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By L. J. Rosrrs.

‘Received June 2nd, 1920.—Read June 10th, 1920.]

1. Definctions and Notation.—In these Proceedings, Ser. 2, Vol. 18,
I X%, & statement is made by Ramanujan with reference to the functions

1(z), H(x), defined as basic series or as infinite produects.*

series forms, it follows that
2 3

£ r

H@)|G(x) = —_— —_— ..

1 x
1414141
from the product forms it follows that

1—22—a284-2V 42— ..

(i(x) =

_1—g—2t
Hx) = 1—r—s24 5427

1—e—c242"+a2"—...

From the basic

It will be convenient to make a slight alteration in the use of the
argument-symbol .z, by writing ¢* for x, to bring the series into line
with the usual elliptic function notation. Moreover, it will be better to
dopt what we may call a standard form of S-function, in which the
numerators of all indices are perfect squares. This is easily done by
multiplying by a suitable power of .« in each case, which we may call the
standardizing power with standardizing index. Thus the numerators of
G(x) and H(x) require indices 7%, 5% respectively, and the common de-

nominator .
I write then

_ Q=g =¢"+..)

&5 (1 —a2—a®
_ 75 (1=q¢"—q¢+...) 1.1

h =

0= (],'.; (1_q2_(14+)!

g Q=g'—q'+..)’

* In the numerator of the second term of the series for G (x), for 1, read x.

2 ¢ 2



388 L. J. RoGkrs [June 10,

so that Ramanujan’s identity now takes the form
gh@®—11g°1°*— 1'% = 1. 1.2

The quotient A/g will be written x (1.8), and the results of replacing g
by ¢? in g, h, u will be written g, &, u, (1.81). The continued fraction
form for u is now

- ¢ ¢ ¢ ¢

M—l—'?l_i_l‘_i_l—_'i—_..., (1.4)

which has the advantage of conciseness in form, but is otherwise, as the
basic series are, irrelevant to the present investigation, which is based
purely on. $-function identities.

I may point out that Ramanujan’s other identity (loc. c¢it.)

H(z) G@@")—2'G(z) H(z") = 1,
now becomes hgu—ghy =1, (1.5)

which, with (1. 2), has the advantage of containing no extraneous powers
of the argument.
The denominators of ¢ and % are

_1_ (1 *) — T —

and will be written P,* with P, for

1 o
;\—/-é 51 (_3_', (1%]')-

Dashes attached to ¢, i, u, will denote like functions of the complementary
modulus ¢’ (1.6). ~
2. Proof of identity (1.2).—Writing ¢, for cos 457, ¢, for cos §i,=.

and @ = cgle, = 3 (y/5—1), 2.1
we have
9 (Fom, @) = 2¢, (P Faqi—ags—qg=—...),

~ or, replacing the $,-function by its equivalent producs,

Plg+ah) = g* {'[ (1+ge™) (14 ¢ e=™) g~ P, 2.2

* The use of G as in Whittaker and Watson’s Modern Analysis, p. 465, is at present un-
tenable, and is also unstandardised.
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while

So (57, ) = 2¢3P (q——Z—)

= 2009 I 1+¢"¢")(1 447" g~ P, @.9)

Hence
Pg+ai(g— 7 h) = PigP—gh—T) = ¢* 11 (123'.'”) g~ P!
= PPy @. 4)
Moreover Pyl = ¢*(l—¢)1—g" ... A—¢g" )1 —¢)...
X(1—g)A—¢% ... 1—¢" )1 —¢") ...
= PP, 2. 5)

But, by changing ¢ into gw, g«?, ..., where » = ¢, and multiplying the
results (2.2), we have on the left-hand side a factor ¢+ a®h’, since
/g is altered to w’h/g, &e., while on the right-hand side the product
arising from any factor 1+¢**e'™, ie. 1—q¢™w?, is 1—¢*, if » is not a
multiple of 5, but is otherwise (1 —¢*" »?®, where n = 5m.

Hence

PP+ a’1d)
= gL (1 — g™ i;I (1— g™ o) (1— g2 o 1L (1~ g*) fl't(l—q‘lm)s,
where » has all positive integral values except multiples of 5, i.e.
I A—g>F

P'p(qﬁ_l_a’z]lﬁ) — (]§ ,l, I (1+qime_!,1ri)5 1 +(]2ne—}_ni)5
1I 11— qIOn):i 1
1

PP YR,
=7 2((2':)0‘1) Pg (q5+a115) P, 2.6)
Je. 7+l = P2 (gs+ah;)’ /P2 2.7

Similarly, from (2. 8), or by changing /5 to —4/5 in @, we have

g"’—r[,_s WS = P"i (.r/;-)—ﬂf'] 715)5/1:’2. 2.8
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Changing ¢ to qs,‘(2 . 4) becomes

Hi—9sh;— 13 = P[P, @.9)

while (2. 5) beconres gh = P;/P: (2.10)

whence, seeing that «® = % (5,/5—11), we have
ah (9°—11¢°2°— 1" = P} (9 —gs hy— 13y PP = 1.

