
Descriptive Review for Software Testing
Algorithms

Chew Kean Ho [1] , Lim Lee Booi [2]

[1] ZORALab Enterprise
kean.ho.chew@zoralab.com

[2] Independent
lee.booi.lim@gmail.com

October 1, 2018

Abstract
Software testing tools are available in the market.
However, they are very specific to their software
domains such as programming languages. That made
the tools not portable and very difficult to use across
different software domains. Hence, developing
software products under those software domains has a
risk of missing quality assurance via software testing.

To make these tools available in those domains, one
needs to understand the software testing concepts,
processes and ultimately, its algorithms. This paper
reviews all the knowledge above and derive a
common software testing algorithms.

It reviews the history of software testing, definition
of quality, software development lifecycles, and
working environments that potentially influences the
software testing requirements. Then, it reviews the
technicalities of software testing such as test
coverages, test approaches, like CFG coverages, unit
testing practices approach. Lastly, it analyzes the
existing test tools across different programming
languages to form the common software testing
algorithm.

The paper then discusses the derived common testing
algorithms and some new findings. It concludes with
further separate research requirements to ensure the
algorithm is tested and stable for usage.

1. Introduction
Software testing begun since World War II era [6] . It
was all the way back in 1967 where Herm Schiller
created the first software code coverage monitor [7] .
Today, software testing is mainly for systematically
strengthens the stability of a software operations

across different requirements [6] , assuring the software
performing up to a certain quality.

Similar to any software product, software testing
tools are software products in nature. Like any
industrial-ready or commercial software products,
they undergo thorough testing before releasing to
customer. However, there is one crucial problem:
portability.

These tools are very specific to its software domains
like the programing language, operating system etc.
Therefore, not all test tools are cross-available in
different software domains like programming
language barrier such as javascript, and shell
scripts [1][5] . This means any software product
development under those domains are risking the
absent of software testing and quality assurance.

To make them available, one requires to understand
software testing knowledge like its concepts,
processes, and algorithms. Unlike test tools, these
knowledge are portable and transferrable. One can
spin a test tools easily using said knowledge. That is
the purpose of this paper: to investigate the common
software testing algorithms.

In this paper, we reviewed the software development
fundamentals like concept, lifecycles, and work
environment to get an understanding of today’s
software world. We then reviewed and analyzed the
software testing technicalities like test coverage, test
approaches, test processes, and readily available test
tools. Lastly, we discussed the algorithm we derived
from our learning and concluded the paper.

2. The Problems
As we develop software, we often overlook the fact
that software test tools are always available for all

1 of 24

domains. This assumption doesn’t happen in reality.
There are 3 main causes triggered us to perform this
research.

2.1. Programming Languages Barrier
One big problem with the software testing tools is
their specificity to programming language of origin.
This is valid as good test tools must be able to
understanding the language in order to test
thoroughly. In another word, it is a strength for the
test tools.

Unfortunately, the greatest strength is also its
weakness: portability. Since the test tools are rooted
deeply inside one language, to use the same tools for
another software in a different programming
language is very troublesome. One needs to build a
large scale programming language interpreters to
make the test tools talk in the new language. This is
known as the interpreters approach.

Using this approach creates the second problem:
dependencies.

2.2. Unwanted Dependencies
If we opted for the interpreter approach, we created a
minimum of 3 dependencies to the overall project:

1. The programming language interpreter
2. The software test tools
3. The software test tool original programming

language

This creates unnecessary dependencies just to
perform software testing. We now need to include 2
set of programming languages into the project and an
additional interpreter layer. This leads to the 3rd
problem: complexity.

2.3. Transferring Complexities
If we operate using the interpreter approach, we
introduce unnecessary process complexities into the
project as well. A bug caused by the interpreter
process and not the project would take a longer time
to root cause and investigate.

Despite that, it also means that the project now has a
steeper learning curve to operate. This is especially
painful for new comer in the development team and
potentially creates unnecessary discussion and issues
due to the said complexity.

2.4. Our Approach
Based on the problems we presented, we now have 3
course of actions:

1. Develop the test tool from scratch
2. Workaround with the interpreter approach
3. Choose a different programming language

for the software

If option 3 is not available, we can either choose
option 2 which is fast but problematic or option 1.
Option 1 is the primary motivation for this research.

Hence, we want to create the common software
testing algorithms based on the existing software
tools. These algorithms are transferable across
different software domains and allow us to quickly
develop the necessary test tools.

To create the said algorithms, we have to understand
the current software development world and software
testing technicalities from an overview perspectives.
This allows us to stay on-course with existing
industrial practices.

Also, by understanding software testing from a
holistic perspective, we can understand the current
software development and testing requirements. This
allows us to adjust the algorithms for meeting the
current demands.

In the following sections, we present our reviews,
analysis outcomes, the algorithms, and some
discussions.

3. Overview - Software World
In this section, we review the current industrial
practices and software quality management. We
begin by studying the definition of quality. This is to
clarify the meaning and expectation as we mention
“quality”.

Then, we review the software development processes
influences towards the software quality management.
This allows us to understand the timing and to set
test direction, test objectives, and compatibility for
software testing.

Lastly, we review the work environments that have
potential influences towards test tools’ requirements.

2 of 24

3.1. Definition of Quality
Definition of quality is subjective and carries high
degree of perception. From years of software
advancements, defining quality can be very
philosophical. For example:

● Walter Edwards Deming, Walter A.
Shewhart, Philip B. Crosby believes that
quality is manageable, measurable, and
ultimately, conformance to
specifications [4] ;

● Armand Vallin Feigenbaum, Kaoru
Ishikawa, and Walter A. Shewhart, believes
that quality means meeting customer
needs [4] ;

● Walter Edwards Deming and Joseph M.
Juran believes that quality that comes from
organizational management, practices
and processes [4] .

Moreover, the definition is also industry specific.
Some industries like avionics, automobile, and
medical have very strict software quality control due
to any defect could kills life and create physical
damage to the environment and ecosystem [9] . Others
like banking, payment, and other finance software
must comply to compulsory compliances, such as
Payment Card Industry (PCI) Security Standards for
payment card related softwares [11] .

Based on the philosophies above, we concluded that
“quality” means software testing that:

1. has detailed requirements from:
1.1. customers
1.2. standards compliances
1.3. industrial standards

2. is measurable
3. is manageable
4. conformance to specification

We then review quality from 2 distinctive directions:
software quality and data quality.

3.1.1. Software Quality Aspects
In this section, we review the aspects for measuring
software test quality. This allows us to execute
software testing in a manageable, measurable,
directional, and empirical way.

Based on industrial practices, ISO 25000 defined
software product quality into 8 primary aspects:
functional suitability, performance efficiency,

compatibility, usability, reliability, security,
maintainability and portability [2] . These primary
aspects hold their respective subsidiary expectations
that serve as the testing objectives [2] . Table 3.1.1-1 to
Table 3.1.1-8 tabulated all aspects accordingly [2] .

Ideally, a software should achieve all quality aspects.
In reality, developers often prioritize some
expectations over another based on requirements [3] .
This is influenced by various reasons like definition
of quality differences, and/or resources constraints
like short development time [3] .

Table 3.1.1-1 - Functional Suitability Quality Aspect
from ISO 25010

Expectations Descriptions

Functional
Correctness

Degree of function fulfilling all
specified objectives.

Functional
Completeness

Degree of function delivers
result with accuracy and
precision.

Functional
Appropriateness

Degree of function facilitate
accomplishment for all
specified objectives.

Table 3.1.1-2 - Performance Efficiency Quality
Aspect from ISO 25010

Expectations Descriptions

Time Behavior Degree of processing time
required for producing results.

Resources
Utilization

Degree of amount and types of
resources used for producing
results.

Capacity Degree of minimum and
maximum limit for producing
results.

Table 3.1.1-3 - Compatibility Aspect from ISO 25010

Expectations Descriptions

Co-Existence Degree of performance stability
when deployed in shared
environment and resources.

Interoperability Degree of information
exchange with other products.

3 of 24

Table 3.1.1-4 - Usability Aspect from ISO 25010

Expectations Descriptions

Appropriate
Recognizability

Degree of recognizability for
users to match their
requirements.

Learnability Degree of easiness for user in
mastering the use technique.

Operability Degree of easiness for user to
operate and control.

User Error
Protection

Degree of user error protection
and prevention.

User Interface
Aesthetics

Degree of pleasing and
satisfaction from using the user
interface.

Accessibility Degree of support for wide
range of characteristics and
capability

Table 3.1.1-5 - Reliability Aspect from ISO 25010

Expectations Descriptions

Maturity Degree of requirements for
meeting the system reliability
confidence under normal
operation.

Availability Degree of operational readiness
for use and consumption.

Fault
Tolerance

Degree of operational steadiness
in faulty environment.

Recoverability Degree of self-heal and
re-initialization for process,
system, data, and state.

Table 3.1.1-6 - Security Aspect from ISO 25010

Expectations Descriptions

Confidentiality Degree of secrecy protection
and controlled accessibility.

Integrity Degree of access management
and illegal access prevention.

Non
Repudiation

Degree of logging and solicit
evidence for events.

Accountability Degree of tracing actions
uniquely to an entity.

Authenticity Degree of identity management
and claims.

Table 3.1.1-7 - Reliability Aspect from ISO 25010

Expectations Descriptions

Modularity Degree of impacts for changes to
its own and other components.

