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1. The introduction of the concept of uniform convergence marked
an epoch in the history of the theory of converging series of functions.
If the discovery of far wider conditions which admit of term-by-term
integration of series has tended to diminish the importance of the concept
in certain branches of the theory, it remains without a rival as affording us
a convenient sufficient condition for the continuity of the sum-function of
series of continuous functions.

The theory of series has recently undergone important changes. We
no longer confine ourselves to converging series, and we have learnt how to
distribute all known or knowable functions into classes, and to give simple
necessary and sufficient conditions that an assigned function should belong
to a particular class.* The question then naturally presents itself as to
the possibility of generalising uniform convergence so as to embrace
the case of oscillating successions of functions, and at the same time to
employ these generalised concepts to obtain sufficient conditions that the
upper or lower function of a succession of functions of an assigned type
should be of a particular type.

As regards the former desideratum, the generalisation of the concept of
uniform convergence, I have already given certain indications. Several
modes of generalization are possible, and I have referred to all of them •
but their simultaneous use and the adaptation of that portion of the theory
I have elaborated, so as to render it available for any kind of functions,
are needed. When this has been done the newly devised scheme of
classification of functions comes into use and completely justifies its
existence by the facility with which it permits of the application of the
tests so obtained.

It is convenient, in the first instance, to suppose the functions of the

* Cf. " On Functions and their Associated Sets of Points," in this volume, pp. 260 segq.
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succession to be continuous. The upper and lower functions are then
necessarily ul and fat-functions respectively. We require, then, tests
that the upper function may be (i) both a lu and an ul, (ii) an I, (iii) an u,
(iv) both an I and an u, that is a continuous function, and we require
corresponding tests that the lower function should belong to these types.

Now we have this remarkable fact that there are two quite distinct
modes of generalising the concept of uniform convergence,* so as to make
it applicable to an oscillating succession as a whole. Further, we may so
generalise as to require either of these new concepts to apply not only to
the succession as a whole, but to each sub-succession ; we may, as I have
expressed it, require our condition to be homogenous, t Whether we do so
or not, and whether we adopt the one or other of the two distinct methods
alluded to, we have an irreproachable generalisation of the original concept
of uniform convergence, which reduces to it when the upper and lower
functions of the succession of continuous functions coincide. When the
upper and lower functions do not coincide, each of the two modes furnishes
us with tests for distinct properties.

Confining our attention still for convenience to successions of continuous
functions, we may say that the succession oscillates uniformly above on
the right at the point x in the first mode if the peak function, that is the
upper double limit of /„,(# +7i), as h decreases to zero and n approaches
infinity, is at the point x equal to the upper function. If this test is
satisfied the upper function is, at the point in question, upper semi-
continuous on the right. Similar and corresponding statements, of
course, apply to uniform oscillation above on the left, and below on
the right and left respectively, in the first mode.

On the other hand, we may say that the succession oscillates uniformly
above on the right at the point x in the second mode if, given any quantity
e, we can find an n and an h so that, for this and all greater values of n,
and for this and all smaller values of h,

ftl(x-{-h)—u(x-t-h.) < e.

If this test is satisfied the upp'er function u(x) is at the point x in
question lower semi-continuous on the right. Corresponding statements
apply to uniform oscillation above on the left, and below on the right and
left respectively, in the second mode.

* W. H. Young, " Oscillating Successions of Continuous Functions," 1908, Proc. London
Math. Soc, Ser. 2, Vol. 6, p. 309 and p. 313. " On Successions whose Oscillation is usually
Finite," 1912, Quarterly Journal of Mathematics, Vol. 44, pp. 132, 133, and 141.

t W. H. Young, "On Homogeneous Oscillation of Successions of Functions," 1909, Proc.
London Math. Soc, Ser. 2, Vol. 8, p. 353.
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At a point at which the succession of continuous functions oscillates
uniformly and homogeneously in the first mode, both above and below,
it oscillates uniformly and homogeneously in the second mode, both above
and below. If throughout an interval the succession oscillates uniformly
above in the first mode, it oscillates uniformly above in the second mode
except at a set of the second category. The same is true if all that we know
of the oscillation above in the first mode at each point is that it is uniform
on the right or on the left, but not necessarily on both. Corresponding
statements also hold for the oscillation below.

On the other hand, whereas the points of uniform oscillation above,
below, on the right, on the left, in the first mode necessarily all exist in the
case of a succession of continuous functions except at a set of the first
category, this is not the case with those of the second kind, which are, in
general, entirely absent.

These remarks enable us to obtain sufficient tests in terms of the
uniformity of the oscillation in order that the upper (lower) function should
belong to any assigned possible type of function.

When the functions of the succession are no longer continuous the
definition above given for uniform oscillation of the first kind is no longer
applicable. It appears, however, that we may replace it by a precisely
equivalent definition. We have, in fact, only to employ the ascending
successions for all values of in of which the general term is the function
which is the upper bound of all the functions of the succession from the
w-th up to the ?i-th inclusive, and the descending succession of which the
general term is the corresponding lower bound ; the uniform convergence
of all the former successions is then taken to be the definition of uniform
oscillation above in the first mode, and that of all the second successions
the definition of uniform oscillation below in the first mode. Here the
convergence and the corresponding oscillation may be considered as to
their uniformity either on the right or on the left or both simul-
taneously.

It then at once suggests itself that the definition of the second mode of
uniform oscillation may be modified in a similar manner. It appears, in
fact, that, if we take the descending succession of which the general term
is the function which is the upper bound of all the functions of the given
succession from the n-th onwards, and the ascending succession formed by
the corresponding lower bounds, the uniform convergence of the former
succession on the right (left) may be taken to be the definition of uniform
oscillation above on the right (left) in the second mode, and that of the
second succession as that of uniform oscillation on the right (left) below in
the second mode. This modification is convenient for various purposes
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but it is not necessary, as it is evident that the original definition is valid
for successions of any kind of functions.

