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THEOREMS CONCERNING THE SUMMABILITY OF SERIES 

BY BOREL'S EXPONENTIAL METHOD. 

By G. H. Hardy and J. E. L i t t l ewood  (Cambridge). 

A d u n an za  del  x 4 n o v e m b r e  t g t  5. 

Introduction. 

I . I .  In a paper ~) published in the Proceedings of the London Mathematical Soc- 

iety in 1912 we proved that a series ~ a  in which 

( I . I )  a - -  o ( ~ )  

cannot be summable by BOREL'S method unless it is convergent; and we raised the ques- 
tion whether the theorem remains true if the o in the condition ( I . i )  is replaced by 

an O. We stated that we had no doubt as to the truth of the theorem thus suggested, 
but that we were unable to find a proof. 

We are now able to supply the proof that was then lacking, and to do this is 
the principal object of the present paper. The proof is given in section 2. In sections 
3 and 4 we consider some theorems of a different character but also relating to 

BOREr'S method. 

2. 

Proof of the general Borel.Tauber 2) Theorem. 

2.I. The series ~ - a  is said to be summable (B), to sum s, if 

X ~ 
C-XXSn n! ~ 

*) G. H. HARDY and J. E. LITTLEWOOD, The Relations between BOREL's and CEs.kRo's Methods of 
Summation [Proceedings of the London Mathematical Society, series II, vol. x I  (i912-I913), pp. i-i6]. 

a) For an explanation of our reasons for giving this name to the theorem, see G. H. HARDY 
and J. E. LITTLEWOOD, Contributions to the arithmetic Theory of Series [Proceedings of the London 

Mathematical Society, series II, vol. XI (I912-I913), pp. 411-478 (p. 413)]. 
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where 
s . = a o + a , + . . . + a . ,  

tends to the limit s when  x ~ oo. 

THEOREM 2 . I . - - i f  ~-a is summable (B), and 

then ~- a is convergent. 
The  proof of this theorem, as of any TaUBERian theorem of the 0 type, is de- 

cidedly difficult. We shall base it on a number of preliminary lemmas. 

LEMMA 2 . 1 1 . -  If ~-a is summable (B), and 

( 2 . ~ )  a = o ( ~ ) ,  
then 
(2.~2) s = ao + ~, + . . .  + a = o(r 

This is Theorem 3 if our previous paper a), with k --- o. The  conclusion is true 

afortiori if a satisfies (2 . I I ) .  

LEMMA 2 . I 2 . -  If ~-a is summable (B) to sum s, and s satisfies (2 . I I2) ,  then 

2 1 / ~  - ~  e-.~l~ s,,+~ ~ s, 

when e" "*'-> oo by integral values. 
It is to be understood that s,,+~ = o when the suffix is negative. 
We have 

s = e-~ ~-s : . o  s. 
"~-o " n !  

2 . I 2 1 )  

We write 

(2.~22) s = e-~ + = s + s~ + s~, 
(~--H)F (~ )~. 

say, H being a constant, positive, irrational, and less than unity. Then  we can find 
a positive constant 8 such that 

(2.~23) S, = 0 ( : %  S, = O(e -~') '). 
Thus  

H~ 

(2.124) S~ --- e-~.n~s~+,~ (h ~b+F + e - ) l  ,,--,- s. 

Now it is easy to deduce from STIRLING'S Theorem that 

(2.I2S) 

uniformly for - -  H e. ~ h ~ He.. 

a) loc. cit. x), p. 8. 
4) Ior tit, 1), p. 6. 
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where 8 is a positive constant; and 

$ 3 ~  0 h e -1'~/2~ 

) = 0 l/xe-~2n~dx 
(2. I282) I* 

_.._ --.3, 2 

= O(e-%. 

From (2.I27), (2.I28), (2.1281) and (2.1282) it follows that 

(2.129) S ~ s. 

This completes the proof of Lemma 2.12. 
LeMMA 2.13. --Suppose that f ( x )  is the continuous function of x defined by the 

equations 
(2.13II) f ( x )  - -  s -1-- (x - -  n)(s+, - -  s )  

(2.1312) f ( x )  ----- o 

Suppose further that ~ a is summable (B) to sum s, and that 

( 2 . I I I )  a n " - - -  O ( I ) .  