Reusability Degree of modification required
for deployment in more than one
system.

Analysability Degree of diagnostic capability
and easiness in analysis.

Modifiability Degree of modification easiness
without degrading software
quality.

Testability Degree of effectiveness and
efficiency for testing the system.

Table 3.1.1-8 - Portability Aspect from ISO 25010

Expectations Descriptions

Adaptability Degree of stability in different
operating environment.

Installability Degree of effectiveness and
efficiency installation.

Replaceability Degree of effectiveness and
efficiency for product
substitution.

3.1.2. Data Quality Aspects
Apart from software quality aspects, data quality is
equally important since end-users consume data
produced by the software. In this section, we review
the aspects for measuring data quality.

Based on the industrial practices, ISO 25000 offers
ISO/IEC 25012 standards for data quality
compliances [8] depending on the data nature.

4 of 24

Data can be described in 3 distinct natures:

1. Inherit Data Quality - data under immediate
consumption or use through control logics
and controls [8]

2. System-Dependent Data Quality - data
depending on system for reachability and
preservation [8]

3. Inherit and System-Dependent Data Quality
- data under the influences of both inherit
data quality and system-dependent data
quality [8]

Hence, a piece of data’s nature can be any of the 3.
Table 3.1.2-1 - 3.1.2-3 all shows the expectations for
the 3 data natures respectively [8] .

Table 3.1.2-1 - Inherit Data Nature Aspect from ISO
25010

Expectations Descriptions

Accuracy Degree of correctness for data
syntactically and semantically.

Completeness Degree of fulfillment for all
data attributes.

Replaceability Degree of correctness free from
contradiction and coherences.

Credibility Degree of truthfulness,
authenticity, and trustworthy.

Currentness Degree of age and lifecycle.

Table 3.1.2-2 - Inherit and System Dependent Data
Nature Aspect from ISO 25010

Expectations Descriptions

Accessibility Degree of reachability for
wide range of user’s
characteristics and capability.

Compliance Degree of adhering standards
and specifications.

Confidentiality Degree of secrecy protection
and controlled accessibility,
complying ISO/IEC
13335-1:2004.

Efficiency Degree of performance and
resources needs.

Precision Degree of exactness.

Traceability Degree of capability for
tracking data changes.

Understandability Degree of data consumption
difficulties.

Table 3.1.2-3 - System Dependent Data Nature
Aspect from ISO 25010

Expectations Descriptions

Availability Degree of reachability at the
point of time.

Portability Degree of freedom in shifting
from one system to another.

Recoverability Degree of preservation and
operation quality enabling
data self-healing.

3.2. Software Development Lifecycle
In this section, we review the Software development
lifecycles (SDLC) influences to software testing and
quality control. Software testing is an important part
of the process in SDLC. Therefore, we must review
the compatibility and feasibility of various software
testing approaches.

SDLC is commonly categorized into few known
stages: gathering requirements, plan and develop,
test and validation, package and
deploy/distribute [11][12][13][14][15] . However, they are all
different in terms of execution across different
process model.

3.2.1. Ad-Hoc
Back before cross-compiling languages like C exist,
software development and deployment is very
limited [8] . The software requirements are very simple
that it doesn’t require much testing [8] . Moreover,
development efforts are performed in ad-hoc manner.
Since there is no need for a process to govern the
development [15] , this SDLC is known as “ad-hoc
development”.

The advantages for adopting this SDLC is obvious:
low to no overhead, adaptable, and easy to use [15] .
Developers can jump straight into development
without much consideration. However, the caveats is
that it ignores important values like maintenance,

5 of 24

testing, scaling, recoverability, and possibly
becoming non-reusable [15] .

This SDLC is commonly seen in experimentation in
the industrial or commercial practices. It is useful for
developer to verify some light-weight assumptions
where the software product is either one-time or
limited use.

Since ad-hoc development process model excludes
testing explicitly, software testing is not required in
this SDLC.

3.2.2. Waterfall
Waterfall SDLC model started in 1956, first
documented by Benington, modified by Winston
Royce in 1970 [14] . It is a cascade model where one
stage is fully completed before transitioning to next
stage [12] . Diagram 3.2.2-1 illustrates the general
process model.

The advantage of implementing waterfall process
model is that the tasks and specifications are rigid
and detailed so execution is far straightforward [15] .
This type of process model works well in handling
complex but well-understood project, and friendly to
inexperience member in the team [15] .

The downside is that it is very difficult to predict the
precise and accurate requirements upfront, in the
requirement specification stage [12][15] . Secondly, the
SDLC structure is very rigid to the point where the
next stage can’t start without the previous getting
completed [12] . Hence, if there is a requirement change
during the production, there is no way to
accommodate such changes [11] .

Waterfall model has been deployed in structural and
stable project development, software and hardware
environments [12] . This is especially noticeable in the
industrial and military sector where many standards
like MIL-STD2167A, MIL-STD 498, IEEE-STD-016,
and ISO 12207 [13] .

Executing software testing in this SDLC is
straightforward since itself is an independent process
block. Test developers only start developing test
plan in the testing stage based on the inputs from the
requirements, development, and implementation
stages [11] . During test stage, all roles from business
analyst, user experience testers, engineers, and
quality control experts perform their test together [11] .

Upon stamping a “pass” in test phase, the product
can be safely said a releasable to customer [11] .

Based on Diagram 3.2.2-1, we can see that the
software testing stage only starts at Week-25 of the
entire project timeframe. While this is good if the
project develops its own test tool, this is not feasible
since testing the product is difficult due to large
complexity. This means that the test tool will need to
be equally complex and becoming not portable for
other project. Moreover, if there is a change in
requirement, the entire product development
undergo an overall reset and likely going through a
project restart.

Diagram 3.2.2-1 Generic Waterfall Process Model

3.2.3. Agile
As the software industry advances to the point where
requirements are changing faster than the
development does, numerous new SDLC models are
born. These fast, adaptable models are categorized
under the common name “Agile”. Agile SDLC
models are a series of waterfall processes focusing on

6 of 24

task or feature level instead of project management
level [11] . Their manifestos are [12] :

1. Individuals focused, not tool
2. Working software over documentation
3. Customer collaboration over contract

negotiation
4. Embrace changes

To do that, they comply to a list of strict discipline [12]
like:

1. Early and continuous delivery
2. Maintain delivery consistency
3. Prioritize technical excellency
4. Maintain simplicity (art of achieving goal

with maximizing work not done)
5. Welcome continuous requirements (embrace

changes)
6. Perform self-improvements (kaizen)

A generic agile process is shown in Diagram 3.2.3-2.

There are various agile process models based on this
incremental development concept [13] . Some examples
are Scrum, Unified Process Model, Crystal, Feature
Driven Development, Adaptive Software
Development, eXtreme programming [12] , Six Sigma [4] ,
Rapid Prototyping Development / Rapid Application
Development [13][14] , Joint Application
Development [13][14] , and Lean Development [14] . As

there are various SDLC models to choose, many
suggested to considers a series of inputs before
choosing one [15] :

1. Tasks at Hand
2. Risk Management
3. Quality or Cost Control
4. Predictability
5. Progress Visibility
6. Customer Involvement and Feedback

In terms of value, the process must consider the
feature, time, quality, and resources cost [4][11][15] .
Table 3.2.3-1 shows the rating for some processes
based on the inputs above [15] . Diagram 3.2.3-3
illustrates the feature, time, quality, and resources
cost triangle. These values however, are only as
selectable since their extremes contradicts one
another [15] .

Software testing for any agile process must comply to
their manifesto and execution. Since the testing is
inside each cycle of development [11] and acting as
quality control backbone, it must be modular, fast,
non-brittle and portable. Due to fast and changing
requirements nature, test techniques such as
acceptance test, pair programming, and test-driven
development are primary habits in these processes [12] .

Diagram 3.2.3-2 Generic Agile Process Model

7 of 24

Table 3.2.3-1 - Model Selection based on Input Rating [15]

Model Risk
Management

Quality
Control

Predictability Progress
Visibility

Customer
Involvement

Ad Hoc 1 1 1 3 2

Waterfall 2 4 3 1 2

Spiral 5 5 3 3 3

Rapid Application
Development

3 3 2 5 5

Feature Driven Development 3 5 3 3 4

Design to Schedule 4 3 5 3 2

Diagram 3.2.3-3 - Software values triangles prioritization where left is waterfall model, right is agile. [11]

3.3. Work Environment
In this section, we review the impacts and influences
of a work environment towards software testing. This
allows us to gain understanding about the work
environment influencing the nature of the test tools
being built or modified for suiting a particular
environment.

3.3.1. Remote-Only
Today, software development and testing has reaches
a point where physical office is no longer a
requirement. Most infrastructures are now facilitated
via cloud services like software-as-as-service (SaaS)
such as GitLab CI [41] , or infrastructure-as-a-service
(IaaS) such as DigitalOcean [42] . Also, the current
technological enablements such as fast internet
everywhere, 100Mb/s+ cable, 5GHz Wifi, 4G cellular,
video conferencing software, virtual office and
infrastructures [16] made this work environment
feasible.

In order to achieve remote-only work environment,
the nature of the product must promote high
portability. Out of the 37 successful companies listed
in remoteonly.org, all of them are producing software
products that does not involves physical resources
for logistic delivery [16] .