We are now able to answer, in terms of the new concepts, questions as
to the nature of the upper and lower functions of a succession of functions
belonging to any assigned type. For definiteness let us suppose that the
functions are Z«-functions ; then uniform oscillation above in the first
mode has no simplifying effect on the upper function, which is an ulu, but
uniform oscillation below in the first mode ensures the lower function
being a lu instead of an ulu, as it would be in the general case. On
the other hand, uniform oscillation in the second mode, when above, makes
the upper function a lu, and if below makes the lower function an ulu, in
each case depressing the type by one. If the functions of the successions
are all lu'a and id's simultaneously, the first mode of uniform oscillation
above makes the upper function an ul, and uniform oscillation below in
the first mode makes the lower function a lu. In the second mode
these are interchanged, the upper function being a lu and the lower
function an ul.

These results, in fact, and others of a similar nature follow from the
considerations I have just exposed, and the use of the theorem that a
uniformly converging sequence of functions of any type has a function
of that type for limit, a theorem of which the proof will be found
below (§ 19).

2. The remarks I have made as to the importance of the concepts of
uniform oscillation of the first and second kind are further enforced when
we come to adapt an important theorem recently obtained by Egoroff * so
as to render it available for oscillating successions. Egoroff finds in terms
of the concept of uniform convergence the necessary and sufficient con-
dition that a succession should converge except at a set of content zero.
The corresponding problem in oscillating successions is to express in
terms of uniform oscillation the necessary and sufficient condition that
the upper function should not assume the value + °°, or that the lower
function should not assume the value — <x>, in each case except at a set of
content zero. The result we obtain is as follows :—

It is a necessary and sufficient condition that the upper {lower)
function should be nowhere -{-<x> (—oo) except at a set of content zero,
tJiat, given any positive quantity e, hoioever small, ive should be able

* D. Egoroff, " Sur les suites de fonctions mesurables," 1911, Comptes Bendus. See
also " On Successions whose Oscillation is usually Finite," §4, loc. dt., supra.
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to find a perfect set wlwse content differs from that of the fundamental
segment by less than e, with respect to which the succession oscillates
uniformly above (below) in either the first mode or the second mode or both,
as we please.

It is clear that the most convenient test to apply is that one of the
three which relates to uniform convergence in the second mode; but all
three tests are equally necessary and sufficient.

3. A series of functions is, as is well known, said to be uniformly
convergent at the point P, if given any quantity e, we can find an
integer m and an interval d containing the point x, so that, for all
values of n ^ m and all points x1 in d,

— e </u(#i)—f{xx) < e.

Here m and d both depend on e, the one in general increasing
indefinitely and the other decreasing indefinitely as e approaches zero.
We distinguish between uniform convergence pure and simple, uniform
convergence on the right, and uniform convergence on the left, according
as the interval is unrestricted or has P for left-hand or for right-hand end-
point respectively.

This definition is, when the generating functions fn(x) are continuous,
as I have pointed out, precisely equivalent to the following: the series is
said to be uniformly convergent at P if, as n -> oo and h -»0, fn{x-\-h) has
at the point x an unique double limit, this being uniform convergence
pure and simple, or uniform convergence on the right (left), according
as h assumes all values or only all positive (negative) values.

We may in the case of either definition introduce the distinction
between uniform convergence above and below. In the first definition
it suffices to divide the double inequality (1) into two inequalities, taking
the upper inequality /.&-/<*)< *

to characterize uniform convergence above, and the lower inequality,

—e

to characterize uniform convergence below. In the case of the second
definition, uniform convergence above is determined by the equality of
the upper double limit (peak function) of fn{xi) at the point x with the
limiting function f(x), and uniform convergence below by the equality
of f(x) and the lower double limit (chasm function) of fn (#i) at the
point x.
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The moment, however, we have done this, our two definitions no longer
agree. Uniform convergence above defined in the one way does not
agree with that defined in the other way, nor does it agree with
uniform convergence below defined in the other way. Uniform con-
vergence above in the one way so far agrees with uniform convergence
below in the other way that the existence of either property ensures the
limiting function being of the same type, the same for both. The one
condition, however, is necessarily fulfilled at some point of every perfect
set, while the other need not be fulfilled at all.

Moreover, when we proceed to analyse our concept still further and to
replace the converging succession of continuous functions by an oscillating
one, so that the limiting function has to share it3 properties between two
functions, the upper function and the lower function of the succession,
even this point of contact between the two modes of splitting up the concept
of uniform convergence into components disappears. We are evidently in
the presence of four distinct conceptions, even when we make no difference
between right and left, which together make up the equivalent of the
single concept of uniform convergence, properly so called.

4. Let us continue to confine our attention to continuous functions in
the first instance, and suppose that we have an oscillating succession of
such functions. Then we give the following definitions :—

A succession of continuous functions fx(x), f^ix), ..., is said to oscillate
uniformly above on the right in the first mode at the point x if

ufr) = TTR(X),

where u(x) is- the upper function and TTR{X) the right-hand, peak function,
that is . x ,. ., x . N

u(x) = upper limit jn{x),
n—^«>

Trji{x) = upper double limit fn(x + /*)• (0 < h)
n—>•<» h—>0

The same definition applies on the left instead of on the right if we
take h to be negative instead of positive, and replace TTR(X) by TTL(X). If,
on the other hand, we allow h to assume both positive and negative values,
and write ir{x), the peak function, instead of TTR (X) or 7rz{x), the definition is
that of uniform oscillation above in the first mode at the point x. Similar
definitions apply to uniform oscillations below, using the chasm funtions
in place of the peak function and changing upper into lower. Thus, for in-
stance, disregarding the distinction of right and left, we have the definition

A succession of continuous functions fi(x), f2(x), ..., is said to oscillate
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uniformly below in the first mode at the point x if l(x) = x&)> where l(x)
is the lower function and x(#) is the chasm function, that is

l(x) = lower limit/„(«),

x(x) = lower double limit fn (x-\-h).
v—>» h—>0

In the definition of uniform oscillation of the second kind we need not
insert the word " continuous," as the definition, though applied in the first
instance to continuous functions, is applicable for all types of functions.
The definition is given disregarding the distinction of right and left. If
we wish to insert this distinction we only have to restrict h to be positive
or to be negative.