Then 

e-':z~xf(t + x )d t  ~ s 

( n i x / n +  i), 

(x < o). 

(2.I32) 1 / ~  
a S  X ~,--> Oo.  

We have already proved that 

I (2.i33) s 

when u. ~ ~ by integral values. We shall prove first that (2.133) may be replaced by 

I f f  (2. I34) t/~,~8 " =e-'=n~ s(t + l,.)dt ~ s, 

where s(x) is the discontinuous function which is equal to s when n ~ x  < n - } - I .  
To prove this we observe that the difference between the left hand sides of (2.I33) 
and (2.I34) may be written in the form 

I /*h+~ 
(2"I34I) ~ - /  (e-~/~"--e--m=t~)s(t-[- ~) dt; 

--oo J b  

and that s(t-A V ~) is of the form o(1/~) or oO/t-), according as ~. or t is numerically 
the greater, and so in any case of the form 

+ o(r 
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Also 

(2.I342) 

and 

(2.1343) 

' _L_  5 -  , - ,-'%o(VT)a, 
( [ I ,o t) ---o\7;-]_[tie-*'h'd~,. -~ o(I),  

1/2~ 7 -• (e -h2i:~ __ e-':&')o(1/-i-)dt 

_ !  

= o(t* ~) = o(i).  

Hence (2.I34i)  tends to zero, and (2.I33) may be replaced by (2.I34) . 
Secondly, (2.I34) may be replaced by 

E I e-'='27( t -I- ~.)dt ~ s. (2.i3s) t / ~  

For the difference of the left hand sides of (2.I34) and (2.I35) is, since a,, = o(i) ,  
of the form 

(2.~35~) o = o 0 ) .  

Finally we may replace the integer ~. in (2.I35) by a continuous variable x. For 
suppose that 
(2.I36) x --- V- --I- 0 (o < 0 < i). 
Then 

+ v.)dt --  c'~=7(t + ,Odt 
_ o0 

== + ~.) - - f ( t  + x)}dt 

+ . f [ (e  -'=/=~ --  e-"l=*)f(t + x)dt  
(=.I360 

, . 

i 

= o(r  + o(r + o(v. ~) 
=0(r 

Hence (2.132) follows from (2.I35) . 
2.21. So far we have never used the full condition (2.1I): the hypothesis that 

a = o(I)  has been sufficient for our needs. It may be inferred that we have still to 
face the main difficulty of the problem. This difficulty lies in the proof of the lemma 

which follows. 
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LEMMA 2 . 2 I . -  Suppose that [(x) is a real continuous function of x, with a deri- 
vative f ' ( x )  continuous except at isolated points. Suppose further that 

O (  ~ ) (2.211) f ' ( x )  = f x  = . 

Finally suppose that the relation 

(t + ~)dt ~ s 

holds for some positive value of a. Then (2.2x2) holds for all greater values of a. 
We shall prove first that 

( 2 . 2 1 3 )  f (x)--"  O ( I )  8). 

We have 

1/-f) a _ata/x s + o( i)  - -  f ( x )  = ~ n t- x) - - f ( x ) } d  

(2.214) = r  f - , ~ ~ ,  _~ + f,~,~ + f~), 
�9 = J , + L + L ,  

say. It is easy to prove, as in the proof of Lemma 2.I2 6), that 

(2.21s) L = 0(e-% l~ = O(e+). 
But, if - -  H x  < t ~ Hx,  we have 

(2.216) 

and so 

(2.217) 

Hence 

( 2 . 2 1 8 )  

(2.219) 

2.22. Let 

(2.221) 
so that 

(2.222) 
Further, let 

( 2 . 2 2 3 )  

f ( t  + x ) - - f ( x ) =  f '(u)du = O w x  I , ~'x 

L = o  7 -  I at = 

s + o(i)  - - f ( x )  -= 0 ( i ) ,  

f ( x ) - -  0 ( I ) .  