Their testing methodologies also reveals that their
testing technologies relies heavily on several factors
such as output type, portability, learning-on-the-job,
and team communications [16] . Without these
attributes, software testing can results in a
non-productive way [37] . Hence, these factors affect
software testing and automation tools development
from time-to-time. A good example is the continuous
integration (CI) infrastructures development.

Before GitLab, CircleCI was the best choice of
service for facilitating CI services [43] on Github.
However, it is limited to non-physical products that
are suitable to run inside a container [43] . This is not
feasible for physical based products such as firmware

8 of 24

or electronics, and security related tasks like key
signing, encryption, and software packaging.
Moreover, CircleCI requires external integration with
GitHub, which means extra processes and security
concerns when dealing with sensitive data.

GitLab foresaw such issues and developed their own
GitLab remote CI robot to facilitate all testing tools
across any SDLC. This allows users to have full
freedom in their development and testing [41] .
Additionally, it facilitates a more flexible
development environment and testing friendly
infrastructure, mitigating sensitive data security
concerns [41] . To date, GitLab CI automation services
had included the Kubernetes production
deployment [41] , leaving developers to focus on only
development while the automation takes over build,
test, package, deploy, and monitor [41] .

3.3.2. Office-Only
Office-only work environment requires the tester and
testing infrastructure to work only inside a physical
premises on-site [36] . Normally, a company enforces
office-only work policy company wide due to
various reasons:

1. Policy abusement by employee [36][37]

2. Job nature and social requirements [36][37]

3. Security and intellectual properties
protection [38]

This environment allows tester to not only perform
software testing with great freedom, it also offering
an easier testing method for physical products [16] .
Since the test infrastructures cannot leave the
premise, high portability and remote facility
requirements are no longer mandatory and
sometimes, banned for security reason [38] .

3.3.3. Mixed Environment
The last work environment is a mix of both remote
and office work environment. It is commonly known
as “work-from-home” policy [40] , or “distributed team”
culture [39] . Many companies implement this type of
work environment like InVision [39] and Accenture [40] .

Since this work environment promotes remote access,
the test infrastructures and methodologies should
aligns to “remote-only work environment” due to its
complex requirements and challenges.

4. Overview - Software Testing
In this section, we review software testing from the
technical perspective. This allows us to understand
software testing from a software developer or tester
point of views.

We start off by reviewing the qualitative aspects of
software testing and their associated technicalities.
Here, we will learn the test coverages, requirements,
expectation, and the testing objectives for measuring
test quality.

Next, we review the software testing approaches
available in the industry. This facilitates us with
approaches to achieve the software testing coverage
goals.

After reviewing both test coverage and testing
approaches, we then analyze the existing test tools in
its dedicated analysis section.

4.1. Test Coverages
Test coverages is a quality measurement for software
testing. It is achievable via 2 main test
methodologies: white-box testing and black-box
testing [17][18] . Developers can deploy either or both
methodologies simultaneously in their testing
strategy [17] .

Black-box testing methodology focuses on testing at
the overall application/system level with a set of
inputs against the expected outcome without
considering the application’s interior working
functionalities [18] . It is easy to implement with low
learning curve, develop test cases quickly, and by its
own nature, simple [18] . The caveat however, is the
lack of in-depth of the test analysis and create a large
coverage challenges to cover the required
stability [18] . Some examples are product behavioral
driven testing and system level testing.

White-box testing methodology focuses on testing
the application’s interior working functionalities [18] .
Due to its ability for accessing the application
internal functionalities, it executes tests with a more
introspective, thoroughness, and stability
comprehensions. [18] . The downside however, is that it
introduces a high-level of application-specific
integration, making it not portable; the complexity
for all the test scripts; and creating a fragile or brittle
test environment [18] . Some examples are unit testing
or product functional testing.

9 of 24

Both methodologies have their pros and cons. One
must prioritize the value of using them in the project
to achieve large test coverage [18] . We will review the
different types of test coverages and approaches
before analyzing test tools.

4.1.1. Statement Node CFG Coverage
Statement node control flow graph (CFG) test
coverage is a white-box testing coverage criterion [17] .
It focuses on a hypothesis where defect is
discoverable if containing code parts not
executed [19] . With this coverage, It minimizes the
number of test cases required for achieving maximum
coverage.

Diagram 4.1.1-1 illustrates an example for statement
Node CFG coverage. In this example, if the test cases
only cover 1-2-4-5 node progression, node 3 is not
tested and therefore has defect possibility [17][19] . This
implies that if we implement only this coverage
alone, it creates a coverage incompleteness [17] .
Therefore, it needs other criterias to overcome this
limitation.

Diagram 4.1.1-1 - Node mapping comparing to
source code

4.1.2. Edge CFG Coverage
Edge CFG coverage is another white-box testing
criterion [17] . It focuses on the range of parameters and
conditions [17] . Back to Diagram 4.1.1-1 example, if
we feed params[0] with edges data like:

● A maximum negative number
● A minimum negative number
● Zero
● A minimum positive number
● A maximum positive number
● Type of data - round number
● Type of data - decimal float number
● Type of data - any others like string

It covers the spectrum of inputs for node 2. This
triggers the necessary node 3 and 4 control flow and
raise error accordingly. Therefore, it helps
overcoming the statement nodes CFG coverage’s
limitation. Edge CFG Coverage works hand-in-hand
with Statement Node CFG Coverage almost all the
time.

4.1.3. Condition CFG Coverage
Conditional CFG coverage is another white-box
testing criterion, focusing on controlling all
possibilities for multiple conditions [17] . Diagram
4.1.3-1 is an example for the “if” condition which
has two independent comparisons.

Diagram 4.1.3-1 - Multiple condition coverage

10 of 24

Based on the example in Diagram 4.1.3-1, developer
commonly writes the code shown on the top [17] . Both
top and bottom cases create a total of 4 cases to test.
However, when it comes to test execution, the code
on the top for params[1] gets neglected when
params[0] is false. This yields the coverage truth
table shown in Table 4.6.3-1.

Table 4.6.3-1 - Truth table for condition coverage

ID [0] [1] Condition Coverage

1 True True True positive

2 True False negative by params[1]

3 False True negative by params[0]

4 False False negative by params[0]

Complying to statement node CFG coverage
criterion, the negative execution codes for params[1]
is true is considered not covered since that path is
blocked out by params[0] false condition [17] .
Condition CFG Coverage looks into such matters
and create the necessary coverage points.

4.1.4. Path CFG Coverage
Path CFG coverage is another white-box testing
criterion. It identifies the desired control path for
each scenarios [17] .

Diagram 4.1.4-1 - Path identification coverage

The purpose is to identify and to ensure critical paths
in execution are done safely [17] . Hence, it normally

deals with multiple cases conditions, loops and
recursive functionalities, ensuring all the edge
conditions are covered for the paths [17] . Diagram
4.1.4-1 shows the path identifications for program
illustrated in Diagram 4.1.1-1.

4.1.5. Equivalence Class Testing
Equivalence class testing (ECT) is a black-box test
coverage criterion [17] . It focuses on providing
complete application testing and avoiding
redundancy [17] .

To execute a strong ECT (known as SECT), the
developer should covers all parameters for each
scenarios [17] . Weak ECT (known as WECT), the
testing by cherry-picking critical parameters for
testing representing the overall test coverages [17] .

Both SECT and WECT has their pros and cons
depending on requirements. WECT covers all
extreme cases to ensure the application works within
the boundary of parameters; SECT covers stronger
stability testing. If error handling is a priority,
developer can then expand the WECT to SECT
where it evaluates more test values and expected
errors [17] .

There is a problem with ECT: the parameters can be
infinite [17] , taking infinite time for test execution.
This is mitigatable by using various other black-box
test coverage criterion.

4.1.6. Boundary Value Analysis
Boundary value analysis (BVA) is a black-box test
coverage criterion working alongside with ECT. It
systematically tests the boundary values for WECT
testing [17] , focusing on all possible parameters falls
on the the acceptance boundary [17] . In short, it
enriches the WECT by covering not only its
parameters but establish a value boundary near them
for error handling [17] .

4.1.7. Category Partition Testing
Category Partition Testing is a black-box test
coverage criterion working alongside with ECT. It
categorizes the approach for ECT [17] . Since ECT has
an infinite parameters to cover, Category Partition
Testing coverage categorizes them in to groups [17] .
This helps in scoping down critical parameters based
on a characteristized conclusion, making testing
robust yet compact to achieve large coverage [17] .

11 of 24

Example: for an array sorting function, we can
characterize the test parameters into:

1. Length of array
2. Type of elements
3. Boundary values (over max, max, ideal,

min, below min)
4. Mix of boundary values with length of

array.

Once the categorized coverage item like character 4
is achieved, the test coverage can draw a conclusion
that the said array now supports mix of boundary
values with length of array [17] .

4.2. Test Approaches
In this section, we review some known test
approaches that achieves the test coverages. These
approaches are known as the software testing
practices in the industry.

4.2.1. Unit Testing Practices
Unit Testing Practices is a test approach focusing
testing procedures/modules at the smallest unit
possible [19][20] objectively [20] . Unit testing produces
fast feedback through their independent test
execution [20] . Therefore, It is highly suitable for
regression testing, especially for continuous
integration and delivery [20] .

