
Some problems of 'Partitio Numerorum': 
IV. The singular series in Waring's Problem 

and the value of the number G (k). 
By 

G. H. Hardy in Oxford and J. E. Littlewood in Cambridge. 

1. Introduction. 

I. 1. In this memoir we continue the investigations initiated in two 
earlier memoirs bearing a similar title, and complete the proof of all the 
assertions which they contain l). We shall assume throughout that the 
reader is acquainted with the notation and terminology of these memoirs. 

The fundamenta] theorem of Hilbert s) asserts the existence of the 
numbers g(k) and G(k). In our first memoir we proved that, if 

1 2 k - l ,  1 a = ~ - ,  K =  ~ . = 1 - - ~ - ,  a > 2 K  .~-1, 
then 

(1. 11 ) rk. , (n )  --= O n  ' ' - x  S -~- O ( n " " + ' ) ,  

where S is the 'singular series" 

1) G. H. H a r d y  and J .E.  L i t t l e w o o d ,  Some problems of 'Partitio Numerorum': 
I. A new solution of W a r i n g ' s  Problem, G6ttinger Nachriehten 1920, S. 33--54; 
II. Proof that every large number is the sum of at most 21 biquadrates, Mathe- 
matisehe Zeitschrift 9 (1921), S. 14m27. 

The third memoir of the series (Some problems of 'Partitio Numerorum': III. On 
the expression of a number as a sum of  primes) will appear shortly in the Acta 
Mathematics. The problems Considered in this memoir are of a somewhat different 
character. We refer to these memoirs as P. N. l, P. N. 2, P. N. 3. 

"~) D. H i l b e r t ,  Beweis f/it die Darstellbarkeit der ganzen Zahlen dutch eine 
feste Anzahl n-ter Potenzen, G~ttinger Naehrichten 1909, S. 17--36: reprinted with 
certain changes in Mathematische Annalen, 67 (1909), S. 281--300. 

Mathematische ZeitschriR. XII. 11 
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The sum of the Series is positive, and indeed greater than ~ if 8 is 5, 
sufficiently large; and sa~ ~ sa  -- I if s ~ k K .  Thus 

(1. 13) r~. , (n )  ~ C n ' a - l S ,  

as n - ~ o o ,  for all large enough values of s, say for s ~ G l ( k ) ,  It  is 
plain that H i l b e r t ' s  theorem follows as a corollary. 

I m p o r t a n t  simplifications of our method have been effected by 
L a n d a u  8) and Weyl4). These improvements relate to our treatment of 
the 'major arcs'. In particular Weyl  has shown that, if we are concerned 
with an existence theorem only, so that it is not important to obtain 
the best possible upper bound for G(k), the rather difficult analysis 
which we used may be replaced by an argument of a much more elementary 
character. 

We proved nothing in this memoir about the values of G1 (k) or 
G(k),  though our analysis suggested very forcibly that 

(1 .14)  a(]r ~ al(]~ ) ~ k K ~ -  1----s o. 

In Order to prove this it is necessary to examine the singular series more 
closely, and to prove that 

(1.15)  ~ > o =  a(k ,  s) > 0 

for s_~s  o. This would be sufficient; but in fact, as Herr Os t rowsk i  
has shown~), the truth of (I. 15) for s = s o will involve 

(I. 151) s > o = o(k)  > 0 

(the value of o being independent of s) for s ~ s o. In our second me- 
moir, however, we ei~ected an improvement in (I. 11), showing that 

~- Once-18 -F O(n ~'-~)~+~+') (1.1O) r~ . , (n)  ~ 

(a better result if only k > 2). If now we can prove that (1.15), and 
therefore (1. 151), is true for s >~(k --~2)K -F 4, we shall have proved that 

(1.17)  a ( k )  ~ (~, (k) ~ (/c -- 2 ) K ~ -  5. 

This we proved before when /r 4, in some ways the most interesting 
case. I t  is the general proof of (1.17) that is our primary object now. 

s) E. Landau, Zur Hardy~Littlewoodschen Liisung des War ingschen 
Problems, GSttinger Nachrichten 1921, S. 8~--92. 

4) H. Wey l ,  Bemerkung zur Hardy-Littlewoodsehen LSsang des Waring- 
.~chen Problems, Giittinger Nachrichten 1922. 

5) A. Os trowsk i ,  Bemerkung zur Hardy-Littlewoodschen IAisung des 
Waringschen Problems, Mathematische Zeitsehrift, 9 (1921), S. 28--84. We return 
to this �9 in w 6. 3. 
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Our principal theorem then, will be: 

T h e o r e m  1. There is a positive number a ~ a(k,  s) such that8 ~ 
for s - 2) K 5,  so that 

. ( n )  6'n'"-  ,S 

for all such values of s. In  particular, r~,~(n) is positive for all such 
values o/ s and all sufficiently large values of n, so that 

a ( k ) < ( k -  

1.2. We have in any event to undertake a detailed examination of 
the singular series; and we shall push our analysis a good deal further 
than is necessary for our immediate purpose. We do so primarily because 
the analysis is interesting in itself. ,But it must be remembered also 
that the inequality ( 1 . 1 7 )  is, in all probability, far short of the actual 
t ru th .  I t  is not unlikely that  the order of the error term in (1 .16 ) , .  
which is the  obstacle to further progress at  present, may before long be 
materially reduced. The discussion of the singular series, for values of s 

smaller than those contemplated in Theorem 1, will then become e[ 
immediate importance, as every improvement in (1. 16) will give a 
corresponding improvement in the value of G(/r 

I t  may be useful if we summarise at  this stage the existing state of 
knowledge as regards the values of g(/r and G(/r This is exhibited in 
the following table. 

k= 

�9 g(k)< 

g(~)>  + 2 k - 2 =  

G(~)< 

G(k)__< (k -2 )2~-1+5  = 
a (k) > 

2 

4 

4 

4 
(5) 
4 

3 

9 

9 

8 
(9) 
4 

4 

37 

19 

87 
21 
16 

5 

58 

37 

58 
53 

6 

' 6  

478 

73 

478 
133 

9 

7 

3805 

148 

3806 
325 

8 

8 

31353 

279 

81353 
773 
32 

The numbers in the first line are the upper bounds for g(k) which have 
been obtained by. elementary arguments, and are due in order to 
Lagrange,  Wiefer ich ,  Wieferich,  Baer, Baer, Wieferieh,  and 
Kempner respectively~). Those in the third line are the corresponding 

6) The names ~re those of the authors who found the actual numbers quoted. 
The proofs of 'War ing ' s  Theorem' for the cases in question are due to Lagrange ,  
Maillet,  Liouvi l le ,  Mail]et, Fleck, Wieferieh,  and Hurwi tz  (and Maillet) 
respectively. For detailed references see A. J. Kempner ,  Uber das Waringsehe 
Problem und einige Verallgemeinerungen. Inaugural-Dissertation, Giittingen 1912, 
and W. S. Baer, Beitr/~ge zum Waringschen Problem, Inaugural-Dissertation, 

11" 
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upper bounds for G(k), and are identical with the numbers iz1 the first 
except when k =  3. The inequality G(3)__< 8 is due to L a n d a u : ) .  

Tile fourt!l line contains the upper bounds given by Theorem 1. It  
will be observed that the numbers for k = 2 and k = 8 are inferior to 
those already known, but that there is a very substantial improvement 
for all larger values of k. 