F(x)  = f ( x )  - -  s, 

I f  17; e-"'XF(t + x )d t=~ 

CXI ~ ( t= ) n ~-  ~= e F(t  -+- x)dt,  L ( x )  = f -o,.x 

s) It would be sufficient for this purpose to suppose the left hand side of (2.212) bounded. 
6) See 2.i28t and 2.I282. 

Rend. Circ. MaIem, Palermo, I. XLI (t916).--Stampato il =8 giugno 19x6. 
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where n is zero or half a positive integer. Since F ( x ) =  0(I)1 we have 

(x .... ~/?-"'2/<t2"dt) = 0(I). (2.224) I ( x )  = 0 _ 

We shall now prove that (2.224) may be replaced by 

(2.225) In(x ) --- 0(I) .  

It will be well to point out explicitly that the argument by which this transition is 
justified contains the kernel of the whole proof of Lemma 2.2 and of our main theorem. 

2.23. Suppose first that n ~ o. We have 

--n--if o~ 
(2.231) ~,(X) -= X ~ e-"-Ixt2"F(t n t- x)dt 

3 / : e - a l 2 ] x  d[ ( I ~ .... : f,, 
l '(x)--" dx - - -  \n + T j x  _ F(t @ x)dt 

(2"2-32) "JC" ax r F(t -t- x)dt 

+ x - - :  e-~ + x)dt '). 
tl--r 

Also 
n i _foo 

x e-~'~/~f"f'(t -.{- x)dt 
ml--oe 

- . - i f  ~ ( 2 . 2 3 3 )  --" - -  2nX e-"'=/*t ..... f ( t  @ x)dt 
~--oo 

3 tlo~ 
+ 2ax-"-:lfa'=/*t., ..... F(t + x)dt, 

by integration by parts. Substituting in (2 232), we obtain 

n +  i 
r =-2 i I + =  7 2 a  I a I 

" _ _  - + -  x l / x , , + :  + x  . . . .  

(,) o(,) 
= 

and it is plain that a repetition of this argument will lead to 

o(I) 
7) There is no dit:ficulty in the differentiation under the integral sign: all the integrals concerned 

are absolutely and uniformly convergent. 
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We have therefore 

for all positive values of n. 

Secondly, suppose that n --- o. Then it is easy to see that (2.234) must be re- 

placed by 

(2.237) I' ----- - -  I 2 a I+ a o 2 ~ 4 + ~  + x I , ,  

and so that the relations (2.236) are true even when n - - o .  

2.24. Suppose now first that n - -  o. 

Then 
(2-241I) 
by (2.222), and 
(2.2412) 
by (2.236). Hence 8) 

(2.2413) 

(2.242) 

Io = o(I), 

x':" = O(x) 

~ro= oO/;) r ( ~ 1  , o " - - ' 0  . 

But we have, from (2.237), 

t 2 a I' I a Vx I+ = o + ~ ~o - --~,x 

(+) (+) (2) = o  + 0  + 0  = o  , 

and so 

(2.243) Ix = o(0.  
2 

I Thus (2.225) is established when n = 7 �9 

But it is,fairly obvious that this argument may be repeated. We have now 

(2.244I)  ] ----- o ( i ) ,  x=I', ' - - -  O ( x ) ,  
g 2 

and therefore 

(2.2442) x I ;  ----- o(1/x), 
2 

Hence, using (2.234), we have 

(2.245) 

I t - - - 0  

2 

---0 

"- - '0  

r _ ~ r o  - -  - 7 -  

(§ ~7 +o ~7 +o + o  

~, = o ( 0 .  (2.246) 

s) 1or tit. ~). The Theorem used here is Theorem 6, with f =  Io, ~ = i, ~ = x ,  r =  2, s = I. 
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And we need only repeat this argument indefinitely in order to complete the 

proof of ( 2 . 2 2 5 " )  . 

