Some problems of ‘Partitio Numerorum':
IV. The singular series in Waring’s Problem
and the value of the number G (k).

By
G. H. Hardy in Oxford and J. E. Littlewood in Cambridge.

1. Introduction.

1. 1. In this memoir we continue the investigations initiated in two
earlier memoirs bearing a similar title, and complete the proof of all the
assertions which they contain'). We shall assume throughout that the
reader is acquainted with the notation and terminology of these memoirs.

The fundamenta] theorem of Hilbert?) asserts the existence of the
numbers g(k) and G(k). In our first memoir we proved that, if

a:%, K=2k_1’ 7':1_"111"’- 8>2K+13
then
(1. 11) Fop 2 () = et § 4. O (meenve),
where § is the ‘singular series’
Sp, ¢
(1. 12) 8= (_1;_) e,(—np).

1} G.H. Hardy and J.E. Littlewood, Some problems of ‘Partitio Numerorum’:
I. A new solution of Waring’s Problem, Gottinger Nachrichten 1920, 3. 33—54;
Il. Proof that every large number is the sum of at most 21 biquadrates, Mathe-
matische Zeitschrift § (1921), 8. 1427,

The third memoir of the series (Some problems of ‘Partitio Numerorum’: III. On
the expression of a number as a sum of primes} will appear shortly in the Acta
Mathematica. The problems considered in this memoir are of a somewhat different
character. We refer to these memoirs as P. N. 1, P. N. 2, P. N. 8.

%) D. Hilbert, Beweis fiir die Darstellbarkeit der ganzen Zahlen durch eine
feste Anzahl n-ter Potenzen, Gottinger Nachrichten 1909, S. 17—36: reprinted with
certain changes in Mathematische Annalen, 87 (1909), S. 281—300.
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162 G. H. Hardy and J. E, Littlewood,

The sum of the series is positive, and indeed greater than 1, if s is
sufficiently large; and sax <sa—1 if 6> kK. Thus

(1. 18) 7y (n)~Cnse-18,

as n— o0, for all large enough values of s, say for s > G, (k). It is
plain that Hilbert’s theorem follows as a corollary.

" Important simplifications of our method have been effected by
Landau®) and Weyl?). These improvements relate to our treatment of
the ‘major arcs’. In particular Weyl has shown that, if we are concerned
with an existence theorem only, so that it is not important to obtain
the best possible upper bound for G'(%), the rather difficult analysis
which we used may be replaced by an argument of a much more elementary
character. '

We proved nothing in this memoir about the values of @, (k) or
G (k), though our analysis suggested very forcibly that

(1. 14) G(k)<G, (k)< kK+1=3s,.

In order to prove this it is necessary to examine the singular series more
closely, and to prove that

(1. 15) S>o0=0(k,8)>0

for 8 > s,. This would be sufficient; but in fact, as Herr Ostrowski
has shown®), the truth of (1. 15) for s =g, will involve

(1.151) 8>o0=0(k)>0

(the value of ¢ being independent of &) for s >s,. In our second me-
moir, however, we effected an improvement in (1.11), showing that
(1. 16) 7y, (1) = Cn2a=18 - O(nle-tax+2ate)

(a better result if only k> 2). If now we can prove that (1. 15), and
therefore (1. 151), is true for 8 >'(k —2) K + 4, we shall have proved that

(1.17) G(k) <G, (k)< (k—2)K+5.

This we proved before when k=4, in some ways the most interesting
case. It is the gemeral proof of (1.17) that is our primary object now.

%) E. Landau, Zur Hardy-Littlewoodschen Losung des Waringschen
Problems, Gottinger Nachrichten 1921, S. 89—92.

4) H. Weyl, Bemerkung zur Hardy- thtlewoodschen Losung des Waring-
schen Problems, Gottinger Nachrichten 1922. v

5, A. Ostrowski, Bemerkung zur Hardy-Littlewoodschen Lésung des
Waringschen Problems, Mathematische Zeitschrift, 9 (1921), S, 28—34. We return
to this point in § 6. 3,



Some problems of ‘Partitio Numerorum’. 1V. 163

Our principal theorem then, will be:

Theorem 1. There i3 a positive number 6 = o (k, 8) such that S >«
for s> (k—2)K-+5, so that

7y (n)~Cneat 8

for all suck values of s. In particular, r, (n) is positive for all such
values of s and all sufficiently large values of m, so that
Gk)<(k—2)K+5.