The second and fifth lines contain the best known .lower bounds for 
gt k) and (7(k) respectively. I t  was observed by E u l e r ,  and later by 
B r e t s c h n e i d e r S ) ,  that the number 2~1 "---1, where l is determined by 

3 ~ = 2 k / - ~ - m ,  0 < m < 2  k, 

requires 1-+-2 ~--  2 powers; a n d t h i s  observation gives the numbers 
tabulated. The numbers 4, 9, 19 axe mentioned by W a r , r i g ,  but there 
is nothing to show that he had recognised the general law% 

The numbers in the fifth line are more interesting and require further 
explanation. I t  was proved by H u r w i t z  10) and M a i l l e t  11) that 

a ( k ) _ >  k~-  1 

for every k; and in some cases, e.g.  for k ~  3, 5 and 7, no more than 
this is known. 

In other cases it is possible to prove a good deal more by the 
consideration of simple congruence relations. The simplest ease is k--= 4. 
Every biquadrate is congruent to 0 or to 1 to modulus 16, so that  a number 
16m ~-p-15 requires at least 15 biquadrates. Thus (as was observed 
by L a n d a u )  G(k)> 15, and K e m p n e r ,  considering numbers 16 ~. 31, 

GSttingen 1.ql3. The numbers for k= 7 and k = 8 could no doubt be substantially 
reduced. 

Proofs of the existence of g (k), from which an upper bound for g (k) vould be 
calculated, have also been given for k= 10 (I. Schur), k= 12 (Kempner)  and 
k ~= 14 (Kempner) .  

7) E. Landau,  I~ber eine Anwendung der Primzahltheorie auf das Waringsehe 
Problem in der elementaren Zahlentheorie, Mathematische Annalen, 66 (1909), 
S. 102--105: 

~) Sec Kempner ,  Joc. cir., S. 44--~5. 
0) Waring asserts quite explicitly, not merely that g(k) exists, but that 

g(2)= 4, g (3 )=9 ,  g(4)= 19, 'et sic deinceps'. Nothing is known, so far as we are 
aware, inconsistent with the view that the numbers in question are the actual value~ 
of g (k) for every k. 

t0) A. Hurwitz ,  ~ber die Darstellung der ganzen Zahlen sis Summon yon 
n-teL" Potenzen gavzer Zahlen, Mathematiseho Annalen, 65 (1908), S. 424--427. 

~t~ E. Maillet ,  Sur la d6composition d'un entier en une somme de puissances 
huiti~mes d'entiers, Bulletin de la soci~t6 math6matique de France, 3{} (1908), 
p. ti~.1-77 
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where fl is large, improved this inequality to G ( 4 ) >  16. He also proved 
that G(k)_>_4k whenever k is a power of 2, and that G ( 6 ) ~ 9 .  This 
is the origin o~ the remaining numbers in our table. Again, every ninth 
power is congruent to 0, 1, or - - 1 ,  to modulus 27, so that a number 
27mA-13  requires at least 13 ninth powers: thus G(9)_~ 13. 

Considerations of this character concerning cubes lead only to the 
H u r w i t z - M a i l l e t  inequality; and when k=:  5 or k - ~ 7  the resulting 
inequalities are entirely trivial, for any residue to modulus 25 can be 
generated b y 3  fifth powers, and any residue to modulus 49 by 4 seventh 
powers. It will be found that these simple facts have a very interesting 
bearing on the structure of our singular series. 

~2.2i )  

for which 

(2. 211) 

We write 

(2 .22)  

Finally, we denote by 

(2.23) 

ae) p. N. 1, S. 40. 
'a) P.N. 2, S. 18. 
~4) p. N. 2, S. 22 (f. n. 7). 

2. The  f o r m a l  t h e o r y  of  the  s ingular  series.  

2.1~ The singular series is absolutely convergent for sufficiently 
large values of s, I-~) and is then expressible as an infinite product 

(12. 11) s = 1 + a.,  + a.., + .  . . . .  ~ . a q  = z-.z~z-, . . . .  nz:,, 
where ~ is a prime and 

V ,.~) (2. 12) Z = = I - ~ A  + A  ~-[- . . . .  ~ A . ~ .  

The sum ;~ is a finite sum, for A.,~. is always zero from a certain value 
of ~ onwards"). 

The question of the absolute convergence of the series and product will 
be discussed more precisely later. Our immediate object is to determine 
the form of the factors 7.,. 

2. 2. We suppose that q - - - - ~ - ( ~  1), and we denote by ,,(~,q, n) 
the number of solutions of tone congrenee 

2 '  x, ~ n  (,mod q) 

O__<z,.<~ 

~(g, q, n) = M(q,  n) g(q) . l : , )  

~v (q,,~) = lv(q) 

(r = 1, '2, . . . .  8). 

This will also appear incidentally later (S. 374). 
i.~) When it is unnecessary to show explicitly the dependence of M on n. 



(o> o), 

then 

(2.32) 

We have 
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the number of solutions of (2.21) for which 0 < x,. < q (r ~ 8), and for 
which not every x is divisible by a.  Such a solution we may call a pri- 
mitive solution. 

Following Landau, we write ' y l z '  and 'y  ~- z' for 'z is divisible 
by y'  and 'z is not di~sible by y'. We shall find it convenient, moreover, 
to have a special notation to express ' y r i z  , y~+l+z ' ,  i .e .  ,yr is the 
highest power of y that divides z'. In these circumstances we shall 
write 'yr [ z'. 

This being so, the value of Z.~ is given, in terms of the numbers N, 
by the following theorem. 

T h e o r e m  2. Euppose that 

(.2.24) k > 2 ,  ~ ~  ( 0 ~ 0 ) ,  (z~k)~[n ( f l ~ 0 ) , " )  

amt /et 

(2.25) ,p-----0§ (z~>2) ,  ~ p = 0 §  (z~----2). 

Then 

= o )  

where 

(2.2611) B = 0  (fl----- 0), 

(2.2612) B = 1 -{- ~z~-' § z~(k-*~ § z~ (p-I~-'~ (fl > 0). 

The proof of this theorem rests on a series of lemmas. 

2.3. L e m m a  1. I /  

q-----zP,, , t > 0 q - - 1  (z~>2) ,  , l > 0 §  (z~=2) ,  

(rood q). 

,e) (~ t )P[  n means, of course, ,-tPk I -n, n~+1)k ~_ n. Its meaning is different from 

that of x/~k[n,  which would mean ~#kl n, ~#~+!.[_ n. r 

k 

�9 k 

f ~ . O  q 

The terms r----0, 1 are those which occur in (2.32). 
Suppose then r _~ 2. The index of the .highest power of ~ that 

divides r! is 

§ §  <~-1 ."  
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Hence the r - t h  term is divisible by ~zc, where 

r : r - 2  c~.O ~-I ~-r(3--O--1)=2+'~-':"i-I r -F( r -1 ) ( ;~ -O-2 ) -2"  

e - - 2 ~ r - - l - - 2 ~ - - l .  In either case c - - ~ - - 1 ,  or c--~=>O. 

2.4. L e m m a  2: ,~A~(n)=z."(1-")M(:~.",n). 
) . = 0  

Writing, as usual, q--= ~ ,  we have 

A q = A q ( n ) . - ~ ( - ~ - ~  eq( .... np) 
\ " I 

=q-'Z Z 
Xl, X 2 , * . . ) x s ~ O  Xl, X 2 , . . . , X  8 

whe,.e x = ~ ' +  x~+ . . .  + x ~ - ,  aria ~ ( X )  is Ramanujan's ,um~') 

~,(x)= ~.(~,x). 
If 2 ~ 1 ,  

q = . ;  v . ( X ) = - - I  (x+X) ,  c.(X)-----.--1 ( . [X),  
and 

(2.41) A . . : . - ' ( X  ( -  1 ) - F X . )  - - . - , ( -  :z,-F.M(.))----.1-,M(:z)-- 1. 