2.25. We are now in a position to complete the proof of Lemma 2.21. 

Suppose that a is a positive number not greater than a. Then 

(7) .... /Ty+ - -  e. -~tt2/x 

where o ~ a' ~ ~. We have therefore 

( 2 . 2 5 2 )  

where 

( 2 . 2 5 2 1 )  

['~e-'~+a'mxF(t-t- x ) d t - -  ~ ( -  x-)~8~I r  j_~ " o ,, ! ~ (x) + p, 

K a~+' l'~e_O,=~t=,,+=at 
X 

_ / ~ \, ,+x f .~  = 
K e -'~' w ~+~ d 

r(n + } )  IC 
K r(, ,  + 2) < 1/~'  

and so ? tends to zero as n ~ % uniformly in x. 
Thus 

r 1 7 6  + x ) a t  = 5- ( -  Ua~L(x). (2.25.3) t?~ ~ o ~ ! 

The series on the right hand side is uniformly convergent in x, say for x "-. Xo, 

and each of its terms tends to zero as x ~ oo. It follows that 

(2.254) ~ f~._~o+,,,=,x... + x)at = o(0. 
ooC .f" ~l, 

Thus (2.222) remains true when we substitute for a any number between a and 

2a  inclusive. As this argument may be repeated, it holds for all values of a greater 

than the original value. Hence (2.212) also holds, and the lemma is proved. 

2.3. Theorem 2.i is an easy deduction from Lemma 2.21. We have 

(2.30 

~ f a _at=/x ~ /  / e f ( t + x ) a t - f ( x )  
V "axd_= 

- -  | /  a f e_o,=/,{j(t nt - x ) - - f ( x ) } d t .  
y r~X  d_~ 

N o w  

,J~lF'+xf' (u)du xyKJtJ (2.32) If(t "d c X ) - - f ( x ) l - - - I I  < ,---=- 
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Hence 

(2.33) 

7 =e-~'=/~f t - - f ( x ) ]  

K~a/L~e-="/~ [dr 
K 

if a is large enough. If now we make x ~ 0% we obtain 

(2-34) lim [s - - f ( x ) [ / ~ ,  

for all positive values of ~, so that 

(2.35) f ( x )  ~ s. 
It follows that 

S ~ S ; 

and the proof of Theorem 2.1 is completed. 

A n e w  m e t h o d  o f  s u m m a t i o n  a n d  i ts  r e l a t i o n s  to  Bore l ' s  m e t h o d .  

I. 8. THEOREM 2.1, is a generalisation of Theorem I of our former paper on 

BOREL'S method. It is naturally suggested that Theorems 2-5 of that paper are suscept- 
ible of similar generalisation. We shall content ourselves with stating that the gener- 

alisations thus suggested are in fact true, and with mentioning explicitly two of the 

most interesting of them, viz., 

THEOREM 3 . 1 1 . - - I f  ~ a  is summable (B), and a = 0 ( i ) ,  then ~-a is sum- 
mable (C, x). 

THEOREM 3 . I 2 . -  If  ~-a is summable (B), and a = -  O(x), then s, = o(l/n). 
We may remark tlmt Theorem 3.12 may be deduced from Theorem 3.ii  by 

using Theorem II of our paper quoted in note ~). 
8.2. We take this opportunity of correcting an error in the footnote to p. IO 

of our former paper. It is stated there that the equation 

gives a sufficient condition for the summability of ~ - a  by BOREL'S method. It is 

easy to show that this statement is false. 

Suppose that Y a H  -s is an ordinary DIRmHLET'S series which represents a func- 

tion f ( s ) - - f ( r  + it) regular and of finite order for all values of a. The series is 

9) We write A instead of s, as we are about to use s in a different sense. 
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then, in virtue of a theorem of BOHR ~o)~ summable by CES'~RO'S means all over the 
plane. We have therefore 

k!s~ ~ - f ( s )  + 0 ( I ) ,  
(3 .2 I I )  n k 

where k is a number which depends upon s. 
Let us denote by ? CESkRO'S mean of order k formed from the series 

an n-S. 
Z b n-' = Z i/7 

It is easy to deduce from (3.2I I) that 

"" ( - - ; ) ( ; )  " '" kV? __f  s + + o 
(3"213) n k 

It follows that, if the theorem suggested is true, then the series S - b  n - ' ,  and there- 

fore the series Y a n  -~, must be summable (B) all over the plane. 
But there are DIRmHLET'S series which represent functions regular and of finite 

order all over the plane and which are not summable (B)a l l  over the plane. For 
example the series 