The downside however, is that unit test can be
challenging when it comes to graphical user interface
testing, test scripts reusability, lack of
documentation, developers’ competency, and cost
over value [20] . Some developers or organization
views unit testing is a costly process as far as taking
50% developers’ extra time from development
timeframe [21] .

Developer usually produces the unit test codes
alongside writing or debugging the product [21] . There
are various techniques such as stubbing, mutation
analysis, and mocking used to produce the unit
test [21] .

Some example like in object-oriented classes, the
unit test for said class is called class testing [19] .

4.2.2. Source-to-Source Transformation
Source-to-Source transformation is an approach to
modify the source code for catering code coverage
analysis [1] . It injects the source code with the

statement node based on the test coverage for later
test coverage analysis [1] .

Diagram 4.2.1-1 illustrates an injection example: the
top section is the original code; the bottom is the
node injected code. Based on the example, as the test
is running, these executed node is set to “true” which
means it went through this path. After the test
execution, the system can analyze the executed
nodes for the designated coverage points.

Diagram 4.2.1-1 - A source-to-source transformation

4.2.3. Industrial-Strength Transformation
System

Industrial-Strength Transformation System is an
approach of using industrial commodity test tools for
analyzing code coverage [1] . These engineering tools
have specialized source-to-source rewrite rules and
facility to confidently inject the probe and analyze
on-the-fly. Normally, these tools are specific to
programming language, especially mainstream
languages like C, C++, Ada, FORTRAN and etc [1] .

Among the known commercial tools are REFINE
from Reasoning Systems, XT from Program
Transformation Organization, and DMS from
Semantic Designs [1] . Many compiler now offers
ad-hoc parser modifications feature, allowing
developers to perform source-to-source
transformation configuration easily [1] .

12 of 24

4.2.4. Execution Log Tracing
Execution log tracing is an approach that parses the
execution traces for test coverage analysis [5] . Certain
programming languages like Ruby, Python, and
Shell do output their respective line-to-line
execution traces [5] for facilitating software testing.

There are some known softwares such as shcov or
kcov which already using this implementation
method [5] .

4.2.5. Static Analysis
Static analysis is an approach focuses on analyzing
the code/object itself for defects [22] . Depending on
the language, this approach scans for security
vulnerability such as buffer overrun, unvalidated
input, memory referencing like null dereferencing
and uninitialized data, resources leak like memory or
OS, API violation, exception handling,
encapsulation and race conditions [22] .

Static analysis is frequently deployed not only in
conventional software application but critical
industrial systems like A380 fly-by-wire control
system [23] . This type of tool uses different abstraction
interpretation like AbsInt’s worst-case execution time
analysis, CEA’s Fluctuat, Astr´ee etc [23] .

Static analysis is implementable via various methods
like abstraction, AST walker, type analysis, lattice
analysis, etc [22][24] . However, it has its limitation such
as frequent false reporting, poor test exception
handling, and modularity dependency [22] . Therefore,
developer must use other approaches to complement
said limitations.

5. Analysis - Test Tools
In this section, we review each of the software testing
tools available across different system and
languages. We look into the test tool
implementation, learn their test coverages, and
understand their test approaches.

Then, we review the gaps we identified through our
analysis and compare them with our problem
statement.

5.1. Test Tools
In this section, we review some currently deployed
test tools from its purpose, supported language,
supported test coverage, and its test approaches.

5.1.1. Valgrind
Valgrind is a dynamic analysis tool primarily
focusing on C/C++ program [25] . Valgrind is able to
monitor various memory usage through its
memcheck, cachegrind, callgrind, and massif [25] .

Valgrind uses the industrial-strength transformation
system approach by adding itself as a service layer
between the program and the operating system [25] ,
shown in Diagram 5.1.1-1. It employs statement and
condition CFG coverage throughout its own
stepping. As for edge and boundary value analysis,
Valgrind requires user to provide the correct
arguments in order to test it.

Diagram 5.1.1-1 Valgrind Interaction

Since Valgrind is working in between the program, it
has the ability to inject memory creation call
functionalities to analyze the memory usage [25] . This
is the main reason why program run under Valgrind
takes 20~30 times longer to complete [25] . Valgrind is
able to achieve this mainly because the C/C++
language itself permits such interfaces.

5.1.2. Shellcheck
Shellcheck is a static analysis linter created using
Haskell language for bash and shell scripts [26] . It uses
static analysis approach to analyze faulty codes.
Hence, it relies heavily on line-by-line abstraction
for its analytic work.

Unlike other tools, shellcheck only checks on coding
practices and reports potential defective codes [26] .
Therefore, it is common that shellcheck reports
numerous false positive since it doesn’t execute the
program on its own.

13 of 24

5.1.3. Rubocop
Rubocop is a static analysis linter for ruby
programming language [27] . Similar to shellcheck,
Rubocop uses static analysis approach to read the
source codes itself and reports potential defects and
coding style or formatting irregularity [27] .

Due to the high flexibility in ruby language,
Rubocop is able to perform keywords abstraction
analysis upon the source code [27] . Then from there, it
compares each line of codes against its huge set of
linting libraries [27] .

5.1.4. MinUnit
MinUnit is a unit-test framework for C language
similar to CPPUnit [28] . MinUnit uses the unit-testing
practices approach by providing 3 lines header to
illustrate the simplicity for implementing unit
testing [28] . It relies on the C language static/dynamic
linking capability to perform white-box testing
against the main program.

Since this is a unit-testing practices approach, it
allows test developers to perform all the test
coverages depending on their competency.
Optionally, developer can use industrial-strength
transformation system approach for the unit-testing.

The idea is to have the main program’s functions
packed as a library and then have the unit test
program runs like the main program. Upon
compilation, developer will just need to run the unit
test program once and capture the output.

MinUnit successfully demonstrates the unit test only
requires a minimum of 3 statements:

1. The assert statement
2. The run test statement for running all tests
3. Test return values

User can then expand the framework based on needs.

5.1.5. Rspec
Rspec is a unit testing framework for Ruby
language [29] . Hence, it employs unit testing practices
approach for developer to test their program. Rspec
executes on an independent ruby test script that
import the main script. The test script contains the
test cases written using test statements style, similar
to MinUnit [29] .

As a framework, Rspec relies heavily on Ruby’s
built-in modules, class functionalities [29] , and
external libraries such as simplecov to analyze the
test coverage [30] .

5.1.6. Simplecov and Ruby Coverage
Module

Simplecov is a code coverage reporting and
interfacing feature for Ruby built-in Coverage
module [31] . Hence, it uses industrial-strength
transformation system approach to facilitate code
coverage analysis.

Ruby built-in Coverage module also uses execution
log tracing approach for test coverage analysis [32[33] .
The module is able to measure the path, conditions
and edge CFG coverages [32][33] .

5.1.7. Unittest
Unittest module is a built-in python based unit
testing framework [34] . Therefore, it uses unit testing
practices approach to facilitate testing.

It leverages python object-oriented class to package
a test suite with its test cases [34] . After that, it has the
test script self-executable using the unittest class’s
main function.

5.1.8. Coverage.py
Coverage.py is a Python code coverage test
framework [35] . It uses its industrial-strength
transformation system approach like Python
inherited line number table and execution log
tracing approach for test coverage analysis [35] . Also,
Coverage.py uses static analysis approach to analyze
codes for defects. Comparing to other tools,
Coverage.py is a very robust test tool.

Coverage.py also specified that using it can
significantly slows down the execution time [35] . To
compensate this, part of the analytic tools is written
using C language [35] .

5.1.9. Go Test Tool
Go test tool is an all-in-one test tool for Go
programming languages. It relies heavily on its
industrial-strength transformation system approach
such as its go interface features for test injection [45] . It
also uses execution log tracing approach to test
coverage analysis [45] . Go test tool also uses unit

14 of 24

testing practices approach to facilitate the
conventional test executions.

One thing special about go test tool is that it
facilitates performance testing alongside its unit
testing feature [44][45] . This allows the user to do
performance testing down to the functional level. It
uses statistical average calculations by running the
test across many repeats, as high as 1 million [44] .
Therefore, the produced results are confidently
consumable. However, this performance testing is
subjected to noises such as CPU temperature
throttling which might not produce accurate
results [44] .

5.2. Gap Identified
Throughout our analysis, we observed our addressed
problems are reflecting across all the tools: they are
great testing tools in their programming
language/operating system environment, but not
portable across one another.

For example, Valgrind, being able to analyze
memory management capabilities for binary
execution is only specific to C/C++ binary program.
It can’t be directly used against softwares from other
programming languages due to design limitation.

Similarly, Shellcheck and Rubocop are static
analysis test tools but can’t be used across each
other’s language domains. This made sense since
static analysis test tool needs to scan the codes
directly for defects. Hence, they are not portable and
must maintain its programming language specific
nature. However, they share common processes like
“check, clean, parse, analyze, report” for each code
analysis.

As for test coverage, Simplecov and Ruby Coverage
module, and Coverage.py all exhibit the same
language specific gap. Coverage.py is not usable for
Ruby language and Simplecov is not usable for
Python language. Their internal test coverage
processes share the same pattern: both are using log
tracing approach and industrial-strength
transformation approach to execute their test.

Looking at unit testing test tools, MinUnit, Unittest,
and Rspec are the 3 main tools. They are all specific
to their own programming languages and not
portable across one another. However, they follow the
same implementation processes: parse the source
code, setup the test environment, execute fragment of

unit test codes, process the results, and repeat them
again until all fragment of unit test codes are ran.