If 2 > 1 ,  

~ ( x )  = . , - , ( .  - ~) (.~[ x) ,  

,._-,-,.(X(- ,,-,) 
zA-lix ,XlX 

x~. -~ ~:,. § ~,.,-,*-~ (o =< e,.< .~--~, o _<_ % < . ) ,  
If now 

we have 

and s o  

(2.42) 

Xr (rood ~-1),  

~1. G:tP" * .  a 8 

1~) See S. R a m a n u j a n ,  On certain trigonometrical sums and their applications 
in the theory of numbers, Transactions of the Cambridge Philosophical Society, 22 
(1918), pp. 259--276; G. H. Hardy, Note on Ramanujan's function % (~), Proceedings 
of the Cambridge Philosophical Society, 20 (1921), pp. 263--271: andP. N. 3. 
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The lemma follows from (2.41) and (2.42). As corollaries we have 

L e m m a  3: g.~ ~ 0. 

L e m m a  4: I /  n is representable in  a n y  manne~ as a sum  ~/ s 
['positive, negative,  or zero) k - t h  powers,  then Z.-, > O. 

Lemma 3 is an immediate consequence of Lemma 2. To prove 
Lemma 4 we have only to observe that  A i = 0 f rom a certain value 
of ~ onwardslS), and that, under the hypothesis of the lemma, M (~t/} :~0  
for every 2. 

2.5. L e m m a  5. iT/ z " l k  ( 0 ~ 0 ) ,  then 

(2.51) N ( : r  =: :~l."-'r)(~-l~N(:~'l,m), 

where q) is def ined as in  Theorem 2, it ~ 9~, and m is arbitrary.  

We may suppose /~ > q~, and write 

Then (/co,zt) = 1 .  Also 

�9 f---- + ko (mod ), 

If now 

(2.52) 
Let k ~--~0k o. 

(2.53) 

by Lemma 1. 

(2.54) 

the congruence 

( 2 . 5 5 )  ~" ~ m 

s equivalent to the pair of congruences 

and 

m = m, -4- m. ,n:  ,-1 (0 ~ m I < ~, , - t ) ,  

(rood ~r 0 <. x,. < .w'), 

(rood ~t: '-1, 0 ~ ~, . ,~zt .~ 

(2.552) \ "  "" ~'* - ~'~' ~:j ko%~, ~-1 ~ m . ,  (rood ~t, 0 < a r < n o + , ) .  ~u--i ~ l 

In what follows we take into consideration only primitive solutions 
of ( 2 . 5 5 ) a n d  (2.551). In such a solution of (2.551) some ~, say Z~, is 
not divisible by ~t. This being so, the values of % , %  . . . .  in (2.552) 

may be assigned arbitrarily, and .then, since ( b o ~ - l , ~ r ) =  1, the value 
of a. will be determined uniquely to modulus ft. There will therefore 
be zt ~ possible values of u I less than ~to+l, and ~ro(~rs+l) ' - l=~t(o+m-t  
sets of e ' s  associated with every solution of (2.551). That is to say 
we have 

( 2 . 5 6 ~  N (~r~', m)  = zt(o +') '-~ N1, 

is) See S. 369, footnote 10. 
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where N(m',m) is the number of primitive solutions of (2.55) and Na 
the number of primitive solutions of (2.551). 

Again, N(~v:'-t,m) is the number of primitive solutions of 

(2.57) ,..~xf--ra (mod~r "~ Os 
If here we write 

x,.-~r+,,,.~,,-~-, (0._<~,.<~,,-o-,, 0__<,~,.<,s), 
and use Lemma 1 and the hypothesis /, ~-qo, we obtain 

xf  ~ ~ (mod ~" - ' ) .  
Hence 

(2.58) N(~,,-, ,~) = ~ & - - ~ . . & .  

From (2.56) and (2.58) we deduce 

(2.59) ~v (~,,, ~)-_--~,-~ N(~,,-,, ~) 0, > ~), 
and the iemma follows ~nmecliately. 

(2.613) 

If we write 

Proof  of Theorem 2. 

2.61. Let v be the integer such that aa~+~n,  so'that 0 ~ v -~k; let 

(2.611) l ,  o ---- Max(ilk + v + 1, fib + W); 

and suppose that ~ __~ ~o. 
We divide the solutions (primitive or imprimitive) of 

f 

(2.612) ~ x  ~ ~ n (mod~Z; 0 ~ x~ <:~-) ,  

into classes as follows. In the first class we put ~he primitive solutions, 
N(~,~,n) in number; in  the second class the solu~ons in which every x 
is divisible by a but not every x by ~ ;  in the third those in which 
every x is divisible by a'-' but not every tr by :~; and so on. 

The second class of solutions is correlated with the class of primitive 
solutions of 

~ x~ y~ ~_.-~ (mod.~ ~'-*, 0 ---_< y. < ~z-,  ). 

then 

Z v, - Z r (rood ~-*), 

and the number of primitive solutions of (2. 613) is plainly ~k-1), times 
the number o f  similar solutions of 

g '  ~ k ~  ~, (mod~ ~-~, 0 _ < $ <  ~.-k) ,  
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or is 

xt (~-l)s N zt ~'-k, ok " 

Similarly the number of solutions of the (a+l)-th class, where 
~.<p, is 

There are no solutions of any higher class, since (tq -~- 1) k > / ~ k  ~- v q- 1 
and :t~ k+'+l ~- n.  Hence, if ~ > pk  -t-v + 1, and so certainly if ~ > ~o, 
we have 

# 

a ~ O  

2.62. Againl if i --  ~k ~ q,  and so certainly if 2 > ).o and t~ < fl, 
we have, by Lemma 5, 

Making this substitution in (2.616),  and multiplying by ~z~-~,  we 
obtain 

( 2. 622 ) :~ ('-') M (:z", n ) ~-- ~ ,  :z~ (1-,,. ~,, (k-1,,. no--,,I,-,,,(s 71) iV (~ ~,, ~ 
,-lr a/$ j 

a = 0  

# 

�9 ' 7fct Ir .J " 

tt~O 

n 
If ,<fl and ~v~k, ~ is divisible by :t'~, and we may re- 

place it in iV by. 0. If ~>2, ~=0+l~2O~zO~k. If :r-~'2, 
,p----0q-2_<2 ~ unless 0 0 or 0----1, in which cases ~o_<3_<k. 
Hence we may replace every N in (2.622), except that for which 
~r by 0. 

I t  follows that the right hand side of (2. 622), is equal, when ~ > )'o, 
to the value for Z, given in Theorem 2. I t  is also independent of )., 
and therefore, by Lemma 2, equal to 

(2. 623) lira :z ~l'-', M (n ~, n)  = Z=- 

This completes the proof of the theorem. We may observe that we 
have shown incidentally that 

(2.624) A.,~.~-0 (2 . 20). 
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sums 

(8.11) 

3. Some properties of the sums S~,~. 

In this section we establish certain properties of the Oaussian 

q - - 1  

j=O 

which will be useful for the further study of the singular Series1~ We  
have not at tempted to make the theory complete, though we have deve- 
loped it  a little further than is absolutely necessary. 

We denote by 

the h Dir i  chl  e t '  s ,charaoters' to modulus q. ~.o) gl is the principal character, 
and ~ is the character conjugate to Zx" We shall be concerned only wit]~ 
the case q ~ ~-, where ~ ~ 9, and ~ ~__ 1. 