I - ' + o + o +  . . . .  8 - ' + 0 +  . . .  + 2 7 - ' + o  + . . .  

represents the function 
_ (3 0, 

and is summable when, and only when, it is convergent, i. e. when a ~ o 12). 
The suggested theorem is therefore certainly false. 
The theorem is true when k ~ I ia), and the correct generalisation is as follows. 
THEOREM 3 . 2 . -  I f  

(3.2i)  (k + O 'sk§ ( ~ )  nk+~ " - -  A - J -  o 

then BOREL'S integral 

is summable (C, k), i. e. 

(3.22) 
aS X ~a. oo. 

foo ~ a xn e-X ~ _ . ~ d x  
n! 

k!x' ( x - - t ) k e - ' Z n y d t  ,,.-~A 

zo) See G. H. HARDY and M. RIESZ, The general Theory of DIRICHLET'S Series [Cambridge Ma- 
thematical Tracts, no. x8, I915], p. 56. 

1~) We cannot quote any general theorem of which this equation is a direct corollary: but the 
materials necessary for the proof will be found in our paper (( Contributions, etc. ~, Ioc. cit. 2), 
pp. 432 et seq.. 

,2) G. H. HARDY, The Application to DIRICHLET'S Series of BOREL'S exponential Method of Sum- 
mation [Proceedings of the London Mathematical Society, series 1I, vol. VIII (I91o), pp. 277-294]. 

la) G. H. HARDY, Researches in the Theory of divergent Series and divergent Integrals [Quarterly 

Journal, vol. XXXV (i9o4), pp. 22-66], p. 4o; T. J. I'A. BRolviwlc~, Infinite Series, pp. 319-322. 
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We shall be content to sketch the proof of this theorem. We may suppose without 

loss of generality that A = o. Then 

? s ~ (u'~+~ ,o+~ , + ' " +  = 0  ); 

and it is easy to deduce successively 

I ~k Sl " I - - - O  1 
7 ( ~  ' + (n + 

S k X n 
e-X E " 

(~ + i) ~ n! ~ ~  

Xn+k 
e~X Z S~ "(n + k)! ~"  o. 

The last formula is equivalent to  (3 .22 ) .  

3.3. The work of section 2 suggests sonle new definitions which seem to us 

likely to be of considerable use in the theory of divergent series and integrals. We 

shall say that the series ~ -a  is summable (E, a) to sum s, or that 

if 

(3.3 I) 

Similarly we shall say that 

s ~ s (E, a), 

i f  

Sb+~. " - - "  S. 

f ( x )  ~ l (E, a) 

~.--~. ~ _ ( t  -[- ~)dt  - -  1 ,4) 

The properties of these definitions are, in so far as series or integrals near to 
the boundary of convergence are concerned, very similar to those of BOREL'S method. 
In particular the c~ TAm3erdan ~) properties of the definition (3.31) are the same as 
those of BOREL'S method. For example we have. 

THEOREM 3 " 3 . - - I f  (3.31) is true, i. e., if ~-a,, is summable (E, a), and 

, = 

then ~-a .  is convergent. 
8 4. BOREL'S method has however a peculiarly intimate connection with the method 

of type (E, ~). This connection is expressed by the following theorem, the proof of 

which is contained implicitly in the analysis of section 2. 

~4) It is to be understood that sl,+t , = o  when h - { - ~ < o ,  and f ( t + ~ ) = o  when t @ ~  is 

less than some fixed number. 
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THEOREM 3 " 4 " -  Suppose that s . 
limits 

(3.411 ) 

(3 .4  I 2 )  

(3.413) 

-~-o(1/n). Then the existence of any one of the 

r X n 

lim e-~o s,, n! ' 
x b~,.-).oo 

lira I s -~ :m, 
p.~..~,o . [ 1 2 - - ~  [~ " _~ e sh+l~ , 

l i m -  ~ I  ['=e_,,/~t s (t -]- ~) d t, 

where s(x) is the discontinuous function defined in 2.I, involves the existence of the re- 
mainder and the equality of all. In this proposition it is indifferent whether x or ~, tends 
to its limit continuously or by integral values. 