A succession of functions fx(x),/2(ic), ...,is said to oscillate uniformly
above in the second mode at the point x if, given any positive quantity e,
we can find an interval d containing the point x as internal point and a
corresponding integer m, so that for all integers n ^ m and all points
x + hin the interval d fn{x-\-h) —U(x) > e,

u(x) being the upper function.
Under the same circumstances if, l(x) being the lower function,

the succession is said to oscillate uniformly below in the second mods.

5. THEOREM.—If the succession of continuous functions fx(x), f2(x), ...,
oscillates uniformly above (below) in the first mode, the upper function
u(x) is upper (lower) semi-continuous.

For, by the definition of uniform oscillation above in the first mode,
u (x) = upper double limit fn(x-\-h). (1)

Now, since any repeated limit is a double limit,

upper limit u(x-\-h) = a certain double limit fn(x-{-h)
h—>0 ii—>.co, h—H)

^ upper double limit fn(x-\-h). (2)

The comparison of (1) and (2) shows that u(x) is upper semi-continuous.
Similarly, since

lower double limit l(x-\-h) > lower double limit/«(x + h), ..., (2')
h >0 n—>°° > h—>0

the equation defining uniform oscillation below in the first mode, viz.,

l(x) = lower double limit fn(x-\-h),
n—>», h—>0

shows that in this case l(x) is lower semi-continuous.
This proves the theorem.
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The inequality (2) of the above proof holds without any special
assumption as to the nature of the functions fn {x) or the mode of oscilla-
tion of the succession.

The left-hand side of (2) is the associated upper semi-continuous
function of the upper function, and the right-hand side may still be
defined to be the peak function. Thus we may express (2) by saying that
the associated upper limiting function oj the upper function is always
less than or equal to the peak function. Similarly we may express (2') by
saying that the associated lower limiting function of the lower function
is always greater than or equal to the chasm function. If the functions
fL(x) arelcontinuous, (2) remains true when we replace the left-hand side by
u{x). The same is, of course, true if u(x) is lower semi-continuous. In
the general case, since a function lies between its upper and lower asso-
ciated semi-continuous functions except at a countable set of points, we
have, except at a countable set,

X(x) < l(x) < u{x) < 7r(x),

an inequality which has no exceptional points if the functions fu{x) are
continuous, or if u{x) is lower semi-continuous and l{x) is upper semi-
continuous.

6. THEOREM.—If the succession of continuous functions fi{x), f%{x), ...,
oscillates uniformly above {below) in the second mode, the upper {lower)
function u{x) is lower {upper) semi-continuous.

For

u {x) ~u(x-\- h)

Now, if the /^-succession oscillates uniformly above in the second mode, we
can find m so that the first term on the right is less than e/S for all values
of h considered and all values of n ^ m. Also, since u {x) is one of the
limits oifn{x), we can find a value of n ^ m for which the second term is
less than e/3. Finally, since fn{x) is continuous for this value of n, we can
find H so that for h ^ H the last term is less than e/3. Thus, the left-
hand side of the preceding identity is less than e, provided h ^ H. This
proves the theorem as far as the oscillation above is concerned. Similarly
it may be proved in the alternative case.

COR.—The theorem remains true when the functions f)h{x) are not
continuous, but only lower {upper) semi-continuous.

In fact, we have not used the upper semi-continuity of fn{#) in the
proof of the lower semi-continuity of the upper function nor the lower
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semi-continuity of fn(x) in the proof of the upper semi-continuity of the
lower function.

7. THEOREM.—If the upper (lower) function is continuous, then the
succession of continuous functions /i(aj),/2(a;), ..., oscillates uniformly
above (below) in both modes or in neither mode.

It will be sufficient to prove the first half of the theorem. Suppose,
then, that the succession oscillates uniformly above in the first mode.
Then, taking any point y, we can find an interval, or tile, dy and an
integer my, so that, for all points x in the tile and all integers n > my,

Hence, if u(y) is continuous at the point y so that we.can so choose the
tile that for all points x in it

u(y) < u(x)+e,

fn(x) < u{x)+2e,

which shows that the succession oscillates uniformly above in the second
mode.

Again suppose the succession oscillates uniformly above in the second
mode; then, corresponding to the point y, we can find a tile dy and a
corresponding integer my so that, for all points x in the tile and all
integers * > »h, f M

and, if u(x) is continuous at the point y, we can so choose the tile that, for
all points x in it, , . ^ . x .

u(x) < u(y)+e,
and therefore fn(x) < u(y)-\-2 e.

Since e is as small as we please this shows that the upper double limit
of fn(x) at the point y is not greater than u(y). But, since u(y) is
continuous, the upper double limit of fn(x) cannot be less than u(y),
as pointed out at the end of § 5. Hence it must be equal to u(y), which
shows that the succession oscillates uniformly above in the fii'3t mode.

Combining these two results, we see that the theorem is true.

COR.—Uniform and homogeneous oscillation of the first kind involves
uniform and homogeneous oscillation of the second kind.

In the above proof we have not used the continuity of the functions
fn(x) except in so far as the definition of uniform oscillation of the first
kind is concerned. It follows, therefore, that, whatever type of functions
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generate the given succession, provided only the upper function is con-
tinuous, if the succession oscillates uniformly above in the second mode,

u(x) = ir{x),

and conversely, if this equation holds, the succession oscillates uniformly
above in the second mode. Similarly, provided the lower function is
continuous, if the succession oscillates uniformly below in the second
mode, 7, x , s

l(x) = x(x),
and conversely.