I t  will be con~renient to write 
q - - 1  

t . , . ~  

(3. l ")) S,,a---~XZ,(y)eg(y p)----2-~eq(j~p)." 
i = o  ( i , q ) = t  

I t  is plain that, i[ ~ ~ k, 

(3. ! 3) S~;q= 8 ~ , q + ~  1 = 8p, q+ :P'-~ 
#lJ 

3.2. L e m m a  6. I[ ( l , q ) = l  then 

x 

unless m - - l  (modq),  in which case the sum is h. 
Theresul t  is obvious if (m, q ) ~ l .  If ( m , q ) ~ - l ,  we determinem 

from the congruence mm'----_l (m0dq).  We have then 

and 

= o 
g 

unless l m ' ~ - i  or m ~ l ,  in which case the sum is h. 

1~) What we do is, in effect, to develop from our own point of view eertaia 
portions of the theory of the division of tile circle (Kreisteilung). It is not unlikely 
that the substance of our analysis is to  be found elsewhere; but it is not altogether 
easy to extract, from the classical accounts of the theory, the particular parts which 
we require. 

.-o) A systematic account of tile theory will be found in Landau ' s  Handbuclt, 1 
(Zweites Buch) 
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F o r  

172 G.H. Hardy and J. E. Littlewood. 

We write 

(2.21) , ~ . - - - - ( h , k ) ~ - ( r  

3.3. L e m m a  7. There are lust ~} characters Z~ which possess 
the property 

(3. 31) Z~ = g~. 

These characters are given by 

[~o z) (8. 32)  = e 

where ~ ~ O, 1, 2, . . . ,  5 - -1  and z is the index, o/ l. 

We have generally 

(3.33) Z,(Z) ~ - e  ( ~ ) ,  

where y is the index which specifies z . : ' )  The necessary and sufficient 
condition for (3.31) is t h a t  kyz-----~O (modh)  for ever)- z, or that 

(3 .34)  k y  =~ 0 (mod h). 

From (3. 34) we deduce 

h which has the single solution y ~ 0  to modulus -~. Thus (3.35) has the 5 

solutions 
oh (~o ~q~, 1, , ) - -  1~ y-~--~ ~ . . . .  , 

to modulus h. These are all solutions of (3.34), and are plainly the 
only solutions. 

We shall call the characters z'~-z~., which satisfy (3.31 the special 
characters. I t  is clear that ?.~.~ is a special character. 

L e m m a  8. We have 

L e m m a  9. Suppose that q--=-n ~, (~t>1) ,  and that k 
tl~at $ ~  k. Then 

r 
! 

7t--1,  so 

~.1) Landau,  S. 401--402. 
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i/ (p, q) = 1 and the surama*iwa is extended o~er fhose residues l O/ q 
/or which J I z.  

We denote by 
O ~ - e + m ~ r  

the primitive root (mod q) to which the indices refer, g being a primitive 
root (rood ~). '~) 

Suppose first that J = k = ~ -  1. Then the indices of the l 's  in 
question are 

0, ~ z - - l ,  -2(~z--1), . . . ,  (at z - t - 1 ) ( ~ z - 1 ) .  

Suppos e that z x and z s are any two of these ~ - 1  indices, z ~ > z t ,  
and 11 and l~ the corresponding values of l. Then 

Z. z --  l ~  (~"(6~ , ' - z '  --  1) = Oz~((~ " a -  1) (rood ~z), 

where ,u is an integer, and 

- - l ~ g '  --1=---0 ( mod ~).  

Hence l~--ll~_~O ( m o d e ) .  On the othe~ hand, |1 and l 2 areincon- 
gruent to modulus q, since /z~ = zg--z~ < ~ - 1  ( ~ _  1) and G is a pri- 
mitive root for q. I t  follows that the / 's iff question are the numbers 
of the arithmetical progression 

so that 
1, n + l ,  2 z ~ + l ,  . . . ,  ( u z - l - - 1 ) u + l ,  

,-t ) ' - 1  --1 

l r = O  

The lemma is therefore proved when ~ = ~ -  1. The extension to 
the general case is immediate. The indices of  . the l's in question are 
n o w  

0, 6, 2~, . . . ,  z - - l ,  . . . ,  ~ i - l ( ~ - - 1 ) - -  

and form ~ arithmetical progressions of the type 

A, a + ~ - - 1 , . .  a + ( ~ ' - t - -  1)(~ -- 1), 

where A is one of 0, 6, 20 . . . .  ~ - - 1 - - ( ~ .  The I 's corresponding to 
the indices contained in any one of these progressions form an arithmetical 
pregression of difference ~z, and the s u m  of the lemma splits up into 

" - T -  sums which vanish individually. 

'*) Landau,  Handbuch, S. 394. 
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3. 4. Lemma  10. We have 
q--1 

(3.41) 8; q = ~ e q ( l p ) ~ . , ( l ) ,  
1=0 ~' 

the summat~n with respect to ~' extending over all special characters. 
:We may plainly restrict l to values prime to q. If (/, q ) = 1 ,  

(m, q)=1, we have , by Lemma 6, 

2J eq (~P)Z~.(0 z.. (~) = Z  Z + Z  2"= h eq(~p). 
l ~ l : ~ m  ~ l ~ m  

Hence, if j runs through values less than and prime to q, 

r -7 .k ' ,~,.,: ~ e.(, p)= ~-Z Z Ze.(~p) ~.(Ox.(?) 
1 --T -~ 

The sum with respect to j is zero unless Z,: is  special, when  it is h: 
whence the lemma. 

Lemma  11. I f  q - - - -~ - ( l_~2_~k)  and ~=(h , k ) ,  then 

8 '  8 '  (3.42) p,q. ,~ ~,q,~. 

This is an immediate consequence Of Lemma 10. For the right hand 
Side of (3. 41) involves k only in so far as the special characters are fixed 
by k, and is therefore unaltered when k is replaced by 5. 

L e m m a  12. / /  q ~ - ~  ( l < ~ k ) a n d  :alLk, then 
�9 yT).- 1. 93) (3.43) S~, q.,= 

It is plain from (3.13) that what we have to prove is 

(3.44) ~;,~,,= o, 
or, By Lemma 11, 

? 

(3. 45) ,8~,, q,,~ = O. 

By LeInmas 10 and 8,. we have 

s,..., =~Ve~(Zp)Z~..(~)= ~Z~.(zp), 
l ~' l 

where the last  summation is restricted to vMues of l whose indices are 
multiples of J; and this sum is zero, by Lemma 9 ~4). 

~a) This has  been  p roved  already,  in a d i f ferent  manner ,  in P. N. 2, S. 19--21 ; 
bu t  i t  is in te res t ing  to  see how the  resul t  arises f rom our p resen t  point  of v i e w  

as) Since ~ I :v - -  I when" s~ ~- k. 
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3.5. L e m m a  13. I /  ~ = 1 ,  q = z ,  and ~----1, then 

(8.51) S p . q . , =  O. 

But i/ i~ ~ 1 then 

(8. 52.) s~.~.~ =Z~.z,,.(p), 
wh~re 

(a. 5a) ~ = ~ ' e j 1 )  L(1), 
l 
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and the summation with res~ect to ~' extends over the special characters ~', 
exclusive of the principal character Xl, Also 

, : 8 . 54 )  I s,,. ~. ~ I < (,~ - 1 ) ~ .  
We may regard (3.52) as including (3. 51), since its right hand side 

disappears when ~ = 1. 
We have, by (3. 13) and (3.41),  

l l x '  

where the principal character is now excluded from the summation with 
respect to x', and I runs from 0 to q - - 1 .  The sum of the first two 
terms is 

1 +c , , (p  ) = l + ~ q )  = O. 
The third term is 

Since lp  runs through the residues of q when l does so, the inner sum 
is T.;.,, whence the result of the lemma. 