The condition s - -  o(1/n) is certainly satisfied if any one of the limits exist and 
%, ~ o(I).  And then the existence of any one of the limits (3.4II)-(3.413) implies, and 
is implied by, the convergence of BOREL'S integral 

X n 

(3"414) f e - X ( Y a " n ! . )  dx' 
or the existence of the limit 

(3.415) ~,..~ ~ - - - ~ l i m  I f_~e-~2/2~f(t + ~)dt, 

where f ( x )  is the continuous function defined in 2.1. 
3.5. We add a few remarks as to the relations between definitions of the type 

(E, a) corresponding to different values of a. We proved in 2.2. that, when 

( 2 . I 0  a~ = , 

summability (E, a) for a particular value of a implies summability for any larger 
value of a; and in 2. 3 that this implies convergence. Now it is easy to prove that 
these definitions obey the ~( condition of consistency % i. e. that any convergent series 
is summable (E, a) for any positive value of a. We see thus that, when (2.11) is 
satisfied, all methods of the type (E, a) are equivalent and will sum convergent series 
only. But this is not a sufficient account of the matter. 

Suppose that s = o, so that 

(3.5i) (t Jr- x )d t  -= 0(I).  

Putting 

l/I (342)  t = u  2 a =  

we obtain 

1/- (3.33) [ e-"2"Xs(u + x)du=oO). 
X d_oo 

Let us suppose, for simplicity, that ~ is an integer k. When k - -  I our method 
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is, at any rate when a - - o ( I ) ,  equivalent to BOREL'S. When k ~ I it is equivalent 

to the method which consists in applying BOREL'S method to the subsequence s~ .  

Now s,, ~ 0 implies &,,, ~ o, while of course the converse implication does not hold; 

and it would be natural to expect the same to be true when the limits are taken in 

BOREL'S sense. It would therefore also be natural to expect that the truth of (3.53) 
for a given ~ should involve its truth for a larger (but not for a smaller) ~ either 

without any restriction on a or at any rate under some condition less narrow than 

the {c TAUBZRian >> condition (2 . I I ) ;  in a word to expect the inference from a smaller 

to a larger = to be of an <{ ABeLian >> and not of a (< TAUBERian >) characte. And so 

we should expect the inference from sumnaability (E, a ) f o r  a given a to summability 

for a smaller to be {{ ABeLian >>, tO be valid at any rate under a wider condition than 

the condition (2 . I I )  required for the inference to a larger a, and to be of a less subtle 

character. 
We shall see shortly that this conjecture is justified, and that the inference from 

a larger to a smaller a bolds at all events wbenever a,, = o( I ) .  We have however 

no direct proof of this assertion; our proof is indirect and depends on the methods 

of summation considered in the next section. 

T h e  " c i r c l e  ,, m e t h o d .  

4.I. We shall conclude this paper by giving a short account of the results of 

some researches which started from a suggestion made to us in ~912 by Dr. MARCEL 

RIESZ. 

Suppose that the series 

(4 . I I )  f ( x )  -~- Y a,, x" 

has unit radius of convergence, and that 

( 4 . 1 2 )  f ( x )  = f ( T - I - Y )  - ~  Z , , ( v - [ -  ' = ~-  , , J ,  
so that 

b 
(4 "13) ~_2 2" 

is the TAVLOR'S series for f ( -~  -{- { ) ,  i. e. tile series obtained by putting y - -  -~ in 

the expansion of f ( ~ - +  y ) .  Then Rmsz's suggestion was that the hypotheses ( i ) t ha t  

Y a is summable (B), and ( i i )  that the series (4.13) is convergent, are equivalent, at 

any rate under fairly general conditions as to the order of a .  

We have succeeded in proving, by the use of some ideas already used in sections 

2 and 3, that this very beautiful theorem is true whenever s = 0(l/n), and in par- 

ticular whenever a ~- o( i ) .  We propose now, however, to give a proof not exactly 

,Rend. Circ. Matem. Palermo, t. XLI (1916). --Stampato il Io luglio x916. 7 
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of RIESZ'S theorem, but of another theorem in which the central idea is exactly the 
same and which differs from R~Esz's only in certain formal respects. 