Another observation is that all tools are grouped in a
purpose-specific manner instead of one test tool for
one language. As shown above, Valgrind holds its
own purpose of testing; Shellcheck and Rubocop are
grouped as static analysis test tools; Go Test Tool,
Simplecov, and Coverage.py are grouped as a code
coverage test analysis tools; Go Test Tool, MinUnit,
Rspec, and Unittest are grouped as unit testing tool;
and Go Test Tool is grouped for performance testing.

One exception observation is that go test tool packed
all the purpose-specifics test functionalities into 1
single tool. This is a good trait as the user would
only use a single tool to run all the appropriate tests.

From the above observations, we can see our problem
statement reflected on all tools. Since we can’t use
the existing test tools for other programming
languages, we can extract the common processes and
document it as the software testing algorithms.

During the course of the research, there is no detailed
studies related to power management of the test
system. This is different from the power management
performance metric in performance testing algorithm.

The reason is that all the test executions are assumed
running on a single operating system process,
complying to the operating system default power
management settings. This works for application
level testing but can be troublesome for low-level
testing such as kernel and hardware.

Also, there is no study related to the test tool’s power
management affecting the test results. This also
means that any test executions studied in this paper
should be carried out in a non-interruptive
power-management operating system.

Therefore, a further study is advisable for this
specific power management topic.

6. Discussion
In this section, we proceed to discuss our identified
algorithm extracted from the analyzed test tools. This
is the section where we consolidate the work patterns
into a common software testing algorithm.

Then, we discuss about new findings like
performance testing, power management, parsing

15 of 24

capabilities etc. These findings are not detailed in
this paper.

6.1. Extracting Method
Since software testing is not something new, we can
perform reverse engineering on existing
industrial-ready test tools and learn their testing
algorithms. Then, we compare their processes with
one another. If one tool is performing in an usual
way, we will study the reason behind it and adjust
accordingly. Once a common algorithms is visible,
we then extract it.

This method of extraction is preferred mainly
because:

1. Each tools’ algorithms can validate one
another during comparison.

2. Not to remove their development insights
over the years

3. Not re-inventing the test methodologies.

Through this method of extraction, it assures our
derived algorithm is not an reinvention and it is safer
to deploy compared to creating algorithms from
scratch.

6.2. Derived Software Testing Algorithms
By analyzing all the test tools, we observed a similar
pattern for all industrial test tools. There are 5
recognizable process stages:

1. Prepare
2. Parse-and-Inject
3. Execute
4. Analyze
5. Report

The details for each stages are in the subsections.

6.2.1. Prepare
This stage prepares the testing environment. It is
responsible for setting up the test directory, assemble
the test files and test scripts accordingly, read user’s
configurations such as test exceptions and test
parameters, and setup the framework data storage.
Diagram 6.2.1-1 illustrates the process flow for this
stage.

The first step is to process the test command
arguments. Since the full test is a time consuming
process especially test coverage, the algorithm

should bail out for any improper arguments and exit
with error.

The next step is optional. Taking consideration in
some test tool for using a source-to-source
transformation approach, this stage can optionally
prepare an isolated test directory if necessary to
prevent permanent modification effect against the
original source codes.

The following step is to prepare or update its test
data storage. This includes preparing a clean storage
and logs location for storing the captured test data. If
the test tool supports artifact caching, this is the step
to restore the artifacts to the right location.

Diagram 6.2.1-1 - Process Flow for Prepare Stage

If the test directory is isolated, the next step is to
update the test subjects and test suites by copying

16 of 24

into it, reassembling a clone software repository for
test execution. Otherwise, this step is skippable.

Lastly, this step is for optimization purposes. It is
optional depending on the test tool requirement. The
test tool can analyze changes for each files,
identifying what has altered and what can be skipped
(for saving time), making the test execution
transactional. This saves time and resources.

If there are any error occurs at this stage, the entire
test execution should comes to a halt and request
user attention for solution. The is because the test
environment is not prepared properly which can
disrupt the test results.

6.2.2. Parse-and-Inject
This stage processes the test subjects for
implementing test coverage. It is responsible for
parsing and injecting statement nodes into the test
subject. Diagram 6.2.2-1 illustrates the process flow
for parse-and-inject stage.

This stage is time and resources consuming. Since
some test tool warned that the overall slowdown can
be as much as 20~30 times [25] , the focus is to execute
efficiently but prioritize doing the right thing.

The first and second steps are to find the possibility
of skipping a test coverage analysis. This includes
reviewing user’s explicit instruction for test coverage
or detecting negative parameters like no test cases
scenarios. This way, the entire stage is skippable.

The next step is to check whether the code or
language has an industrial-ready transformation
facility for parsing and injecting the statement nodes.
Example, for Ruby programming language, there is a
built-in Coverage module. If such facility is
available, the test tool should use such facilities
instead of reinvention. Otherwise, the tool needs to
perform source-to-source transformation approach for
facilitate test coverage.

Source-to-source transformation approach alters the
source codes by injecting executable “nodes” into
each identified statements based on the CFG
coverage. Therefore, the approach starts by
duplicating the test subject. If the repository is
duplicated in the preparation stage, this step is
skippable.

Next, the approach parses the code line-by-line,
analyzes its meaning, and then prepare the node

number incrementally. The node itself is an
executable function only reports to test coverage
analytic tools; it must not alter test subject and test
scripts original execution intention. As a best
practice, this injection should be invisible and
doesn’t requires developer to inject manually in each
test script.

Diagram 6.2.2-1 - Process Flow for Parse-and-Inject
Stage

During the line-by-line parsing, the test tool can
perform numerous test coverages at a time. Since the
tool is injecting statement modes, Statement Node
CFG coverage is automatically implemented.
Additionally, the test tool can perform path CFG
coverage, condition CFG coverage, edge CFG
coverage, static analysis, and boundary value
analysis coverage simultaneously, depending on the
test tool design requirements.

By simultaneously analyzing each line at a time,
this saves time and resources since we are running
the parsing execution for multiple coverages once
compared to multiple tools running sequentially.

17 of 24

However, we have to keep in mind that the machine
running the test tool must be able to facilitate such
processing power for multiple simultaneous analysis.

Once the node is ready, the next step is to inject the
node into the source code: next line of the analyzed
line. This line-by-line parse and inject analysis is
repeated for all the line of codes in a test subject.

Lastly, the transformation repeats itself for other test
subjects until there is no test subject left. This signal
that the stage is completed.

If any error or question occurs during this stage, the
error is recorded into the error log. Then, the test tool
developer needs to decide its severity and handling.
For example, say the error is critical syntax error for 1
of the source codes, the test tool can deny running
the test for that source code file and inform user later
on for amendment via the error log. Then, the test
cool continues to evaluate other source codes files.
Doing this allows user to gain a broad view of errors
across multiple source codes in a single run.

Contrary, if the test tool detects a best practice syntax
writing issue but the execution is fine, the test tool
developer can decide to record it as information log.
Since it is a non-blocking issue, the tool can proceed
to run test coverage for that source code.

As we study the test tools and derived the algorithms,
we notice that one of the critical component for
developing a new test tool is parsing capabilities.
These capabilities must be thorough and smart
enough to provide input for the test tool to generate
necessary nodes.

Not only the parsing capabilities must understand a
human-written codes, it must be able to analyze and
to understand the code statements in order to
determine the insights within it. Using these insights,
the tool then is able to generate the coverage nodes
or provide verdict for the code statement in static
analysis.

Without a good parsing capabilities, it would be very
tough to implement test coverage. However,
individual test cases testing is still executable since
they are not involved for statement node processing.

6.2.3. Execute
This stage is executing the test scripts There are
various way to execute the tests. The common

implementation is unit testing. Diagram 6.2.3-1
illustrates the process flow for this stage.

The idea is to execute each test case based on their
individual test scripts. If the industrial-strength
transformation approach tool is available, like Rspec,
MinTest or Unittest, the test tool can always utilize
them. Otherwise, the tool will need to execute each
test scripts manually.

For manual testing, the test tool begins with
gathering and sanitizing the list of test scripts.
Optionally, if there is a denied list generated from the
previous stage, this step can cross check filter the
source codes out. If the final list is empty, this stage
is then concluded passed with no available test.

Diagram 6.2.3-1 - Process Flow for Execute Stage

The next step is to prepare the testing environment.
This means that the test tool must be able to prepare
an isolated test case environment before running the
test case. This includes:

18 of 24

1. Deleting previous test case environment
regardlessly.

2. Clear and release all previous variables and
resources.

3. Create a new test case environment.
4. Assemble and configure the test case

environment per instruction.
5. Calibrate result parsing functionalities.

Once the preparation is completed, the next step is
to run the test case. For easiness, each test case
should always produce result in a constant pattern.
This simplifies the later result parsing capabilities.
The next step is capturing the result data and record
it into the test data storage. The process repeats itself
until all test cases are executed.

If there is any error occurs in this stage, depending on
severity, it should be recorded into the error log or
warning log without disrupting the test executions.
This is because the execution should be
independently run, even they can have dependencies
with one another. The test tool can facilitates “pass
by skipping” ability for test scripts containing failed
dependencies that which denied proper test
execution.

6.2.4. Analyze
This stage is analyzing test results and data logs
obtained from all the previous stages. Primarily, its
job is to read all the data and generate test insights.
Diagram 6.2.4-1 illustrates the process flow for
Analyze stage.