It may be here observed that a similar relation exists between the
S-series derived from 3,(r, ¢''"), where
r  8r p—2

_ T.

T = E?‘;, 2—1) . )

each being divided by P. The relation asserts the equality to unity of
# homogeneous algebraic function of degree % (p*—1) in the S-quotients
corresponding to ¢ and & when p = 5. '

8. The main objeet of the present memoir is to establish alaebraic rve-
lations connecting u and u, when p = 2, 8, 5, 11.

It is easy to see that such algebraic relations exist, For, hy (2. 4).
(2.5),and (1.8), 1.7),

1—pu—p®=uPJI.

But P./P and P;/P are known each to be connected algebraically witl:
the moduli and multipliers in the quintic transformation of elliptic func-
tions, and hence with the modulus 4, so that « is connected algebraically
with & ; and hence the modular equation of any order » implies an algebraic
relation between u and w,.

4. Complementury relation.—From the formula

o

VoS, @) = I (=1 e/,
N=-—7

where e~™ = ¢, we have

S (B, ¢f) _ S(=D)reirlr i
9 (Fom, g~ E(=Dretlrmrir”
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which, with the notation of (1.8), (1.6), and (2. 1), gives

a—um _
1+au  *

‘ 4.1

5. Quadratic relation.—Writing u,, for 9, (Zsn, ¢), where
n=20,1, 2, 8, 4,
we have from the formula
Yo+ y+2) K@) Sa () K +3, @+ y+2) 9, () 3,(y) 5,(2)
= 23(0) S (y+2) 33 (2 +2) Sy e+ ).

when 2 =y = fsm. 2=

;%77"
1y 1 (g g atgre)) = wgryn’, 5.1)
and when r =y = &=, 2= 8nx,
Uplg (ty Uy —Uglhg) = gty M. 5.2
Qdm ¢Y) _ K™ ST
But

5,Gr, ¢~ HGET RGET’
from a known formula for $, (2z, ¢°), i.e.

Sym ¢) _ 5.9)
SalFom @O T wguy’ 2 -

By § 4, usfe, = u', so that (5 .8) gives wfu; = w'ni, and (5.1), (5.2) give

by division 4
y wi 14p'ufuy,
1(3 1—/.1.'[(»4/'!(._, - &

Suppressing dashes and changing u, uy to u,, u we get, finally,
' Wit upd—pg = 0. (5.4)
6. Cubic relation.—Since
Q% 8z, ¢¥ = 3, @) {%(@) $ (hm)— % (@ BGm)| /93(0),
where Q = ¥ (37 9(0)/3%(0, ¢%,

* This gives a simple numerical value for x when q = e-", for a/(1—a? =1, so that
a =tan (} tan-'2), and u = tan (: tan-12).
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we easgily deduce that
9, Bz, ¢¥) $¥ 22)—9, bz, ¢V S, (z)
S] (0 (’J) [

=3 50 20 $1(x) $,(22) {93 (2) 9} 22) — 97 () F3(20)}
=3 ”é—w)ﬂ (2) $,(2:) 8, (32). 6. 1)

By changing « into «i/w, we have a relation connecting $)-functions for
moduli ¢'* and ¢, which after suppressing dashes and changing ¢ to ¢*
uives

5,(2) 522, ¢)—9,22) H(z, ¢) = g—,”iQ)T)ﬂu 5,2z, ¢ $,(82, Y. (6.2)
Multiplying (6. 1) and (6. 2), the factors independent of x cancel om,..
It o =21m $(8x) = $,(22), and

@) _ ug _ W
S 2x)  n
Also $,(6z, ¢%) = — $,(x, ¢¥, <o that in the resultant equation we connect

9,(2)/9:(22) with $,(z, ¢%)/%:(2x, ¢%), te. u' with wy. Writing then wu, for
the former and u for the latter, we get

A+ pud)(us—u®) = Bu’uj,

©

or wid 4+ 8uul —upi—py = 0. i,

7. Quintic relation.—From (2. 7), (2.8), we have

a" —m — ( a— s ) .
14+ a’y’ 1+ au,/ ’
5 1—2u;+4ui—Bud+ 1} -

. .1
T T Buy A 2l

L.e. o’