4.2. Suppose that 
(4.2~) s (~ )  = 2 a, e-"~ 

is convergent for all values of y whose real part is positive; and consider the series 

(4.22) ~- b X- ( -  k)" F(,, , (k) 

which we may denote symbolically by 

(4.22I) F(k  - -  k). 

Then, if (4.22) is convergent, we shall say that __~ a is summable with radim k. 
Suppose that this is so, and that the sum is s. Then 

(4.23I) lira @ k" ~- - -  a n m e - h n  

, ~ 1 ~ - ~  z-a'o m ! o " - -  s ,  

o r  
M (k  n )  'n 

o~ e-"~ y s, (4.232) lira a - -  

o r  

(4.233) lim o~S,X e -k" (kn)'"t .,s), 
. , ~ . ~  -~dl. t = s 

o r  
i~(k+~)n t M 

(4.234) lira s / e-' 7/~r!- d t = s. 
M ~ ' - ~ ~  o ,tl ku 

This is the form of definition which we shall find it most convenient to adopt. 
It enables us to verify at once that out" definition satisfies the condition of consistency, 
i. e. that any convergent series is summahle with any radius k. More generally we 
have 

THEOREM 4 . 2 . -  A series which is summable with radius k is sammable, to the 

same sum, with any smaller radius. 
This theorem is plainly equivalent to that which follows ,6). 
THEOREM 4.21.--Suppose that the series 

f ( x )  = Y anx" 

is convergent at a point x o on its circle of convergence, and that o ~ z ~ I. Then the 

TAYLOR'S series for 

vi~., 

is also convergent. 

f J ~ x  o Jr- ( I  - -  ~)Xo}, 

f(") (~ Xo) ~ x " 
3- n~ l 0  - -  ) ,,} = Z bo/(I - -  "-)Xo}" 

(k > o), 

xs) We write u, ,  - -  u +~ ~ A u , .  

~6) We do not claim this theorem as new:  it is certainly contained implicitly in earlier writ ings;  

but we do not remember having seen it stated explicitly. 
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We may suppose without loss of generality that x o - -  I. 
Then 

(4.24) t = [ O + ( I  - -  ~ ) b  + . . .  + (1 - -  o()nbn 
is equal to the coefficient of y" in 

~ _ ~ _ y - 5 - . y -  ~ _ y  - z _  + y Y  

= l(~ - -  ~)"+~ - -  y"+~} }-- s (~ + y)" ,  
(4.25) 

and so 

(4.26) t" ---~ (I -- ~)"+~ Is" + (n "~- I)~'s"+' @ (n + I)(n -{- 2) ~* I 
1.2 S"+2 + ' ' "  " 

The theorem is a straightforward deduction from this identity. 
4.3. The ~( circle, method of summation is related in a very simple manner to 

the method defined in section 3- 

THEOaEM 4-.3. - -  5.ppose that s = o(t/7). Then summability with radius k implies 
summability (E, '=k), and conversely. 

The proof of this theorem is so much like that of Lemma 2.12 that it will not 
be necessary to do more than summarize its general lines. 

Suppose that ~ . a  is summable with radius k, and that its sum is zero. Then 
pkb,+,) t M 

(4.3 I) Z s t e-'- --dt = o(i), 

when M ~ oo by integral values. Suppose now that 

M 
y = ~. = [~] + ~ = m + ~, 

and n = m n  t-h, where b, as in 2. b ranges between - - H  e . so that o ~ v  ~ I, 
and HF.. 

Then 
/~k(m+lJ+~) tkp. f~ 

(4.33) Jk(.,+,,) e-'--(k~)! d t = k..o e-k(m+"+~' kkF(m (k ~'.)l + h --}- ~)kF d~. 

But it is easy to deduce from STIRLING'S Theorem that 

(4.34) e_k,,.+h+,)kk~(m + b--~(k~)l ~)kF -- r lI + 0 ([~a )l , 

uniformly for o ~_~ ~ ~ I and o ~ ~ / i. It follows, by arguments similar to those 
used in the proof of Lemma 2.12, that 

(4.3s) - k  Y e -~"'~s~+m = o(i), 
- - o o  

and hence that Z a is summable (E, ~ k ) t o  sum zero. 