This stage can be independently executed on an
already tested environment. This allows user to reuse
the raw data results for different analytic processing
without needing to re-run all previous stages from
scratch.

This stage is resources and time consuming. Hence,
the first step is to check user explicit input on
whether there is a code coverage running. If it is an
explicit no, the test tool can skip this entire stage.

Since the nodes and the test raw data are vital raw
materials for analytics, the next step is to check their
existence. Without them, there is no point running
this stage.

The next step is analyzing the test data. A test tool
can decide whether to use the industrial-strength
ready facility such as built-in analytic modules or
running its own analytic algorithm. Either way, they

both must be able to process the nodes data into
insights. This analytic facility is what gives the test
tool its uniqueness. Hence, many proprietary test
tools opted to use its own algorithm.

If the choice is not to use industrial-strength ready
facility, this paper illustrates the basic example of
building one. The idea is to loop through each
identified nodes and cross-check it against the result
log. If the node is not found, that means that node is
not executed and should file it as negative. If the
node is found, depending on the coverage intensity
like having multiple coverages at a time, the tool
should document it accordingly.

Diagram 6.2.4-1 - Process Flow for Analyze Stage

The coverage report is usually having the minimum
of outputs:

1. Total number of nodes
2. Total number nodes executed

19 of 24

3. Total number nodes not executed
4. Difference of executed nodes against total

number of nodes
5. Percentage representation of the differences

in item 4.

If the test tool did ran a static analysis back in
“Parse-and-Inject” stage, this stage also processes its
output. Static analysis report is usually consumed in
a way that developer will go through the logs and
amend the result. Usually, static analysis reports
consists of the following items:

1. List of errors identified
2. List of warnings identified
3. List of informational issue identified

The differences between each items is that:

1. an error will cause blocking in execution
(e.g. syntax),

2. a warning is issue that can potentially cause
blocking in execution or performance
degradation (e.g. variable not used),

3. an informational issue with advice (e.g. long
variable name)

If any error occurs in this stage, it should be reported
directly to the user. This allows user to amend the
problem and re-run this stage.

6.2.5. Report
This is the final stage: reporting the analyzed results
in an user requested format. User has different
requests for reporting the results depending on
needs: Some prefers HTML web reports, some prefers
on-screen terminal reporting, some prefers files
reporting etc.

Although it can be executed independently from
other stages, this stage is still go hands-in-hands with
analytic stage due to data interpretation dependency.

The stage starts by checking user request for
coverage report. The process ends successfully if the
request is no. Otherwise, it proceeds to learn the user
requested format like HTML, UNIX terminal, JSON,
etc. If none is provided, the test tool goes with a
default format.

The next step is to get the analyzed data produced
from Analyze stage. If the data are missing, this stage
ends with error and reports directly to user for
attention. Otherwise, the test tool then parse the data,
prepare the designated format via template, and then

merge the data with the requested report format. The
stage ends by presenting the final report to the user.

Diagram 6.2.5-1 - Process Flow for Result Stage

If any error occurs, this stage should immediately
halt the process and report to user. These errors are
typically related to faulty data, parsing issues, or
formatting issues that requires user or tool
developer’s attention.

6.3. Derived Performance Testing
Algorithms

Performance testing is a measurement of metrics for a
program running. They are usually executed before
any release to get a statistical overview of the
product’s capabilities.. These metrics are available in
the definition of quality and are chosen based on the
software requirements. As an example, these are the
common metrics used in software testing:

1. Execution speed (Time Behavior)
2. Loads limits (Capacity)

20 of 24

3. CPU Loads (Resource Utilization)
4. Memory Loads (Resource Utilization)
5. Storage Loads (Resource Utilization)
6. Power consumption (Resource Utilization)
7. Scalability (Reusability)
8. Backup (Recoverability)

Performance testing should be executed either in the
absence of code coverage analytics or as an
independent efforts. This is due to the
“parse-and-inject” stage in code coverage analytics
creates a modification against the original codes.
Such modification alters the performance result,
yielding an inaccurate performance data.

Performance testing feature can be consolidated
inside a single test tool instead of splitting into
multiple tools like Valgrind [25] . There are tools like
“Go test” for Go programming language that had
successfully implemented static analysis, unit
testing, code coverage, and performance testing
under a single “Go test” feature [44] . Also, “Go test”
has proven that performance testing can be scripted
like unit test scripts [44] .

The performance testing starts by preparing its own
test environment. Normally, a performance test runs
in repetition and an average value is counted as
result. Therefore, the environment must be durable
for repetition testing.

The next step is to parse the repetition counts from
the user. This is a facility for user to limit the
repetition at will. Otherwise, the test tool can default
to 1 million repetition count.

Since different metrics has different probe to sense
and to capture the data, the next step is to prepare
such probe. Example, for power consumption metric,
this step is calibrate the power measuring tools.
Otherwise, if this step is not needed, it is skippable.

The next few steps are running the repetitive testing.
It starts by recording the probe data for “before
execution” into a database or data table. Then, it
executes the program. After that, it records the probe
value for after execution into the database or data
table. These steps are repeated based on the
determined repetition count.

After the test, the last step is to calculate the
performance data and get the average value as a
metric. Once done, the performance testing execution
ends by reporting the results.

Diagram 6.3-1 illustrates the process flow for
executing a performance testing.

Diagram 6.3-1 - Process Flow for Performance Testing

7. Conclusion
Software test tools are available and robust since the
beginning of software development. However, due to
their software domain specificities like specific to
programming language and operating system, it is
hard to deploy across different domains. If we want to
develop these tools from scratch, we need a common
algorithm extract from the existing tools.

The extraction method in this paper is to learn and
compare each tools’ test algorithm. This validates
one another and make a common pattern creation
easier. Also, “quality” should be defined according

21 of 24

to the requirements and with reference with ISO
25000 standards.

There are various test coverages and test approaches
to choose and implement. The most important
consideration in decision is choosing the one that
has can have the largest test coverage possible.

With the common algorithms proposed in this paper
for both test coverage and performance testing, one
can now create the test tools from scratch easily.
Also, keep in mind that if a test tool uses
source-to-source transformation approach in the test
coverage algorithm, the test tool must isolate
performance testing algorithm from test coverage.
This is due to source codes alteration which affects
the performance outcome.

Lastly, new findings like the study of parsing
capabilities and power management influencing test
operations are found but not researched in detailed.
They are good pointers for further research. Also,
since this paper does not includes experiment data
from the algorithms due to finding a suitable
language candidates, a separate research is
encouraged for testing them.

8. Acknowledgement
We would like to thank Lim Lee Booi for her

continuous constructive criticism of the manuscript
despite the hardships she is going through. We wish

you a Merry Christmas, speed recovery for your
child, and blessing to your family!

9. References
[1] IRA. D. BAXTER, 2002, “Branch Coverage for

Arbitrary Languages Made Easy”, DMS Technical
Related Articles , Semantic Designs, Incorporated, viewed
October 2, 2018, available at:
http://www.semdesigns.com/Company/Publications/Test
Coverage.pdf

[2] ISO25000.com, 2018, “ISO/IEC 25010”, ISO 25000
Software Product Quality , ISO/IEC 25000 System and
Software Quality Requirements and Evaluation
(SQuaRE) series of standards through ISO2500.com,
viewed October 2, 2018, available at:
http://iso25000.com/index.php/en/iso-25000-standards/is
o-25010?limit=3&limitstart=0

[3] ANTÓNIO SILVA, 2017, “How to Write Meaningful
Quality Attributes for Software Development”,
Codementor Blog - www.codementor.io , viewed October
2, 2018, available at
https://www.codementor.io/antoniopfesilva/how-to-write
-meaningful-quality-attributes-for-software-development
-ez8y90wyo

[4] PATRIK BERANDER, LARS-OLA DAMM, JEANETTE
ERIKSSON, TONY GORSCHEK, KENNET
HENNINGSSON, PER JÖNSSON, SIMON
KÅGSTRÖM, DRAZEN MILICIC, FRANS
MÅRTENSSON, KARI RÖNKKÖ, PIOTR
TOMASZEWSKI, 2005, “Software Quality Attributes
and Trade-offs”, INF5180 , Blekinge Institute of
Technology, Universitetet i Oslo, viewed October 2,
2018, available at
https://www.uio.no/studier/emner/matnat/ifi/nedlagte-em
ner/INF5180/v09/undervisningsmateriale/reading-materi
als/p10/Software_quality_attributes.pdf

[5] MIKHAIL YAKSHIN (GREYCAT), BENJAMIN W.,
2011-2017, “Code Coverage Tools for Validating the
Scripts”, Stackoverflow.com, viewed October 2, 2018,
available at
https://stackoverflow.com/questions/7188081/code-cove
rage-tools-for-validating-the-scripts

[6] CHRIS TOZZI, 2016, “Quality Assurance and Software
Testing: A Brief History”, Sauce Labs, viewed October 2,
2018, available at:
https://saucelabs.com/blog/quality-assurance-and-softwar
e-testing-a-brief-history

[7] EXTREME SOFTWARE TESTING, 2009, “Software
Testing History”, eXtreme software testing, viewed
October 2, 2018, available at:
http://extremesoftwaretesting.com/Info/SoftwareTesting
History.html