8. Relation when p = 11.—This is immediately deduced from
Ramanujan’s formule (1.2) and (1. 5), viz.

patgy (1 =118 — ') (1 — 11, — pa)) = (w—uay)) ™. .1
9. The identity (1. 5), together with others of the same type,™ nmay be

# These were communicated privately to me in February 1919, but, as I understand that
Ramanujan has left no proof, I suggest the proof given in this section.
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proved by Schroter’s formule,* connected with the multiplication of two
‘Jg-series of different orders. As his formule require some modification
and specialisation for the present problem, it will be simpler to give what
is virtually his method in detail, and to employ summational forms instead
-of S-function notation.

Let p be a prime number, and «, 8 any integers, such that

am®+ B = Ap, 9.1)

an being odd. The indicial letters r, s, ¢, & following the symbol I will
«lenote summation extending through all values 0, +£1, +2, ..., £ ».

Let S(_ly (/]m(r—i-nw?.s(_])x qpﬂ(s+n]2 — 22(_1)r+s gl, (9 . 2)

s0 that I = pa(r+me)2+4pB(s+ v)*

Put » = ms+41£, so that for any given value of s, ¢ is equally general with

ry and ] = pu ':”"(5+1?)+t}2+p/3(s+u)’z
= A (s+ 02+ 2pamt (s+v)+pat®  [by (9.1)]
= 6o+ 2 B

while

(_1)r+- — (_1)(m,+l).~'+/- — (_1)&

1 3 2p—1
w3
all the equations (9. 2) so obtained. The series on the left-hand side will
be equal in pairs, while their values for » = p/2p will be zero. On the
right-hand side we have 2Z(—1)*¢’, where now

! 2n amt1 * a8, _ p—1
R e R R U CES Uy

Now let v have the p values , and add together

(2041 amt)? ) af
_/\i 5 + N +At' (9.8)
Let p =5, m =1, so that u+B8 =5\ If »

2 (__ 1)7'q5u (r+ LY — qa/ZIi (] _q-la_q na+ ) — guPa.’
according to the notation of § 1. If v = ¥,

E(— 1)4- q;.'m. [CENS 4 —_— ha Pa.-

# Inneper, Elliptische Functionen, Zweite Auflage, p. 474.
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Hence 2 (gagp+altpg) P, Pg = ZX(—1) ¢, 9.4)
as in (V.8). Again, if p =5, m = 8, so that 9a+8 = 5A, then when
"= T CZ(=1) g = ],

and when v = ¥, (=1 ghetr+il = —g,:

80 that 2 (hags—hagg.) = ZZq' (—1)}, (9.41)

as in (9.8).
Now suppose p = 8, m = 1, and use letters a, , { instead of «, 8, A..
We shall get the same value of I as in (9. 3), provided I = A, ab = «f.

and
am a

~ T T is an integer. 9.5¢

When v = ¢ or &,
S(—1)y @t = g (1—g¥ —q"+..) = P,
so that the left-hand side 1s
2P, Py. 9.6

Heunce, by (9.4), Ja9p+hahg = P, Py, P, Ls. 9.7
where a+B =5, a+b=3l=3\:
while, by (. 5), hota—hgga = Po PP Py, ©.71"

where a+B =25\ a+bdb=3l=3A.

Thus,if « =1, 8=11, m =38, A =4, thena =1, H =11, I = 4, so.
that (9 . 5) is satisfied ; and, by (9.71),

hgu—Ing = PPy[PP, = 1,
as i (1.5).
Hu=1 8=9, m=1, A=2, a=3, b =23, 1 =2, we have

999+ iy = P PP, 9.8
When « =1, 8=14, m=1, A=38,a=2, 0=17, 1 =3, and
gty = PyP, PPy, ©.81)

When a=2, 8=7, m=3, A=35, a=1, b=14, (=145, and
3amiA—afl — 1, and A
]'2,{/-1—}‘792 - PP14/P2 1)7- (9 082)
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10. Certain cases of (9. 4) and (9. 41) may be treated without the help

of the results for p = 8. For instance, if A =1, when of course m = 1.

20+1
2

and may be merged in the general symbol o. In this case

* 2
then I in (9.3) is equivalent to ( ) +aB¢%: for amt is an integer,

2(gagathohg) = Sqe¥ S (—1) ¢*8"| P P,y
= %(0) 9(0, ¢°#)/ P, D

Thus 99+l = 35,(0)5(0, ¢*)/ PP,.
G293+l hg = 39:(0)9 (0, ¢°)/ PP, (10. 1

Again, when « =1, 8=6, m =8, A =3,

1 =80+3i+0°4128 =38 (e++1E.