A similar argument suffices to prove the converse proposition. 
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If in particular we suppose that k .= I, we obtain 
THEOREM 4 . 3 I . - - I f  a = o(I) ,  then the existence of a~ty one of the limits speci- 

fied in Theorem 3.4 implies, and is implied b),, the summabilit), of the series ~-a with 
radius I. 

4.4. The summability of a series by BOWEL'S method is therefore equivalent to 
its summability with radius unity in all cases in which a = o ( x ) ,  and implies (though 
it is not necessarily implied by) its summability with any lesser radius. 

We have also: 
THEOSEM 4 " 4 . -  The system of TAUBERian theorems which holds for the ~c circle >~ 

method of summation is the same as that which holds for BOSEUS method or for a method 
of type (E, a). In particular, if a series 5 - a  is summabIe by the circle method, then 

(i) the condition 

implies convergence, and 
(i i) the condition 

implies summability (C, 1)7 and 
(i i i)  the condition 

implies 

= 

a = o(1) 

a = 0 ( i )  

s, ~ off/n). 

The proof of these theorems involves no difficulty beyond that implied in an 
adaptation and rearrangement of arguments used already; and the same applies to 

THEOREM 4.4 I. (R1ESZ'S Theorem).--If a , , - - o ( I )  then the summability (B) of 
~- a implies, and is implied by, the convergence of the series for f(-~ + y) when y = - ~ .  

4.5. We conclude with a few miscellaneous remarks. 
(,i) We asserted at the end of section 3 that summability (E, a) for a particular 

value of a involved summability for any smaller a whenever a --- o( i ) .  The truth 
of this assertion follows now from Theorems 4.2 and 4.3. 

(ii) The analysis employed in the proof of Theorem 4.2 suggests yet another 
definition of the sum of a divergent series viz., as the limit of 

1.2 ~ sn+2 + " ' "  ) 

where ~ is any number between o and i. The properties of this definition would 
naturally resemble those of the other definitions which we have been discussing. 

(iii). The (( circle ,) method may be generalised by supposing that 

F ( y )  - -  Z a n e  -kny 

where () , )  is any ascending sequence which has the limit oo and is such that the 

series is convergent for all values of y whose real part is positive. The (, sum >~ of 



THEOREMS CONCERNING THE SUMMABILITY OF SERIES BY BOREL~S EXPONENTIAL METHOD. ~ 

~ - a  is then again defined as being the sum of (4.22),  or  as 
pXn+~ t M 

lira ~_s ~ e - 'MTd t .  
M~,.-->~- nd)~n 

The definition reduces to that already considered when ) ,  is a constant multiple 
of n. These methods are connected with those used by Rtnsz w) for effecting the 
analytic continuation of a function represented partially by a DI~ICHLET'S series. 

The , TAUBERian ~ condition which corresponds to a,,-----o is now 

a n ~ 0 n -~  . 

(iv) It is of some interest to find a theorem which shall enable us to infer the 

summability (B) of Y - a  from the properties of the analytic function f (x ) .  The fol- 
lowing theorem, which we state without proof ~), was found independently by RIESZ 
and by ourselves. 

THEOREM 4"5" - - I f  ~__.a,x ~ is a power series whose radius of convergence is unity, 
and the function f(x) which it represents sati.~es the condition 

I f ( x ) - - s  I < A l l  - - x ]  ~, 

where ~ ~ o, at all points inside a circle which lies inside the circle of convergence and 

touches it at the point x =  I, then ~-a is summable (B) to sum s. 

Cambridge, September 1915 . 

G. H. HARDY. 
J. E. LITTLEWOOD. 

iT) M. RIESZ, Sur la representation anatytique des fonctions ddfinies par des siries de DIRICHLET 
[Acta Mathemafica, t. XXXV (x912), pp. 253-270 ]. 

x s) The proof depends on considerations of function theory and difiers entirely in character 
from those given in this paper. 