Finally, to prove (3.54), we ~have only to obserlze that, q being 
prime, ~. is primitive (eigentUch)~), and 

4. The behaviour of ~ for large values of ~t. 

4. 1. In this section we are concerned with large values of ~ ,  and 
may suppose ~t >.k,  so that 0-----0, q~----1. The O's which occur refer 
to the passage of zt to infinity; the constants which they imply depend 
upon k and s, but not upon n. 

We suppose that k > 3 .  

L e m m a  14. We have 

~-~) Landau, Haadbudt. S. 479. 
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where the summation with res~ct to ~' extends over all special characters 
other than t h e  principal character. 

This follows at once from (3. 5 2 ) .  

L e m m a  15. I) r s _ ~ l ,  f l=O,  then 

4.12)  z,~ = l + o ( ~ - - ' . , ) .  

We suppose first that : t+n,  so that v = 0. Then 

(4. 13) Z= = 1 + a , .  

Here we replace A= by the fight hand side of (4. 11). Any product of 
7~'s is a • and so, when we expand by the multinomial theorem and invert 
the order of summation, we obtain 

A.  = ~ - ' Z ,  P Z ~ ( V ) e . (  - rip), 
P 

where T is a product 0f s 3's, g a product of s g ' s ,  and the number of 

terms i n  Z I  is 0 (1 ) .  The inner  sum is O(VTt) for every X and all 

values of n in question""), and so 

A., = 0 ( ~ - ' .  ( r  r  = 0 ( ~ ' ~ ) ,  

which proves the lemma when ~tJrn. 
Next suppose : t in ,  so that 0 < ~ < k  In this ease 2 o = v ~ - I  and 

~+1 

(4 .14)  g~ == 1 + A ,  -t- Z A = ~  
2 

Now Sp,. ,) .== ~-1 for 2 _ < 2 ~ v - F l = < k ,  by Lemma 12; and so 

a~,~ = - - ' Z  e~'-(-- n ~) = . - '  ~ . ,  (n), 
1P' 

A,~. = u ~ - - ' - * ( ~ t -  1 ) ( 2  =<~_<v), A.~;- = -- :t ~'-'-* (~ = ,'-t- 1), 
r + l  

Z A..r) _2 __ ~ l - - s  �9 
2 

Thus 
z.., = 1 + o ( ~ - " ) -  , , - - .  = 1 + o ( , ~ - " i .  

This completes the proof of Lemma 15. 
If n is fixed, n + n from a certain value of n onwards. Hence we 

obtain 

T h e o r e m  3. The singular series ~S=2"Aq, and the product 
P = HZ~, are absolutely convergent /or s ~ 4, and S = P. 

u)  I t  is - -  1 if X is t h e  pr inc ipal  character ,  and  the  p roduc t  of a 7. and  a �9 ff Z 
is non*principal  ( a n d  so pr imit ive:  L a n d a u ,  Handbueh, S. 480). 



Some prob lems  of 'Ps r t i t io  N u m e r o r u m ' .  ~V. 177 

4. 2. L e m m a  16. I [  s ~ l  Shen 

~4.21) 1-4-O(~t �89 ( l + n ~ - 8 +  . . . + ~ - s ~ ) ( l + O ( ~ - " - ' * ) ) .  

This is proved already if fl = 0, and we may suppose fl > 0. From 
Theorem 2 we have, on the one hand 

~4.22) g~(n) ~ ~ l - s N ( z ,  0), 

and on the other 

+ ~a~-~+~-,2V(~, n'), 

w h e r e  n t = n ~-~. Since neither ~ nor n' is divisible by ~tt, we have 

,"$ I - -S~  (;TX, O) = :71:1--#~ (,~; ;71:) = Z~($rg), 7171--',~ (:rg, n t) = ZTt(n t ) ,  

and each of these is, by Lemma 15, of the form 1 + O(~t�89 Thus 
!4.21) follows from (4.22) and (4. 23). 

As a corollary we have 

Lemma 17. I] s ~ k + 2  then Z. = l + O ( ~ t - ~ ) .  

5. The numbers ~,, P ( k ) .  

5. !. Given k and 3r, and any positive integer m, there are two 
possibilities. Either (i) there is a number 

(5.11) h~ = h(k,s ,~t)  > 0 

such that 

(5. 12) Z. :> h.~ 

for s > m and all values of n,  or (ii) there is no such number. We 
define 

as the least value of m for which (i) is true, and F ( k )  by 

(5.1:~) F (k )  = Max r... 

Further, we define 
r,." = r ' ( k , ~ ) .  

as the least value of m such that 

(5.14) ;~., > 0 

for s _~ m and all values of n.  
I ,  is evident that 7" ~ 7... 

L e m m a  18. I] Z,,> 0 for all suHiciently large values of ~t. then 
Z, > 0 for all values o] n. 

Matliematische Zeitsehrlft. XIl. 12 
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In proving this Lemma we leave out of account for the moment the 
special case k ~ 4, ~ ~ 2 .  That the result is still true in this case will 
appear incidentally later. 

It is easy to see that, apart from the exceptional case, 7, < k. Thus 
if n > 2 ,  q = 0 - f - l ~ 2 O < : r o ~ k .  

If ~ = 2 ,  0 > 3 ,  then ~o-----0-~-2<20=<k. 
If .~r~-2,  0 - - 0 ,  k is odd and ~ = 2 < 3 ~ k .  
If : r =  2, 0 =  1, then k is oddly even and q0----3 < 6 < k. 
I f  ~t--=2; 0--~2, then ~ o = 4 < 6 ~ k ,  unless k = 4 .  
Thus q < k  in ever~r case except that in which k =  4, ~ = 2,Jwhen 

~0-~-k. 
Now let 

i n --= zr': m -~- n ' O <~ n ' < .-r ~' ) . 

If n ' #  0 then p-= 0 (since qo < k) and so, by Theorem 2, 

z . . (n)  = ~+ , , - . ~N  (,~+, n)  = ~ ( 1 - , ) ~  i~,~, n ' )  = z ,  (n') .  

But Z ~ ( n ) > 0  for large values of m ,  and therefore x ~ ( n ' ) > 0 .  It 
follows that Z~ > 0 for all values of n that are not divisible by ,~'~. 

Again, if (m, n ) =  1, we have, by Theorem 2, 

x ~ ( ~ )  = .+~-~,N (~+, 0). 

since q~ < k. The ]eft hand side is positive if m is ~large, and so 
N ( n + ,  0 ) >  0 .  Hence, .whatever be the value of m (prime to :r), 

z.~ (~,~)__> ~.,,1-,,lv ( ~ .  o) > o. 

It  follows that Z~ > 0 also when n ' - --O,  which proves the lemma. 

5.2. L e m m a  19. T h e  n e c e s s a r y  a n d  s u f f i c i e n t  cond i t ion  that  

(5.21) _N" (~t',, n) > O, 

/or  e v e r y  n ,  i s  that  s >= y~. F u r t h e r ,  

(5.22) y~ = y~ 

except  w h e n  k --= 4 ,  zt = 2 ,  i n  w h i c h  case  

(5.23) r, = 16, r; = 15. 

Leaving aside the exceptional case, so that q < k, let s ~ r ' .  Then 
Z.~(n~)>0.  But f l = 0  when n-----n~ (since r  and so 

Z.-,(rtv) n + ( a - * ' N ( n v ,  et q') --=,n~'(a-*)N(n ~~ 0) .  
Hence 

2r ( ~ ,  O) > O. 

If on the other hand n ~ 0 (rood ~ ) ,  then fl = 0 (since r __< k). 
Hence 

Z- = ~ '~ - " lV  (~o, n) 
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and 
N n) > O. 

Thus s ~ 7" is a sufficient condition that  (5.21) should hold for every n. 
Next, suppose that (5.21) holds for s ~ s1 and every n. Then it 

holds, a /ortiori, for s _~s~ and every n ,  and the N's that occur in 
Theorem 2 are both positive. Hence 

a n d  s o  

8, >- r' .  