Hence hgy—hgg = 3Z¢*+Y Z¢** (— 1)/ PPy
= 39,0, ¢* 500, ¢®/ PP (10.2)

Again, when p = 2, m =1, the left-hand series in (9.2) have only one
torm, derived from » =} or » = ¥, viz.

Si—1)" qz(--+k»' — ’I: (1_,,_(13_}_“.)
= ¢ 1= —¢) A —g) (1 —¢" ... 1 —g)1—g"
= PP,/ (10.3)

Thus, if « =8, B=8, m=8, A=T7, « =2 =12, p=2, I=T.
so that
ma o

— —==1,

A l

PP, Pil,,
PyPy P3Py,

we have lgge—lys = (10. 4)

When «=1,8=16, m =8, \=5, ¢« =2, b =12, p=2, I =17, so0

that ma a
XtT7=1

PP, PP, 1 P
het . — — 4 Lqlhg — 4
1916— gy B, P, PP, P,b, (10. 5)

These results, as well as many others, have all been given by Ramanujan.
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11. To resume the theory of the modular connection between u and
up, there still remains the case of p = 7, which presents great difficnlties
when treated by the methods of § 5 and § 6. The relation

9915+ 1) Uiy gq—age) = 1,

derived from (9. 81) and (9 .82), combined with (1. 2), with its extension
to suffixes 2, 7, 14, would, in connection with (5.4), give a relation be-
tween u and ug, but the method is impracticable.

It is to be observed, however, that in the cases of p = 2, 3, 11 the
relations are of degree p+1, just as the Jacobian modular equation in
vk and 4/l is of degree p+1, except in the quadratic cases. Though it
is not obvious how we may set forth a general hypothesis, we may at least
see what the roots of u are when w,(p = 2, 3, 11) is supposed given.
Writing u(g*) for w,, we see that p of the roots of the equation are w(g?.
w(@’w), m(@*), ..., where w = ¢™/”  Now

w(g®) = ¢*II(1—¢*™t!,

according as » = + 1, or + 2 (mod 5). The product of these p roots is
therefore GPTL(L—g2) £ (1 — g2 £,
where »n = 0 (mod p), but m = 0 (mod p). except that, in the case of
P =2, u(—q? is negative, and a negative sign must be placed before
the expression.

Now II(1—¢**! includes all the hinomial factors of u,, except those
for which n = 0 (mod ). These can all be supplied by ., either by
maultiplication or division.

Thus, when p = 3, we have (1—¢%)(1—g*).../(1—¢")..., where 1—¢*
fails in the numerator and 1—¢™ in the denominator. Hence the re-
quired product of the p roots is mzmy: and in general, when p = 44
(mod 5), it is m,ms. If, however, p = + 1 (mod 5), as when p = 11, we
have (1—¢®)(1—¢*).../(1—g¢")..., where 1—¢*? fails in the numerator
and 1—¢*™ in the denominator, so that the product is my/upy. or in
ceneral w,/ups.

Similarly in 11(1—¢*")*?, when 2 = 0 (mod p), we have all the bi-
nomial factors of x7?, if p = + 2 (mod 5), but all the binomial factors of
whif p = £ 1 (mod 5). Hence the product of the p roots is w; "' u,,
when p = + 2 (mod 5), and pb*'/u;» when p = + 1 (mod 5). Thus in
the quadratic case, where, by (5 . 4), the product of all the roots in u is
1/ug, it follows, since u(—g? is negative, that the third root is —1 p,.

In the cubiz case, by (6 . 2), the product of all the roots in u is —1/u3,
go that the fourth root is —1/u,.
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In the quintic case (see § 7), the above considerations do not apply,
and x° is explicit in u;.

In the 11-ic case, the product of all the roots is uj% so that the 12th
root is 121+

In conclusion we may notice that if u, = « then wy, =0, by §4;
i.e. ¢, = 0, which by the modular theory of Jacobi and Sohnecke implies
that p roots of ¢’ are zero, i.e. p roots of u are «. Thus, when w, = ¢,
15 . 4) reduces to

(,u—(t.)2< - L) =0:

« )

when u, = «, (6. 2) reduces to
3 1 _— -
(u—a) {u+ ) = 0:

when u;,;, = «, (8. 1) reduces to

w—a)* = 0.



