460.033 34.584 

ESO 05 247210.935 359597.719 325.386 359.665 34.279 

ESO 06 260606.174 332700.238 120.829 155.115 34.286 

ESO 07 252751.094 344865.087 143.546 177.828 34.282 

ESO 08 276864.558 374129.027 315.314 349.689 34.375 

ESO 09 243587.154 340245.247 257.359 291.966 34.607 

ESO 10 269356.441 361478.369 199.075 233.531 34.456 

ESO 11 256457.248 357864.254 351.273 385.448 34.175 

Table 1: Coordinates and Heights of Benchmarks 

 

Solution 

Using equation (9), oY  and oX  are computed as the mean as well as the centroid of the given positions as: 

 255371.976=oY  

 347419.476=oX  

Deduction of normal equations using equation (8) 
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Also using equation (3), the coefficient matrix, A, matrix of unknown parameters, X and observation matrix, L are: 
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Considering equation (3), the above matrices are rearranged as 
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Deduction of values of x and y for each equation using equation (9) and the computation of coefficient matrix, A elements as 

presented in table 2. 

S/N ao x y x2 y2 xy x2y xy2 x3 y3 
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Table 2: Computation of Coefficient Matrix, Elements 

 

Computation of the model parameters, X using equation (6) 

Using coefficient matrix, A as well as the computed coefficient matrix, A elements given in table 2 and the observation 

matrix, L, the model parameters are computed as: 
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Substitution of the computed parameters into the interpolation model 

Having computed the model parameters, they are substituted into the geometric geoid model. Thus, 
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Computation of the model accuracy using equation (7) 

The local geometric geoid model whose parameters have been determined was used to obtain the geoid heights of the 

points and compared with the known geoidal heights of the points to obtain the residual as shown in table 3. 

Station 
Known Geoidal 

Height, N (m) 

Model Geoidal 

Height, N (m) 

Difference in Geoid 

Height, ΔN 

(Residual) (m) ESO 01 34.048 34.047 0.001 

ESO 02 34.895 34.948 -0.053 

ESO 03 34.377 34.376 0.001 

ESO 04 34.584 34.584 0.000 

ESO 05 34.279 34.281 -0.002 

ESO 06 34.286 34.289 -0.003 

ESO 07 34.282 34.282 0.000 

ESO 08 34.375 34.384 -0.009 

ESO 09 34.607 34.608 -0.001 

ESO 10 34.456 34.457 -0.001 

ESO 11 34.175 34.175 0.000 

Table 3: Known and Model Geoidal Heights and Residuals 
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11

003.0
Accuracy ±=±==RMSE  

The computed local geometric geoid model accuracy is 0.017m.± This implies that geoid heights can be interpolated within 

the application area with accuracy of 17mm.±  

 

3. Conclusion 

Considering that fitting a geometric geoid surface to a set of points whose geoidal heights are known to enable the 

interpolation of the geoid heights of new points if the variables are known requires the determination of the model 

parameters using the least squares technique which is rigorous and difficult to apply. This paper has presented the step by 

step procedures to be followed when determining geometric geoid model parameters and its accuracy using the least squares 

technique. The procedures were demonstrated using a numerical example. Considering the detailed procedures and the 

numerical example, it is certain that the difficulty in the application of least squares adjustment technique in local geometric 

geoid model parameters and accuracy determination has been simplified. 
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