I t  follows, first that  s ~ 7". is both necessary and sufficient for (5: 2t), 
and secondly that s ~ 7~ involves s ~ ~'.~, i. e. that  7~ ~ 7.~. 

If k = 4 ,  ~----2, then 2~-----16: N o w  x 4 is congruent to 0 or. to 1 
to modulus 16, according as x is even or odd. I t  follows that  N(16,  n) ~ 0 
for s :~ 16 and every n; that 

N ( 1 6 ,  n) > 0 (16 + n),  N ( ! 6 ,  0)-~ 0 

when s ~ 15; and that  N ( 16, 15) N ( 16, 0) = 0 when 8 < 15. Finally 
it follows, from Theorem 2, that 

y,~>h~ (s:>16), ; / ~ > 0  (s=:15)~ 

g~(16~. 15) ~ 2~(~-~.~+4(~-~)N(16 ' 1 5 ) = 2  -n(fl+~) (s :-= !5),  '~:) 
and 

Since 2 -11c~+~)--~ 0 when 
we see that  Lemma 18 

5.3. T h e o r e m  4: 
Leaving aside for 

suppose that  s ~ (7 (k). 
s k- th powers, so that  
values of n. Hence, by 
that  s ~ 7.~. I t  follows 
theorem, apart from the 
result is still true, since 

zs (16 p. 15) --  0 < 15). 

fl--~ cQ, these results embody (5.23) .  Incidentally 
is stiU true in ti~e exceptional case. 

G(k) >_ r ( k ) .  
the moment the exceptional case k 4, ~ ' =  2, 

Then any sufficiently large n is the sum of 
Z~ > 0 for every ~ and  all sufficiently large 

Lemma 18, g~ > 0 for every z and every n, so 
that  G(k)~7.~ for e~:ery ~, which proves the 

exceptional case. "In this ease ~,s ~ 1 6 ,  and the 
(7(4) >_ 16 as). 

~) N(16, 15)-~ 815 when s--15, since each x may have any one of the values 
1, 3, 5, . . . .  15. 

~) The lower bound /~ for (} is associated" with the vanishing of the singular 
series S for s~P--1, ezce~t when k = 4 .  When k = 4 ,  F=16 ,  and the series is 
positive for s--15, but asmmes arbitrarily small values for suitable values of n. 

It should be observed that~our proof (see w 5. 5 below.) that 
a (~s ( ~ .  I)) ~ ~ = ~ (~ > '2) 

(Fortsetzung der Ful~note S8 auf nitchster Seite ) 
12" 
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5 .4 .  
in Theorem 2. 

(5.4 l) 
lwllere 

t5.42) 
and 

( 5 . 4 3 )  

G. H. Hardy and J. E. Littlewood. 

L e m m a  20. ,Suppose that ~ [ k ,  and  that q: is de/ined as 

Further,  suppose  that 

k = ztOek o, 

e = ( ~ - ~  ~ -- 1), 

d ~ ,  
F 

so that ~ z - - 1  and (ko, d)-~--1. Then  

.:~,r_ 1 
~5.44) ,.~_=,, <c=c.-,-'-=c(k,z~)------:-~-L--i-_l , + 1 .  

We write e ~---:r% We must  distinguish the cases Jr > 2 and ~ - - 2 .  
( i)  If  : ~ > 2 ,  e p = 0 + l .  We suppose that  G is a p r i m i t i v e r o o t  

(mod ~). We divide the residues to modulus e into classes as follows. 
Consider first the residues n o prime to 9. I f  v is the index of n o, we have 

no'-~ G ~ ~_ G m~176 (mod g), 
where 

,~(o) ~(~,'~) , - , " -~ (~ - 1 )  o.) 
Y'o == d ----- d " -~ d .-~ :z'r-l e, 

m o has one or other of the d values O, 1 , . . . ,  d --  1, and e one or other 
of the 'q'o values O, 1 . . . .  , V'o - -  1. The d values of n~ with a common 
e we class together and call the numbers 

,~ (e 0, 1 --  1 ); �9 r  ~ , " ' "  'q 'O 

the ~class of numbers t~ ~ with a fixed e we call Ce ~ 
Next,  consider the residues n i for which ~ i [n i ,  where 0 < i < q o .  

We have 
n i ~ 7 t iN  i, 

where the N{s are the ~P(n,r-i) numbers less than and prime to :r~-i .  

As G is also a primitive root to modulus nq - i ,  we cab write 

N i =-= G r~'v''+" (mod n ' l - i ) ,  

n, ~ ~ N~ -:- ~rfG %'r'+~ (mod ~,r), 

is essentially the ~ame as K e m p n e r ' s  proof (ace pp. 45--46 of his Inaugural:Disser- 
tation) that 

O (2 ~ >= 2~ = 2 o+'-,. 
His proof too fails when k = 4, and he has to appeal to the structure of the particular 
number 31. 

2~) We write ~ ( 9 )  for E u l e r ' s  function usually denoted by r as r is used 
liero in a different sense. 
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where 
�9 (~'~'-/) ~,t,-~-i (~ - 1 )  

q'i ~ d . . . .  d ~ fLY-i-1 e' 

n~ i has again one or other of the ,r 0, 1 . . . .  , d - - l ,  and e one or 
other of the vahes  0, 1 , . . . ,  V ' i -  1. The q,~ new classes obtained in 
this manner we denote, by 

O~ (e ~- O, 1 , . . . ,  'i'," - 1 ), 
i and a typical member of C~ by .~. 

"Finally, the single number 0 is . the sole member t~o r of a class Co ~. 
The total number of classes in to  which the residues are divided is 

~q ' - - I  , 1 % §  ~ ' 1 §  " ' -  -F ~'.p-~'+ I : : T •  -----c. = c .  

We may denote the whole system of classes, in the order in which 
they have  been defined, by  Co, C1, . . . ,  C r . . . . .  Co, and a typical member 
of C,. by % .  

The class t/o consists of the residues of k- th powers of numbers 
prime to .~. For 

k = ..,, ko .= ko-"" ( d - l )  _--_ ko 

Also x G t for some ~ (since (z ,  : z ) =  1), and 

x ~ ~ 0 teo'co ~ 0 ~'co, 

so that, x k is an a o. Moreover we can choose t so that  t k o has an arbi- 
t rary residue m o to  modulus d,  since (/Co, d) -~ 1, so that  every ~o is an z ~. 

Finally, to complete the properties of the classes which are imme- 
diately relevant, (1) 1 belongs to Go, (2) ~o~,  where a o and ~c~ are any 
members of C O and C r respectively, belongs to C~, and (3) % a ,  where 
~, is a given member of Cr, can be identified with any member of G, 
by choice of %. 

Of these properties (1) is obvious. To prove (2) we observe that, if 

c ~ ~o "~- Gtm~ ~'o, a r ~___ n~ - ~  :z ~ G %'r1+6, 
�9 

C~OC~ r ~- .  yl . i .~m~176 +e 

is an a,., since ~ ' i ' ~ o .  Finally 

tooV, o + m~ ~i ~ (a~mo q- m~) V'~, 

and we can 'choose m o so that  n t m o q - m  ~ shall have an arbitrary residue 
(modal), since (~, d ) ~ 1 ;  hence %a,  can be identified with any member of C,, 

5 . .5 .  To prove Lemma 20 it is enough, by Lemma 19, to show that 

(5. o l )  N ( n ~ ,  n) > 0 
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and so xk--~l  (mod 2'/'). 
and we obtain 

G. H. Hardy and J. E. Littlowood. 

for s _~ c and every n.  And the necessary and sufficient condition for 
(5. 51) is that every n should be congruent (rood :t~) to the sum of at 
mos~ c numbers %. If any ~,. is  the sum of not more than c % ' s ,  then 
so, by (2) an'a (3) of the lastTparagraph, is every a,.. In these circum- 
stances we shall say that O r is representable, and what we have to prove 
is that  this is so for all the c values of r .  