8. Before proceeding further it will be convenient to prove certain
properties of monotone ascending and descending successions. The
tollowing theorem is slightly more general than that usually given.

THEOREM.—A monotone ascending succession of l-J"unctions whose limit
is continuous converges uniformly. A monotone descending succession of
u-functions ivhose limit is continuous, converges uniformly.

Let fi(x) ^fz(x) ^ ... ->/(#), be a monotone ascending succession of
Z-functions whose limit is continuous. Then, taking any point x, we can
determine H, so that

Also, since the succession converges at the point x, we can find M so that

/(«)—/if(as)<e.

Also, since J'M is lower semi-continuous, we can find HM ^ H, so that

Mx)-fM& + h) < e (h^HM<H).
Hence, adding the three inequalities,

f(x+h)-fM(* + /*) < 3e (h < HM).

But the succession is monotone ascending, therefore

0 <J(x+h) -Mx+h) < 3e (/* < HM, n > M).

This proves that at the point x the sequence converges uniformly. Since
this is true at every point x, this proves the theorem in the first case, and
similarly it may be proved in the second case.

COR.—If a monotone ascending {descending) succession of functions
each of lohich is lower (upper) semi-continuous at the point P, has a
limiting function which is continuous at the point P, the convergence of
the succession at the point P is uniform.
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9. It will be remarked that, in proving the theorem of the last article,
we employed the second definition of uniform convergence, and conse-
quently we had only to prove that the lower half of the condition was
satisfied in the case of the ascending succession, and the upper half in the
case of a descending succession; the other halves are satisfied of them-
selves. It is of some importance to note that, in the case of ascending
successions of continuous functions, it is the lower half of the first defini-
tion of uniform convergence which is necessarily satisfied, and it is the
upper half in the case of a descending succession. This appears from the
following theorem.

THEOREM.— I f f l ^ f 2 ^ . . . . is a monotone ascending succession of
functions, the loioer double limit of fn(x-\-h), as n^> co and h—>0, is equal
to the limiting function f(x), at any point x where all the functions fn{x)
are continuous.

Since fn {x) has f(x) as unique limit, we can determine Mx>e so that, for

n>Mx>" 0 < / ( * ) - / » ( * ) < « .

Taking any one of these values of n, we can determine Hn, x, e so that, for
h < Hn,z,e,

Therefore - e < / ( a j ) - / n ( a + fc)<2e (n>itf"8,e, /&<#„,,.,). (1)

A fortiori, if m ^ n, f(x)—fm(x-\-h) ^ 2e.

Letting m describe such an increasing succession of integers, and h such a
monotone descending sequence with zero as limit, that fVi(x-\-h) has its
lower double limit x(#) as unique limit, we get

2e. (2)

Letting e approach zero, we get from (2),

0. (3)

But, as e approaches zero, Mx,e will in general increase without limit, and
we may make n in (1) assume values which increase without limit; at the
same time Hn> Xt e will in general decrease down to zero, and we may in
any case take in (1) a succession of values of h approaching zero ; thus, as
e.-> 0, fn{x-\-h) in (1) approaches a certain double limit, or limits, which
are certainly ^x{x). Thus we get from the first inequality in (1), by
making , - 0 , 0 < / M - x < W . W

By (3) and (4), /(*)•= x (*)•
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Similarly we have the alternative theorem :—

THEOREM.—If fx^ / 2 ^ ••• is a monotone descending succession of
functions the upper double limit of fn{x-\-h), as ;i-»co and h-*0, is
equal to the limiting function f(x) at any point x where all the functions
fn(x) are continuous.

10. We now return to oscillating successions of functions and consider
the monotone ascending and descending successions associated with it.

The first monotone ascending succession associated with the given
succession fi(x),f^(x), ..., we denote by

vi, i (*) < »i, 2(3) < «i, 3 (a?) < . . . -> vx (x),

where Vi>r(x) is the upper bound of fi(x),f2(x), ...,f.{x). There is a
countably infinite set of these sequences, the second being defined in the
same way from the given succession omitting its first member, and so on,
the r-th being got by omitting fx(x), f2(x), ...,fr_i(x). These monotone
sequences lead up to the functions vx{x), v2(x), ... of the first monotone
descending sequence. Here, of course, vx (x) is the upper bound of the
fn-succession at the point x, and vr{x) is the upper bound of the same,
omitting fvfM . ..,fr-\. The limit of the monotone descending vr-succession
is therefore the upper function u {x) of the /^-succession.

Thus we have, for the set of the first monotone ascending sequences,
and the first monotone descending sequence, the following scheme:—

V

1)2, 2 ^ • • • ""*• ^ 2 »

V

V

V

Similarly, taking the lower instead of the upper bounds, we get the
corresponding scheme for the second monotone descending sequences, and
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the second monotone ascending succession associated with the given
succession :—

Ml, 1 > Ml, 2 > Ml, 1 > . . .">«?!,

?02, 1 > tt'2, 2 > W-'S, 3 > • • • -> Ma,

A

A
Mr, 1 > Wrr2 > Wr, 3 > • • • ~> Mr,

A

I

If the functions/„(«) of the given succession are continuous, the same
is true of the functions vr,s(x) and wr,s{x). More generally, by one of the
fundamental theorems in the theory of the classification of functions,* if
all the functions fn(x) are l-iunctions, lu-iunctions, or belong to any other
the same class of functions, the same is true of the functions vr,a(x) and
w,<s(x).

Hence we can at once give the class to which each of the functions
vr(x), wr(x), and u(x) and l(x) belong; for instance, if fn{x) is continuous,
vr(x) is an I, wr{x) is an u, u{x) is an ul and l(x) is a lu-i unction.