[8] ISO25000.com, 2018, “ISO/IEC 25012”, ISO 25000
Software Product Quality , ISO/IEC 25000 System and
Software Quality Requirements and Evaluation
(SQuaRE) series of standards through ISO2500.com,
viewed October 2, 2018, available at:
http://iso25000.com/index.php/en/iso-25000-standards/is
o-25010?limit=3&limitstart=0

[9] QIAN YANG, J. JENNY LI, DAVID M. WEISS,
2006-2009, “A Survey of Coverage-Based Testing
Tools”, The Computer Journal , Vol. 52 No. 5, Oxford
University Press on behalf of The British Computer
Society, DOI: 10.1093/comjnl/bxm021, viewed October
3, 2018, available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.298.3700&rep=rep1&type=pdf

[10] PCI SECURITY STANDARDS COUNCIL, LLC., “Who
has to comply with the PCI standards?” PCI Security
Council - FAQ , Article Number 1436, PCI Security
Standards Council LLC., viewed October 3 2018,
available at: https://www.pcisecuritystandards.org/faqs

[11] YAN TING WONG TIKY, n.d., “Software Development
Life Cycle”, Master of Science in Information
Technology (MSc(IT)) Individual Student Projects , The
Hong Kong University of Science and Technology,
viewed October 4 2018, available at:
https://www.cse.ust.hk/~rossiter/independent_studies_pro
jects/software_development/software_development_repo
rt.pdf

[12] DR. MICHAEL EICHBERG, 2015, “Software Process
Models”, Introduction to Software Engineering ,
Software Technology Group - Department of Computer
Science - Technische Universität Darmstadt, viewed
October 4 2018, available at:

22 of 24

http://www.semdesigns.com/Company/Publications/TestCoverage.pdf
http://www.semdesigns.com/Company/Publications/TestCoverage.pdf
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3&limitstart=0
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3&limitstart=0
http://www.codementor.io/
https://www.codementor.io/antoniopfesilva/how-to-write-meaningful-quality-attributes-for-software-development-ez8y90wyo
https://www.codementor.io/antoniopfesilva/how-to-write-meaningful-quality-attributes-for-software-development-ez8y90wyo
https://www.codementor.io/antoniopfesilva/how-to-write-meaningful-quality-attributes-for-software-development-ez8y90wyo
https://www.uio.no/studier/emner/matnat/ifi/nedlagte-emner/INF5180/v09/undervisningsmateriale/reading-materials/p10/Software_quality_attributes.pdf
https://www.uio.no/studier/emner/matnat/ifi/nedlagte-emner/INF5180/v09/undervisningsmateriale/reading-materials/p10/Software_quality_attributes.pdf
https://www.uio.no/studier/emner/matnat/ifi/nedlagte-emner/INF5180/v09/undervisningsmateriale/reading-materials/p10/Software_quality_attributes.pdf
https://stackoverflow.com/questions/7188081/code-coverage-tools-for-validating-the-scripts
https://stackoverflow.com/questions/7188081/code-coverage-tools-for-validating-the-scripts
https://saucelabs.com/blog/quality-assurance-and-software-testing-a-brief-history
https://saucelabs.com/blog/quality-assurance-and-software-testing-a-brief-history
http://extremesoftwaretesting.com/Info/SoftwareTestingHistory.html
http://extremesoftwaretesting.com/Info/SoftwareTestingHistory.html
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3&limitstart=0
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3&limitstart=0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.3700&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.3700&rep=rep1&type=pdf
https://www.pcisecuritystandards.org/faqs
https://www.cse.ust.hk/~rossiter/independent_studies_projects/software_development/software_development_report.pdf
https://www.cse.ust.hk/~rossiter/independent_studies_projects/software_development/software_development_report.pdf
https://www.cse.ust.hk/~rossiter/independent_studies_projects/software_development/software_development_report.pdf

https://stg-tud.github.io/eise/WS11-EiSE-12-Software_Pr
ocess_Models.pdf

[13] WALT SCACCHI, 2001, “Process Models in Software
Engineering”, Encyclopedia of Software Engineering,
2nd Edition , Institute for Software Research, University
of California, Irvine via John Wiley and Sons, Inc, New
York, viewed October 4 2018, available at:
https://www.ics.uci.edu/~wscacchi/Papers/SE-Encyc/Proc
ess-Models-SE-Encyc.pdf

[14] NAYAN RUPARELIA,2010, “Software development
lifecycle models”, ACM SIGSOFT Software Engineering
Notes , DOI: 10.1145/1764810.1764814, Hewlett
Packard Enterprise via ResearchGate, viewed October 4
2018, available at:
https://www.researchgate.net/publication/220631422_So
ftware_development_lifecycle_models

[15] PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE
& ENGINEERING, 2018, “Software Development
Lifecycle - The Power Of Process”, CSE403: Software
Engineering, Department of Computer Science and
Engineering, University of Washington, viewed October
4 2018, available at:
https://courses.cs.washington.edu/courses/cse403/16sp/le
ctures/lecture-03-software-lifecycle.pdf

[16] REMOTEONLY.ORG, n.d., “Remote Only”,
remoteonly.org, viewed October 4 2018, available at:
https://www.remoteonly.org/

[17] LIONEL BRIAND, 2009, “Software Testing
Techniques”, Simula Research Laboratory, Oslo Norway,
viewed October 8 2018, available at:
https://www.uio.no/studier/emner/matnat/ifi/INF1050/v0
9/undervisningsmateriale/testingteknikk2009.pdf

[18] REDSTONE SOFTWARE, 2008, “Black-box vs.
White-box Testing: Choosing the Right Approach to
Deliver Quality Applications”, Computer Security -
IT666 Reading List , Redstone Software Inc. via
University of New Hampshire, viewed October 8 2018,
available at:
http://www.cs.unh.edu/~it666/reading_list/Defense/black
box_vs_whitebox_testing.pdf

[19] BARBARA G. RYDER, 2006, “Testing2”, 198:431
Software Engineering - Fall 2006 , Virginia Tech -
Department of Computer Science, viewed October 9
2018, available at:
http://people.cs.vt.edu/ryder/431/f06/lectures/Testing2-1
1New.pdf

[20] PER RUNESON, 2006, “A Survey of Unit Test
Practices”, IEEE Software, 23(4), IEEE Computer
Society via ResearchGate, viewed October 11 2018,
available at:
https://www.researchgate.net/publication/27298529_A_S
urvey_of_Unit_Testing_Practices

[21] ERMIRA DAKA, GORDON FRASER, 2014, ,“A Survey
on Unit Testing Practices and Problems”, 2014 IEEE
25th International Symposium on Software Reliability
Engineering , DOI:10.1109/ISSRE.2014.11, viewed
October 11, 2018, available at:
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=
61C56CC4FE14D115E725F949F60AD2DE?doi=10.1.1
.679.3835&rep=rep1&type=pdf

[22] JONATHAN ALDRICH,2011, “Static Analysis”,
15-214-11fa - Principles of Software System
Construction , Carnegie Mellon University - School of
Computer Science, viewed October 12, 2018, available
at:
https://www.cs.cmu.edu/~aldrich/courses/15-214-11fa/sli
des/static-analysis.pdf

[23] DAVID MONNIAUX, 2009, “Static analysis: from
theory to practice”, CNRS / VERIMAG , Universit´e
Joseph Fourier (Grenoble) and Grenoble-INP, viewed
October 12, 2018, available at:
https://tel.archives-ouvertes.fr/tel-00397108/file/HDR_M
onniaux_slides.pdf

[24] ANDERS MØLLER AND MICHAEL I.
SCHWARTZBACH, 2018, “Static Program Analysis”,
Aarhus University - Department of Computer Science,
viewed October 12, 2018, available at:
https://cs.au.dk/~amoeller/spa/spa.pdf

[25] VALGRIND™ DEVELOPERS, 2017, “Valgrind”,
valgrind.org, viewed October 15, 2018, available at:
http://valgrind.org/

[26] VIDAR HOLEN, 2018, “Shellcheck”, github.com,
viewed October 15, 2018, available at:
https://github.com/koalaman/shellcheck

[27] BOZHIDAR BATSOV AND RUBOCOP
CONTRIBUTORS, 2018, “Rubocop”, github.com,
viewed October 15, 2018, available at:
https://docs.rubocop.org/en/latest/

[28] JERA DESIGN, n.d., “JTN002 - MinUnit -- a minimal
unit testing framework for C”, jera.com, viewed October
15, 2018, available at: http://www.jera.com

[29] STEVEN BAKER, DAVE ASTELS, DAVID
CHELIMSKY, ASLAK HELLESØY, CHAD
HUMPHRIES, JUSTIN KO, ANDY LINDEMAN, PAT
MADDOX, LUKE REDPATH, BRIAN TAKITA,
MYRON MARSTON, JON ROWE, SAM PHIPPEN,
XAVIER SHAY, AARON KROMER, YUJI
NAKAYAMA, BRADLEY SCHAEFER, 2018, “Rspec-
Behaviour Driven Development for Ruby. Making TDD
Productive and Fun.”, rspec.info, viewed October 16,
2018, available at: http://rspec.info/

[30] TIRDADC, 2014, “How to check rspec code coverage”,
Stack Exchange Inc., viewed October 16, 2018,
available at:
https://stackoverflow.com/questions/22893907/how-to-c
heck-rspec-code-coverage