Suppose that  1 ~ e' <_ c. Then there are at least c' different classes 
representable by not more ihan c' %'s .  For, in the first place, this is 
true when c' =- 1. Suppose t ha t  it is true for c' =- ~ < c but false for 
o' = ~ + 1, and let C be a typical class representable by e ao:s , and C,. 
a C. Then u r belongs to a C, and therefore, since no new classes become 
representable when ~ is changed to ~ +  1, % +  1 belongs to a C. 
Similarly a,. + 1 + 1 ----- % + 2 belongs to a C, and, repeating the argument, 
.every residue (meal q) belongs to a C, which is a contradiction. 

Taking c' = c we see t h a t  c distinct classes, and therefore all residues 
(rood Q), are representable by c %'S, which proves the lemma, when :t > 2. 

(ii) There remains the case ~t ----- 2, in which ~o ~- 0 + 2, e -=- d ----- 1, 
c = J r *  = ~. In this case there is nothing to prove, for any residue 
(mode)  is representable b y  at most ~ l ' s .  

A particularly interesting case is that  in which d ---- 1, ~ =- :t -- 1. 
In this case 

k = z~~ (z~-- 1) ko, 

where k o is prime to ~t. Here 

r..5 
If ~ > 2, ~,., = ~t*. For 

x k = x~o V"x)/t~ ~- 1 (mod uq'), 

so t h a t l  is the only %. Hence N ( n % 0 ) = 0  tf s < u ~ ,  and 7 ~ a t * ,  
by Lemma 19. In part icular  

y. = u = k + i  

if k = ~ t - - 1 ,  Thus 7 ~ = 5  i f  k 4, 7: 7 if k = 6 .  

If ~ t = 2 ,  k = 2 ~  Suppose first that 0 > 0 .  Then 

x ~~ - - 1  (rood 2~247 

Except when k = 4 our argument above applies, 

The result still holds when /r since then 79 = 16 ~ 2 4. 

(0> o). 
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The argument fails if 0-~ 0 (so that k is odd./. Here e ~ 2"~--4; 
- 1 is a k-ie residue (rood 4);  and 0~ 1, 2, 3 are all representable by 
at most two of the numbers :J: 1. Thus 

7, =- 2 ---- 2 ~ (0 ---- 0). 

5. 6. In general it is possible to go a little further than in Lemma 20. 

L e m m a  21. Suppose Zhat dj ]d, where d~ ~ 1. Then 
(5. c,1) r.,<= M (dl, - 1). 

Since d l l z -  1, (5. 61) gives in particular 

?.. s Max(,~ --.i, r  1) 
in all cases and, 

~ ,  s  1) 
.if 0 > 0 .  

To prove Lemma 21, suppose that 1 _~ c' ~ c ,  and let ~(c') be the 
number of classes, other than the class C c (containing the residue O' only), 
that are representable by not more than c t %'s. Then 

(5.62) r'(c' + I) ~ Min (~,{c') -[- 1, c -- 1). 

For, if (5. 62) is false r (c ' - - t -1 )=~, (c ' )<c- - l .  Let  C be a 
typical class of the ~ (d) classes, and C r a C. Then, if a~ belongs to C , 
% 4-. l must belong to a C or to Ca, since no new classes, other than 
perhaps Ca, are r~presentable by c ' ~ 1 % ' s .  If %-~1~_O,  a r ~ - 2  
belongs to 00, and therefore to a C. If a r ~-1 belongs to a C, a ~ - 2  
must belong to a C or to ~c. Repeating the argument, we see that 
every residue, other than 0, belongs to a 0, which is a contradiction. 

From (5. 6'2) it follows that 

( c - -  1) ~.c ~ 1, 

so that all residues, 0 perhaps excepted, are representable by at most 
c - -  1 % ' s .  It  remains to consider the residue 0. Let d =- ~d 1 and 

- -  a (rood e). 
Then c:~ _=~ i ,  since ~ o  J: ~~ and G is a primitive root (mode) ,  

(ag)d,~ (~a,,,o = G*te)--~---1 (meal e:), 

-0 1 - (aD d' 
1 +  a~  - ~ ' "  +( r  1 - ~  _~--0 (mode)  , 

and 0 is representable by d 1% ' s ,  which completes the proof of t h e  
lemma. 

Suppose in particular that d t - - d - 7 - 2 ,  so that ~ > 2 and 

1 . s ( .  1)ko. k = . ~  



184 el. H. Hardy and J. E. Littlewood. 

In this ease the ao'S are the .two numbers -t-1, and 

1 
r .  ~_ 2 ( ~  - 1). 

But 
1 (:~o+, 1) I (:~,v _ 1 ) ,  c - - l = ~ -  -- = ~  

so that  
1 

Y.. -----oU( ~r'p -- 1) ---- c -- 1. 

Thus in this case also we can determine y,  exactly. 

5. 7. I t  is convenient to sum up our results concerning the cases 
d ~ 1 and d = 2 in a separate lemma. 

L e m m a  22. I[ k = : t o ( n - - 1 ) k o ,  Where n?:~2 and k o is prime 
to z~, , then 

(5 .71)  ~, = ~o+1. 

1] k = 2~ where 0 > 0 and k o is odd, then 

(5 .  72 )  y,  = 2 ~ 

I f  k is odd, then ~,~ ~-2 .  

1 :to(:t  -- 1)ko, where ~ > 2 and k o is prime to zt, then z! k=:~- 
1 (,~o+~ 1) (5. 78) ~ = ~  - . 

5.8.  We know that  G ( k ) ~ P ( k ) ~ - - M a x T .  Thus, when k is 
given, every value of r~ gives a lower bound for O(k).  These, when 
less than k A - 2 ,  add nothing to our knowledge of O(k) ,  since G(k)  is 
always greater than k. There is therefore a special interest in determining 
as systematically as possible all cases in which 

L a m i n a  23. We have 

(5. 81) y., ~_< k-~- 1 

,~,g~,s ( , )  k = 2 "  ( o > o ) ,  , , = 2 ,  when y ~ = 2 " + " = ~ k ,  

(p) k = 2" 8 (0 > o) ,  ~ = 2, when ~ = 2 0+' 4 =- -ffk, 
or (y) k = ~ t O e  ( 0 > 0 ) ,  where n > 2  a n d e [ ~ - - l .  

I n  cases (a) and (fl) (5. 81 ) is [alse; in ease (y) it may be true or ]alse. 

We write k----n~ as in Lemma 20. If 0--=-O, ~, > 2, then 

r < c = e + l < k + l ,  

b y L e m m a  20. If 0 ~ - 0 ,  n = 2 ,  t h e n y o . = 2  by Lemma 22. Thus we 
need only consider cases in which 0 > 0. 
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Suppose first ~ 2 .  If k o~>~1, we have 

7--~~ =-TZT--~-+-I< ~--1 + l < ~ n ~ 1 7 6  

Thus (5. 8'1) is true unless k 0 = 1, k ~ n o ~ ,  which is case (?). 

Next suppose ~ 2 ,  k--~2e, ko" I~ k o > 3 ,  we have 

7. ___2o+ -~ 4~__ " = /co < k + l .  

Thus (5. 81) is true unless k o = 1 or 3, cases (a) and (//). 