11. We now proceed to shew that the uniform oscillation according to
the first mode is identical with the uniform convergence of the successions
converging to vn and wn for all values of n. We shall need the following
theorem.

THEOREM.—If fi(x), /20c), ... is any succession of functions, and
Vi(x)"^ v^ix)^ ..., the first associated monotone descending succession,
having the upper function u(x) of the fn-succession as limit, the peak
functions of these two successions are the same, that is to say

upper double limit fn(x-\-h) = upper double limit vn(x-\-h).
n—»co, h—>0 w—>», h—>0

* W. H. Young, " A New Method in the Theory of Integration," 1910, § 6, Proc. London
Math. Soc, Ser. 2, Vol. 9, p. 21.
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Writing TT{X) = upper double limit of fn(x + h),
n—>•/), h—>0

TT'(X) = upper double limit of vn{x+h),

we have evidently ir{x) < ir'{x), (1)

since vn(x+h) being the upper bound of fn{x + h), fn+i{x+h), ...,

Take such a succession of integers n, and such a corresponding
succession of values of h, that vn(x-\-h) has as unique limit its upper double
limit. We can then, corresponding to each of these values vn(x-\-h), take
a lesser quantity Vn, so that, as n describes its succession of values, Vn has
the same unique limit as vn{x-\-h), namely ir(x). Then, corresponding to
each of these values of n, we can, since vn{x-\-h) is the upper bound of
fn+p(x-\-h) asp varies, find an integer m, depending on n, so that

Now, letting n -> oo, the left-hand side of the last inequality has a
limit, or limits, not exceeding ir{x) ; therefore

Hence, by (1), ir(x) = 7r'(x),

which proves the first statement in the enunciation, that the peak functions
of the two successions are the same.

12. THEOREM.—The necessary and sufficient condition that a given
succession of continuous functions fx(x), f%(x),... should oscillate uniformly
above {below) in the first mode, is that the first monotone ascending (de-
scending) successions associated with the given succession should converge
uniformly.

First, to show that the condition is sufficient, we assume that the
succession of continuous functions

«r, 1 < Vr, 2 < - . . - > Vr

converges uniformly for each integer r. Therefore all the functions vr (x)
are continuous, so that, by the second theorem of § 9, the limiting function
of the ^-succession is its peak function. Therefore, by the theorem of § 11,

u(x) = 7r(x); (1)

this proves the sufficiency of the condition.
Next, to prove the necessity of the condition, we assume that (1) holds.

6ER. 2 . VOL. 12. NO. 1181. 2 A
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Therefore, since TT{X) is the upper double limit of fn(x+h), we can find
M > r and H, depending on x and on e, so that for n ^ M and h ^ H,

fn{x + h)^u(x)+e*£: vr{x)+e, ....

Also, since the functions fr{x),fr+i(x), ...,fM-\{x) are continuous, we may
suppose HM < H so small that, for r < w < M,

Mx+h) </„(*)+« < wr(as)+e.

By the last two inequalities

Mx+h) < t>r(*)+«, ••• (w > r, fc < H*).

Hence, since wr(a;) is the upper bound of the left-hand side,

vr(x + h) < ur («)+e {h< HM).

This shows vr(x) to be upper semi-continuous. But since the functions
f»(x) are continuous, vr(z) is necessarily lower semi-continuous (§ 10), and
is therefore continuous; therefore, by § 8, the convergence of the mono-
tone succession leading up to vr(x) is uniform. This proves the necessity
of the condition as far as the upper oscillation is concerned. Similarly
the theorem may be proved for the lower oscillation.

18. It should be remarked that the result of the last article is equally
true whether we are considering a particular point or a whole interval. It
is also equally true whether we are concerned with uniform oscillation in
general or restrict it to be on the right or on the left. The type of
oscillation corresponds precisely to the type of the convergence of the
corresponding monotone successions. The same remarks apply equally in
all similar places in our investigations, and in particular they apply to the
theorem which we are about to prove which establishes the connection
between uniform oscillation of the second kind and the monotone suc-
cessions which ascend to the upper and descend to the lower functions.

THEOREM.—The necessary and sufficient condition that a given suc-
cession of functions fi(x), /2(a0, ..., should oscillate uniformly above
(below) in the second mode is that the second monotone descending
(ascending) succession associated with the given succession should con-
verge uniformly to its limiting function, the upper {lower) function of
the given succession.

For, since vm(x) is the upper bound of the quantities fm(x),fm+i(x), ...,

the inequality /n{x)_u{x) < e, ( n > m > U )

has the inequality vm(x) — u(x) <; e, (m ^ M)
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as a consequence. Also, since fn{x) cannot be greater than vn(x), the
latter inequality entails the former as a consequence. Hence the theorem
is true as regards the upper oscillation. Similarly it is true as regards
the lower oscillation.

14. The results of the theorems of §§ 12 and 13 at once furnish
us with new proofs of the theorems of § § 5 and 6. They also enable
us to obtain with ease a number of further results. Thus it follows from
the known theory of uniform convergence of successions of continuous
functions that the points at which there is uniform oscillation above,
below, on the right, and on the left of the first kind all form sets
complementary to sets of the first category, and this equally whether
we consider the continuum or any perfect set, always provided that the
functions of the succession considered are continuous. We have, indeed,
the more general result that this statement is true for the upper
oscillation on the right and on the left and in general when the functions
of the succession are lower semi-continuous, and that the corresponding
statement is true for the lower oscillation when they are upper semi-
continuous. In fact, in the former case the functions i\, v2, ..., are the
limiting functions of monotone ascending successions of ^-functions, and
are therefore themselves ^-functions ; hence, bearing in mind that the set
composed of a countable infinite set of sets of the first category is a set of
the first category, so that all these Z-f unctions v,(x) are continuous except
at points of a single set of the first category, the required result follows by
means of the corollary to the theorem of § 8.