[31] CHRISTOPH OLSZOWKA, 2017, “SimpleCov”,
github.com, viewed October 16, 2017, available at:
https://github.com/colszowka/simplecov

[32] JAMES BRITT, NEUROGAMI, 2018, “Coverage”,
rubydoc.org - version 2.4.0, viewed October 16, 2017,
available at:
http://ruby-doc.org/stdlib-2.4.0/libdoc/coverage/rdoc/Co
verage.html

 [33] YUSUKE ENDOH, YUKIHIRO MATSUMOTO, 2008,
“ruby/ext/coverage/coverage.c”, github.com, viewed
Octboer 16, 2017, available at:
https://github.com/ruby/ruby/blob/trunk/ext/coverage/co
verage.c

23 of 24

https://stg-tud.github.io/eise/WS11-EiSE-12-Software_Process_Models.pdf
https://stg-tud.github.io/eise/WS11-EiSE-12-Software_Process_Models.pdf
https://www.ics.uci.edu/~wscacchi/Papers/SE-Encyc/Process-Models-SE-Encyc.pdf
https://www.ics.uci.edu/~wscacchi/Papers/SE-Encyc/Process-Models-SE-Encyc.pdf
https://www.researchgate.net/publication/220631422_Software_development_lifecycle_models
https://www.researchgate.net/publication/220631422_Software_development_lifecycle_models
https://courses.cs.washington.edu/courses/cse403/16sp/lectures/lecture-03-software-lifecycle.pdf
https://courses.cs.washington.edu/courses/cse403/16sp/lectures/lecture-03-software-lifecycle.pdf
https://www.remoteonly.org/
https://www.uio.no/studier/emner/matnat/ifi/INF1050/v09/undervisningsmateriale/testingteknikk2009.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF1050/v09/undervisningsmateriale/testingteknikk2009.pdf
http://www.cs.unh.edu/~it666/reading_list/Defense/blackbox_vs_whitebox_testing.pdf
http://www.cs.unh.edu/~it666/reading_list/Defense/blackbox_vs_whitebox_testing.pdf
http://people.cs.vt.edu/ryder/431/f06/lectures/Testing2-11New.pdf
http://people.cs.vt.edu/ryder/431/f06/lectures/Testing2-11New.pdf
https://www.researchgate.net/publication/27298529_A_Survey_of_Unit_Testing_Practices
https://www.researchgate.net/publication/27298529_A_Survey_of_Unit_Testing_Practices
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=61C56CC4FE14D115E725F949F60AD2DE?doi=10.1.1.679.3835&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=61C56CC4FE14D115E725F949F60AD2DE?doi=10.1.1.679.3835&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=61C56CC4FE14D115E725F949F60AD2DE?doi=10.1.1.679.3835&rep=rep1&type=pdf
https://www.cs.cmu.edu/~aldrich/courses/15-214-11fa/slides/static-analysis.pdf
https://www.cs.cmu.edu/~aldrich/courses/15-214-11fa/slides/static-analysis.pdf
https://tel.archives-ouvertes.fr/tel-00397108/file/HDR_Monniaux_slides.pdf
https://tel.archives-ouvertes.fr/tel-00397108/file/HDR_Monniaux_slides.pdf
https://cs.au.dk/~amoeller/spa/spa.pdf
http://valgrind.org/
https://github.com/koalaman/shellcheck
https://docs.rubocop.org/en/latest/
http://www.jera.com/
http://rspec.info/
https://stackoverflow.com/questions/22893907/how-to-check-rspec-code-coverage
https://stackoverflow.com/questions/22893907/how-to-check-rspec-code-coverage
https://github.com/colszowka/simplecov
http://ruby-doc.org/stdlib-2.4.0/libdoc/coverage/rdoc/Coverage.html
http://ruby-doc.org/stdlib-2.4.0/libdoc/coverage/rdoc/Coverage.html
https://github.com/ruby/ruby/blob/trunk/ext/coverage/coverage.c
https://github.com/ruby/ruby/blob/trunk/ext/coverage/coverage.c

[34] PYTHON SOFTWARE FOUNDATION, 2018, “unittest -
Unit Testing Framework”, Python Software Foundation,
viewed Octboer 16, 2017, available at:
https://docs.python.org/3/library/unittest.html

[35] NED BATCHELDER, 2018, “Coverage.py”,
coverage.readthedocs.io - version 4.5.X, viewed October
16, 2017, available at:
https://coverage.readthedocs.io/en/v4.5.x/index.html

[36] NICHOLAS CARLSON, 2013, “Ex-Yahoos Confess:
Marissa Mayer Is Right To Ban Working From Home”,
Business Insider , Insider Inc, viewed November 28,
2018, available at:
https://www.businessinsider.com/ex-yahoos-confess-mari
ssa-mayer-is-right-to-ban-working-from-home-2013-2/?
IR=T

[37] LARRY ALTON, 2017, “Are Remote Workers More
Productive Than In-Office Workers?”, Forbes, Forbes
Media LLC, viewed November 28, 2018, available at:
https://www.forbes.com/sites/larryalton/2017/03/07/are-r
emote-workers-more-productive-than-in-office-workers/
#11cd379331f6

[38] FORBES TECHNOLOGY COUNCIL, 2017, “13 Pros
And Cons Of Having A Distributed Workforce”, Forbes,
Forbes Media LLC, viewed November 28, 2018,
available at:
https://www.forbes.com/sites/forbestechcouncil/2017/08/
03/13-pros-and-cons-of-having-a-distributed-workforce/
#33bb4b5913d9

[39] GERRY CLAPS, “The Difference Between Remote and
Distributed Teams in Startups”, Blossom IO Blog ,
Blossom IO Inc., viewed November 28, 2018, available
at
https://www.blossom.co/blog/remote-versus-distributed-t
eams

[40] LAUREEN MILES BRUNELLI, “Use This
Work-at-Home Company Directory to Find Your Dream
Job”, The Balance Careers, viewed November 28, 2018,
available at:
https://www.thebalancecareers.com/work-at-home-jobs-c
ompany-directory-3542836

[41] MARCIA RAMOS, 2016, “GitLab Workflow: An
Overview”, GitLab Inc., viewed December 5, 2018,
available at:
https://about.gitlab.com/2016/10/25/gitlab-workflow-an-
overview/

[42] DIGITALOCEAN, 2018, “DigitalOcean CI-CD”,
DigitalOcean Inc., viewed December 5, 2018, available
at:
https://www.digitalocean.com/community/tags/ci-cd?typ
e=tutorials

[43] CIRCLECI, 2018, “CircleCI - How It Works”, Circle CI
Internet Services Inc., viewed December 5, 2018,
available at: https://circleci.com/product/#how-it-works

[44] DAVE CHENEY, 2013, “How to Write Benchmarks in
Go”, dave.cheney.net, viewed December 16, 2018,
available at:
https://dave.cheney.net/2013/06/30/how-to-write-bench
marks-in-go

[45] GO PROGRAMMING LANGUAGE, 2018, “Source file
src /testing/testing.go”, golang.org, viewed December 24,

2018, available at:
https://golang.org/src/testing/testing.go

24 of 24

https://docs.python.org/3/library/unittest.html
https://coverage.readthedocs.io/en/v4.5.x/index.html
https://www.businessinsider.com/ex-yahoos-confess-marissa-mayer-is-right-to-ban-working-from-home-2013-2/?IR=T
https://www.businessinsider.com/ex-yahoos-confess-marissa-mayer-is-right-to-ban-working-from-home-2013-2/?IR=T
https://www.businessinsider.com/ex-yahoos-confess-marissa-mayer-is-right-to-ban-working-from-home-2013-2/?IR=T
https://www.forbes.com/sites/larryalton/2017/03/07/are-remote-workers-more-productive-than-in-office-workers/#11cd379331f6
https://www.forbes.com/sites/larryalton/2017/03/07/are-remote-workers-more-productive-than-in-office-workers/#11cd379331f6
https://www.forbes.com/sites/larryalton/2017/03/07/are-remote-workers-more-productive-than-in-office-workers/#11cd379331f6
https://www.forbes.com/sites/forbestechcouncil/2017/08/03/13-pros-and-cons-of-having-a-distributed-workforce/#33bb4b5913d9
https://www.forbes.com/sites/forbestechcouncil/2017/08/03/13-pros-and-cons-of-having-a-distributed-workforce/#33bb4b5913d9
https://www.forbes.com/sites/forbestechcouncil/2017/08/03/13-pros-and-cons-of-having-a-distributed-workforce/#33bb4b5913d9
https://www.blossom.co/blog/remote-versus-distributed-teams
https://www.blossom.co/blog/remote-versus-distributed-teams
https://www.thebalancecareers.com/work-at-home-jobs-company-directory-3542836
https://www.thebalancecareers.com/work-at-home-jobs-company-directory-3542836
https://about.gitlab.com/2016/10/25/gitlab-workflow-an-overview/
https://about.gitlab.com/2016/10/25/gitlab-workflow-an-overview/
https://www.digitalocean.com/community/tags/ci-cd?type=tutorials
https://www.digitalocean.com/community/tags/ci-cd?type=tutorials
https://circleci.com/product/#how-it-works
https://dave.cheney.net/2013/06/30/how-to-write-benchmarks-in-go
https://dave.cheney.net/2013/06/30/how-to-write-benchmarks-in-go
https://golang.org/src
https://golang.org/src/testing/testing.go