The case in which k = 6 is interesting as falling under both (fl) and (7). 
~ 3  ~ I f a = 3 ,  k - - - - -3 .2- - - -a(a- -1) ,~ f f i ,~- - l ,d=l ,and7.  ~ -----9. And 

y.., ----2 a =-8 .  
In case {7), (5. 81) may be true or false. Thus it is true when 

k~ffi:3, ~----3, for then 7 3 = 4 .  But it is false when k ~ 6 ,  ~ - - 3 ,  

5. 9. We must now collect our results and state them as theorems 
concerning F(~k). We shall say that k is  exceptional if it has one of 
the forms in (a), (fl), or (7) of Lemma 23. 

Theorem 5. If  k is not exceptional, then 

I ' ( k ) ~ k + l .  

This is an immediate corollary of Lemma 23. 

Theorem 6. I/  0 ~ 1  then /~(2 ~  ~+~. 

Theo rem 7. I f  0:~ 1then / = ( 2 0 3 ) , - 2  ~ 

Theorem 8. 1"(6) ~ .q .  

These theorems follow from Lemma 23, when we observe that the 
numbers in question in each case exceed k-~-1. 

Theo rem 9. I /  n > 2 ,  0 > 0 ,  then I ' (~o(~--l))=ffi :zo*~. This 
equality holds also when 0 ~ O, provided that k~- -~-  l is not exceptional. 

The second par~ follows from Theorem 5 and Lemma 22. We may 
therefore suppose 0 >  0. We have already seen that y.~ ~ s + l ,  which 
is greater than k + 1. If ~x is a prime other than ~, '7~ ~ k + 1 unless 

~-~--2, ~r~ (:t-- 1) =-2 ~ or at,-~--2, 7to(~t-- 1)-----2~ or ~ > 2, 
n o ( a - -  where - :. 

I t  is easy to see that the first and third alternatives are impossible, 
and that the second can occur only when:a = 3, 0 ~-1 ,  k ~-6. In this 
case the r e su l thas  been proved already; in all other eases we have 
7. , ,< y~ and Y ( k ) ~ 7  = ~ o + :  

Theorem 10, I / ' : t  > 2, 0 > O, the, n 
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Here 7= ----- �89 _ 11 , since d ---- 2. This is greater t, han k ~ 1 except 
when ~ = 3, 0 -~  1, k----3, when the two numbers are equal. Moreover 
1 ~ o (~ _ 1 ) cannot be equal to 2 ol, 2 ol 3, or ~o~ el ' where ~1 ~ ~, 01 > 0, 
~1 I~t --  1. Hence 7~ ~ 7~ and F ( b )  = ~,i~. 

T h e o r e m  11. I [  ~r> 2 and k = ~ o e ,  where 0 > 0 ,  e l ~ z - - ! ,  then 

F ( k )  ~ Max (7.~, k +  1). 

I t  may be verified at once that G o e cannot be of any of the forms 
2 o~, 2 e~ 3, ~ ,  �9 1, except when ~ = 3, 0 = 1, e ----- 2, ]r =" 6. In this case 
F( / r  7 a =  9. The result follows from Lemma 23. 

T h e o r e m  12. I n  all case8 

r(k)  < 4k. 

The sign of equality occurs if and only if k =  2 0 ( 0 ~  2). 

T h e o r e m  13. I ~  all cases 

r ( b )  < ( b - -  2 ) 2 ~ - ~ + 5 .  

This theorem, which is included in Theorem 12 except when k = 3, 
is inserted only because it is what we require for the proof of Theorem 1 .  
Our actual bounds for F ( k )  are .much better. 

When /r = 3 , F ( 3 )  ---- 4 < 9 = 1 .4  if- 5. 

I t  may help to elucidate the results which we have obtained if we show 
in tabular form the actual values of F(/r for a number  of values of k. 

k =  3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
r ( / , ) - - 4  16 5 9 4 m n 16 6 14.1  64 i7 

k= 19 20 21 22 23 .24 25 26 27 28 29 30 31 ~2 
P(k)---- 4 25 24 28 28 32 10 26 40 29 29 30 5 128 

The values of F ( k )  for b = 3, 4, 6, 8 ,  9, 10, 12,  16, 18, 20, 21, 24, 
2 7  and 28 are given by  the actual theorems and lemmas which we have 
proved; the determination of the remaining values demands further cal- 
culations into which we cannot enter here. 

6. The behaviour of the singular series when s ~ / ' ( k ) ,  

6.1. T h e o r e m  15. Suppose that k > 2 a n d  s 1 = M a x ( F ( k ) ,  41). Then 

s>o 

/ m  8 > s 1 and all values o/ n.  

By Lemma 16, we have 

Z - >  1 - -  a ~  i -~~  (a ~ 81): 
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and so 

(6.12) 
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= n o (/c, s) such that 
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(8 ~ s~). / / 7 . . ,  ~ o 
~-r ~_. ~ o 

But Z.-:> o if :r < Jr e and s ~_ P ( k ) ,  and so 

(6.1:~) / / z ~  > o (s > s,); 

and (6 .1))  follows from (6.12) and (6.13). 

I t  is plain that  our main purpose is now accomplished; with Theo- 
rems 13 and 15, the proof of Theorem 1 is comple ted . ,  

6.2. I t  is of some interest also to obtain aa  upper bound for S. 

T h e o r e m  16. I ]  s _ ~ k ~ 2  then 

6 ,21 )  2 < 0 .  

For, by Lemma 16, 

z~ < ( 1  + o ~-'~) (1 -:~' -: '  + o n  ~ . ) < 1 + o ~  '-; 

and the result follows immediately. 

T h e o r e m  17. / /  s _ ~ k > 3 ,  then 

(6.22) S < n ~ 

]or all su[ficienffy larae values o/ n. 
By Lemma 16 

where o.~ = 1 unless ~k[ n, and then Q.~ = 1 + ft. i t  is plain that 

/ / q . ~  s  a) = d (n ) ,  

where ~" l ' .  As d (~) = 0 (~'), the theorem follows. 
The interest of this theorem lies in the resulting equation 

(6.23) ~,~ ( . ) =  o( .~ ) .  

There is some reason for supposing that 

(6,e~) ~.,k(~) = 0 ( - 9 ,  

an equation from which very important consequences would follow. This 
equation would cease to be plausible if (6.23) at any rate were not true. 

6.3. In conclusion ' we return for a moment the equations (1.15)  
and (1.151). As we remarked before, the equation ( 1 . 1 5 ) i s  sufficient for 
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our present purpose; but it is interesting to bring the remark of O s t r o w s k i  
into relation with our analysis. 

Suppose that  
N(z~%n)~> 1 

for every n and for s----~ s o. There is then a primitive solution Of 

for every n.  , Consider now the similar congruence in which s o is replaced 
by s;> s o. Of the x's, the last s--s o may then be selected arbitrarily. 

and there will be at least one primitive solution of the ensuing congruence 

in the first s o . Hence 

I t  follows that the inequalities which we have used, of the type 

Z~ 2> z~,l,(1-s); . 

may be replaced by inequalities of the type 

~.-r ~ YTq'(1--S)7~r176 _--___y[c/'(1--so); 

and our numbers h.~ ----h(k, zl,s) and o --~- o(b,s)  by numbers of the type 
h.~ --  h ( / r  s o) = h (b, :~), and a ---- o (k, s o) = a (b). I t  is however unne- 
cessary to develop this remark further at the moment. 

We add, finally, that  the number ] ' (b )  has a simple and interesting 
arithmetical interpretation. In fact F ( k )  is: the least number m such 
tha~ every arithmetical l.'ogression contains an in/ini~y o/numbers which 
are sums o/ m k - th  powers. 

(Eingegangen am 81. Oktober 1921.) 