Thus we have the theorem :

THEOREM.—A succession of lower semi-continuous functions neces-
sarily oscillates uniformly above in the first mode except at a set of points
which is of the first category.

Similarly we have the corresponding theorem :

THEOREM.—A succession of upper semi-continuous functions neces-
sarily oscillates uniformly below in the first mode except at a set of points
which is of the first category.

Both these statements remain, of course, true if we replace the
continuum by any perfect set and consider- the uniformity of oscillation
with respect to this perfect set.

15. There is no corresponding theorem for the points of uniform
2 A 2
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oscillation of the second kind. Such points may be entirely absent. We
have, however, the following theorem.

THEOREM.—When the functions of the succession are continuous and
every point is a point of uniform oscillation above (below) on one side at
least in the first mode, then, except at a set of the first category, there is
uniform oscillation above {below) in the second mode.

Take the first of these alternative theorems.
Then the upper bound vn(x) of all but the first (n—1) functions of the

given succession, being the limit of a succession of continuous functions
which converges uniformly on one side at every point, is a function which
is continuous on one side at least at every point, and is, therefore,
continuous except at a countable set of points. The upper function u(x)
of the original succession, being the limiting function of the monotone
descending ^-succession, is then a pointwise discontinuous function.*
Therefore, except at a set of the first category, consisting of the points
of discontinuity of u(x) and the countable set of points at which at least
one of the functions vn(x) is discontinuous, all the functions vn(x), as well
as the limiting function u(x), are continuous, and therefore the con-
vergence of the ^-succession is uniform, so that the original succession
oscillates uniformly above in the second mode.

This proves the first of the two alternative theorems. Similarly the
other may be proved.

16. "We can now answer the question which naturally suggests itself
as to sufficient tests that the upper and lower functions of a succession of
continuous functions should have an assigned form. It will be sufficient
to confine our attention to the upper function, as the corresponding results
for he lower function follow immediately. The conditions that the upper
function should be upper semi-continuous or lower semi-continuous or
both, that is continuous, are obvious. As the upper function is neces-
sarily an wZ-function the only remaining condition that we have to
investigate is that it should be a lu as well as an wZ-function. Moreover,
since a descending succession of Z-functions converges to a Zw-function when
the points of uniform convergence exist in every perfect set, a sufficient
condition is that there should be no perfect set free from points of uniform
oscillation above of the second kind.t

* W. H. Young, " On Sequences of Asymmetrically Continuous Functions," 1909,
Quarterly Journal, Vol. XL, pp. 374-380.

t It is sufficient to test the oscillation with respect to each perfect set.
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17. We may also prove the following theorem :—

THEOREM.—If the upper (loioer) function of a succession of continuous
functions is loioer {upper) semi-continuous, the points of uniform oscilla-
tion above {below) of the second kind form a set complementary to one
of the first category.

In fact, the succession vx(x) ^ v2{x) ^ ... leading down to the upper
function are in the former of the alternative theorems Z-functions. Hence,
by the argument already used more than once, the statement follows.
Similarly the alternative statement follows.

18. We now pass to the consideration of successions of functions other
than continuous functions. We have already so far extended our results
as to consider the case when the generating functions are upper or lower
semi-continuous; but in doing so we only considered those points where
these functions are continuous, at least so far as the theory of uniform
oscillation of -the first kind is concerned. We have up to the present
point, in fact, not yet formulated a definition of uniform oscillation of the
first kind available at points or in intervals where the generating functions
fn{x) of the succession are not continuous.

We now proceed to consider this more general case. We begin by
making two remarks. The first is that it follows, from the reasoning
of §§12 and 18, that, if a succession of functions converges uniformly, all
the monotone successions considered in those articles converge uniformly.
This at once suggests that we may replace the definition already given of
uniform oscillation of the first kind by that which is identical with it
in the case when the functions are continuous, namely, the property
proved in § 12. The second is that the limiting function of a uniformly
convergent series of functions of a certain type is always a function of the
same type. As this latter remark may not seem obvious, and certainly
requires proof, we now give such a proof.

19. THEOREM. — The limiting function of a uniformly convergent
succession of functions of a certain type is a function of the same type.

It will be sufficient to treat at length the case when the functions of
the succession are w7-functions.

Let e 1 > e 2 > . . . - > 0 be any monotone descending sequence with zero
as limit. Let us denote some function of the given succession which
differs numerically by less than ex from the limiting function/(x), by fx{x),
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another which differs numerically by less than e2 from/(re) by/20r), and so
on. This is possible since the convergence is uniform.

Let Gx denote the set of points at which

/ i(»)> k—«i;

this is an *-set, since/!{x) is an ul-iunction.
Let G2 denote the set of points at which both

fi(x) ^k — ex,

and f2(x) > k—e2;

this is the common sub-set of two i-sets, and is therefore an i-set.
Similarly we go on; thus let Gn denote the set of points at which, for

r = = 1 ' 2 ' • - * ' fr(x)>h-er,

then Gn is an t-set.
Each of these -i-sets Glt evidently contains the next Gn+i; they have

therefore in common a set G, which is the inner limiting set of i-sets, and
is therefore itself an i-set.

At every point x belonging to G, we have, for all integers n,

But/(re) is the limit of fn(x), when n -> oo and accordingly en approaches
zero, therefore

But, on the other hand, if x is a point at which

we must have, since fn {x)—f{x) is numerically less than en,

/n(«)> k — en,

for all integers n, so that a; is a point of Gn for every n, and is therefore a
point of G. Thus the -i-set G is precisely the set of points at which

which proves that f{x) is itself an ul-i unction.
If the functions fn(x) are ^-functions, the argument is the same, only

instead of *-sets, we have closed sets ; if they are ulu-iunctions, we only
have io-sets; if ulul-iunctions, we have ioi-sets, and so on, but in all cases
the same argument leads to the required result.

If, on the other hand, the functions fn(x) are Z-functions, or ^-func-
tions, or fotZ-functions, and so on, we merely have to change the sign ^
into ;<, and the argument applies. In all cases we use the theorem of
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§ 24 of my paper " On Functions and their Associated Sets of Points,"
which characterises the type of a function by the type of set of points at
which it is > k, or ^ k.

20. We have now to frame a definition of uniform oscillation of the
first kind above and below in accordance with the remark of § 18. A little
consideration shows us that the requisite that the ascending succession
whose limiting function is v^x) should be uniformly convergent is pre-
cisely equivalent to the following:—

Given e, we can find an integer me, so that, whatever point x be taken,
there is a corresponding integer r.: ̂  me, so that, for all values of n,

First to show that this is sufficient, suppose the condition to hold. Then,
if p > me, the function frr{x) will, for every point x, be among the func-
tions of which viiV(x) is the upper bound. Hence

fn{x) — vhv{x) < e. (1)

But since v^x) is the upper bound at the point x of fx(x), f2(x), ..., we can
at each point x find an integer nK so that

/ , . /&)> v1(x)-e. (2)

Taking n = nx in (1), we get therefore at the point x,

vx (x)—vx, 2, (x) < 2e, ... (p > me).

Since mc is independent of x, and this inequality holds for every point x,
this shows that the monotone ascending vlt ^-succession converges uni-
formly. Thus the condition is sufficient.

Next to show that it is necessary, we assume that, given e, we can find
me so that for all values of p ̂  me and all poiuts x,

^W-«l..;.(^)<«.

Now ihiP(x) is the upper bound at the point x of fi(x),/2(x), ...,/3,(ic),
therefore there is an integer rx, such that

vi (%) ~frx (%) < e, and rx < p.

Taking p = me, we see that the given condition is necessary.
Hence we see that the definition of uniform oscillation above in the

first mode of a succession of any kind of function /i(x),/2(x), ... may be
given in the following form :—

The succession fx(x),/2(x), ... is said to oscillate uniformly above, in
the first loay if, given e, loe can, corresponding to each integer r, find an
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integer mr> e, so that, whatever point x be taken, there is a corresponding
integer nx ^ mr,«, .so that, for all values of n,

The succession is said to oscillate uniformly below in the first mode if,
given e, we can find mTi e, so that, for a value nx ^ mr> e,

fr+,,x(x)—/r+•*(«)< e,
for all values of n.

This same condition may be expressed as follows:—

The succession fiix), f2{x), ...is said to oscillate uniformly above in
the first mode if, given any small positive quantity e and any integer r,
we can divide the continuum into a finite number mT) e of sets of points,
such that, if the point x is any point of the k-th set,

fr+M—fr+k(x) < e (n = 1, 2, ...).

The succession is said to oscillate uniformly below in the first mode if,
under the same circumstances,

fr+k(x)—fT+u{x) < e (n = 1, 2, ...).

Indeed there is only a finite number of integers nx^.mr,t, therefore
we may group the points x together in a set, if nx =• k, where k is any
integer ^ra r , e . If there are no such points, the corresponding set will be
the null-set, or, if we prefer, is absent, so that the corresponding integer k
will not occur, and the number of sets will be less than mTt e.

21. We have now given definitions, in terms of the functions them-
selves, of uniform oscillation at a point above and below of the first and of
the second kinds. The definition of that of the first kind has just been
given (§ 20), while that of the second kind is the one we originally took.
"When the fundamental region is the straight line, we may if we please
insert the expressions " on the right " or " on the left " with corresponding
generalisations for higher space.

We have seen that, when the functions are continuous, uniform
oscillation of the first kind always exists except at a set of the first
category. The requirement that the succession should oscillate uniformly
in the second mode is more stringent, and points of uniform oscillation in
the second mode will in general not be present, even when the functions
are continuous. When the functions are continuous, however, and the
succession is a sequence, uniform oscillation both above and below
throughout the continuum of either kind necessitates uniform oscillation
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throughout the continuum of the other kind and ensures the uniformity
of the convergence of the original sequence.

When the functions are not continuous it is, however, only the more
stringent of the two kinds of uniform oscillation which ensures the uniformity
of the convergence of the original sequence, and with it the uniformity
of the oscillation in the less stringent of the two modes. To see this last
it suffices to suppose the sequence to consist of functions/i(x),/2(ic), ..., of
which the odd terms form a monotone descending sequence fx (x) ^ / 3 (x),...,
and the even terms a monotone ascending sequence f2{x) ^.f^ix)^ -••,
both converging non-uniformly to the same limiting function f(x). This
is always possible when the functions of the succession are not con-
tinuous. But in this case we have clearly uniform and even homogeneous
oscillation both above and below of the first kind, combined with non-
uniform convergence of the sequence itself.

The justification of the definitions I have given is to be found in the
applications, but also in the circumstance, already alluded to, which is
fundamental in this connection, that, if a succession converges uniformly,
all the monotone successions associated with it do so also, so that the
conditions for uniform oscillation, both above and below, of the first and of
the second kind are all fulfilled. For completeness I repeat the proof of
this fact which I have already given elsewhere.*

22. THEOREM.—If a succession of functions converge uniformly all its
associated monotone successions converge also uniformly.

Since the given succession fi(x),f2(x), ..., converges uniformly we can,
after assigning e, find M, so that, for all values of m and n greater than M,

!/«(*)-/»(*) | < e,

whatever point x be considered, M being independent of x. Therefore if

M < m < n,
we have, since /„(*)<»,,„(*);

also fn(x) < vhm(x)+e, (n = m+1, w+2, ...)

But vi,n is the upper bound of vi>m,fm+1,fm+2, ..., fn at the point x.
Therefore ^ , , , , , , ^ . x

vi, n < vi,m(x)+e, (M <m < n).
This proves the uniform convergence of the first monotone ascending

* " On Successions whose Oscillation is usually Finite," loc. cit., p. 139.
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sequence. Similarly the remaining monotone ascending sequences formed
from the functions vriS(x), for successive integers r, converge uniformly.

The uniform convergence of the monotone descending yr-succession
follows as in § 13, since this succession, like the original succession, now
has/(x) as limit, and the relations

Mx)-f(x) < e, (n > w > ilf)

and vm(x)—u(x) < e, {n > M)

are consequences of each other.

This proves the theorem as far as the vr>s and ^-successions are
concerned. Similarly, making the appropriate changes of ascending
into descending, and the like result follows for the wr, s and M\.-successions.

23. We can now completely answer the question as to the effect of
uniform oscillation of the two kinds, above and below, on the right and
on the left, on the upper and lower functions of the succession of functions
belonging to an assigned class.

THEOREM.—If the name of the class of functions of a certain succession
begins loith an I, uniform oscillation of the first kind above prefixes an u
to the name of the class in the case of the upper function, so that the class
is the same as if the oscillation were not unifoi-m, and, in the case of the
lower function, uniform oscillation of the first kind below makes the
lower function of the same class as the functions of the succession. On
the other hand, uniform oscillation of the second kind above makes the
upper function of the same class as the functions of the succession, while
uniform oscillation of the second kind below 'prefixes an u in the case of the
lower function.

Similarly we have the alternative theorem :

THEOREM.—If the name of the class of functions of a certain succession
begins -with an it, uniform oscillation of the first kind above makes the
upper function belong to the same class, while uniform oscillation of the
first kind below prefixes an I in the case of the lower function, so that the
class of the lower function is the same as if the oscillation zoere not
uniform below. On the other hand, uniform oscillation of the second
kind above prefixes an I in the case of the upper function, while uniform
oscillation of the second kind below makes the lower function belong to the
same class as the functions of the succession.
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The proofs of these theorems will be evident to the reader acquainted
with the theory of monotone sequences as exposed in my previously pub-
lished papers.

From the theorem of § 19 follows still more directly that if a suc-
cession oscillates uniformly above {below) in both ways its upper (lower)
function belongs to the same class as the original functions. In fact, the
associated monotone successions all converge uniformly, whence the result
must be true.

24. We now pass to the generalisation for oscillating successions of
the theorem of Egoroff. I have already obtained a generalisation by a
method which is itself the extension of Egoroff's method. It is, however,
still simpler to assume Egoroffs theorem and to employ the considerations
I have just exposed as to the identity of uniform oscillation with uniform
convergence of certain associated monotone successions. If the upper
function has the value +oo at most at a set of zero content, all the
monotone successions associated with the upper function are bound to
converge except at a set of content zero. Moreover, the convergence,
except at a set of content zero, of the successions connected with
oscillation of the first kind above, and the convergence, except at a
set of content zero, of those connected with oscillation of the second
kind above is in either case sufficient to ensure that the points, if any, at
which the upper function has the value + oo, form a set of zero con-
tent.

Consider first the successions connected with uniform oscillation of
the first kind above, namely, the successions of functions v,-tS(x). There
is a countably infinite number of these successions, each of which
converges usually if we suppose, as we shall do, the hypothesis with
regard to the upper function to hold. Applying EgorofFs theorem we
can separate off a set of content less than \e corresponding to the first of
these successions, viz., the vit s-succession, a set of content less than \e
corresponding to the second of these successions, and so on, in such
a manner that in the remaining portion of the fundamental region we
have uniform convergence of the succession in question with respect to
that portion.

Combining the exceptional sets into a single set of content less than e,
we have with respect to the complementary set uniform convergence of all
the vr, s-successions, for every value of r.

Similar consideration holds for the lower oscillation. Thus we have
the following theorem.
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THEOREM.—If the upper {lower) function of a given succession * is
-f-oo (—<x>) at the points of a set of zero content only, then, given e, we
can find a set of content less than e such that icith respect to the
complementary set the succession oscillates uniformly in the first way.
The converse is also true.

In the case of uniform oscillation of the second kind the corresponding
result IR even more easily perceived, since there is only one monotone
succession to be considered.

THEOREM.—If the upper (lower) function of a given succession is
+ oo (— oo) at the points of a set of zero content only, then, given e, loe
can find a set of content less than e, such that icith respect to the
complementary set the succession oscillates above (beloio) uniformly in
the second way. The converse is also true.

25. The results of the preceding article are of great importance, but
the reader must be warned not to exaggerate the signification of a theorem
such as that of Egoroff. A set even of zero content may be constructed
in the continuum in such a manner as to leave over a set of the first
category only,t that is, a set of a kind which does so little towards filling
up the continuum that we may subtract a countably infinite number of such
sets from the continuum and leave it, in a certain sense, pretty much as
it was before. Still more may we say that, when we have been obliged,
for the purposes in hand, to remove a set of positive content from the
continuum, whether this is a fixed or a variable set, we may have very
seriously affected the character of the remaining portion of the continuum
from every point of view except that of content. This is illustrated by
the fact pointed out by Lusin, that it follows from Egoroff's theorem
that any function of any of Baire's classes, and therefore any function
of monotone class, is continuous with respect to the complementary set
when a suitable set of content as small as we please has been removed
from the continuum.

• In the present article the functions of the given succession are supposed finite except
at a set of content zero.

t See, for instance, W H. Young, " On the Construction of a Pointwise Discontinuous
Function, all of whose Continuities are Infinities and which has a Finite Generalised
Integral," § 2 (1908), Quarterly Journal, Vol. xxxix, p. 218.