1. 2. We have in any event to undertake a detailed examination of
the singular series; and we shall push our analysis a good deal further
than is necessary for our immediate purpose. We do so primarily because
the analysis is interesting in itself. But it must be remembered also
that the inequality (1.17) is, in all probability, far short of the actual
truth. It is not unlikely that the order of the error term in (1.16),.
which is the obstacle to further progress at present, may before long be
materially reduced. The discussion of the singular series, for values of s
smaller than those contemplated in Theorem 1, will then become of
immediate importance, as every 'improvement in (1.16) will give a
corresponding improvement in the value of G (k). '

It may be useful if we summarise at this stage the existing state of
knowledge as regards the values of g(k) and G(%). This is exhibited in
the following table. '

k= | 2] s 4 5 |6 | 7 8
g(B< 4 | 9 37 | 58 | 478 | 3%06 | 31353
- k .
g(k)> }(%) ]+2"—2= 4 9 19 37 73 | 143 | 2w
G¢< 4 | 8 | = 58 | 478 | 3806 | 81358
G (k—2)2145=| & { ©® | 2 53 | 133 | 395 | 773
G (k)= 1 4 4 16 6 9 8|

The numbers in the first line are the upper bounds for g(%) which have
been obtained by elementary arguments, and are due in order to
Lagrange, Wieferich, Wieferich, Baer, Baer, Wieferich, and
Kempner respectively®). Those in the third line are the corresponding

%) The names are those of the authors who found the actual numbers quoted.

The proofs of ‘Waring’s Theorem’ for the cases in question are due to Lagrange,

Maillet, Liouville, Maillet, Fleck, Wieferich, and Hurwitz (and Maillet)

rcspectively. For detailed references see A.J. Kempner, Uber das Waringsche

Problem und einige Verallgemeinerungen. Inaugural-Dissertation, Gottingen 1912,

and W. S. Baer, Beitrige zum Waringschen Problem, Inaugural- Dissertation,
11*
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upper bounds for & (%), and are identical with the numbers in the first
except when £=3. The inequality @(3) <8 is due to Landau®).

The fourth line contains the upper bounds given by Theorem 1. It
will be observed that the numbers for £ =2 and k=8 are inferior to
those already known, but that there is a very substantial improvement
for all larger values of k.

The second and fifth lines contain the best known lower bounds for
g k) and @ (k) respectively. It was observed by Euler, and later by
Bretschneider®), that the number 2%] — 1, where [ is determined by

3 =281 L g, 0 <m < 2%,

requires I -~ 2°— 2 powers; and this observation gives the numbers
tabulated. The numbers 4, 9, 19 are mentioned by Waring, but there
is nothing to show that he had recognised the general law?\.

The numbers in the fifth line are more interesting and require further
explanation. It was proved by Hurwitz®) and Maillet'!) that

G =k+1

for every k; and in some cases, e. ¢. for k=3, 5 and 7, no more than
this is known.

In other cases it is possible to prove a good deal more by the
consideration of simple congruence relations. The simplest case is k& — 4.
Every biquadrate is congruent to 0 or to 1 to modulus 16, so that a number
t6m - 15 requires at least 15 biquadrates. Thus (as was observed
by Landau) G(k)=>15, and Kempner, considering numbers 16°. 81,

Gottingen 1913. The numbers for k=7 and k=8 could no doubt he substantially
reduced.

Proofs of the existence of g (&), from which an upper bound for g (k) could be
calculated, have also been given for k=10 (I. Schur), k=12 (Kempner) and
k- 14 (Kempner).

") E. Landau, Uber eine Anwendung der Primzahltheorie auf das Waringsche
Problem in der elementaren Zahlentheorie, Mathematische Annalen, 66 (1909),
S. 102—105.

*) Sec Kempner, loc. cit., 8. 44—45,

*) Waring asserts quite explicitly, not merely that g(k) exists, but that
g(2)=4, g(8)=9, g(4)=19, ‘et sic deinceps’. Nothing is known, so far as we are
aware, inconsistent with the view that the numbers in question are the actual values
of g (k) for every k. .

10y A. Hurwitz, Uber die Darstellung der ganzen Zahlen als Summen von
sn-ter Potenzen ganzer Zahlen, Mathematische Annalen, 65 (1908), S. 424—427.

1y E. Maillet, Sur la décomposition d'un entier en une somme de puissances
huitiémes d’entiers, Bulletin de la société mathématique de France. 36 (1908),
p. 649--77
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where f is large, improved this inequality to G(4) = 16. He also proved
that @ (k)= 4k whenever k is a power of 2, and that G(6)>9. This
is the origin of the remaining numbers in our table. Again, every ninth
power is congruent to 0, 1, or — 1, to modulus 27, so that a number
27 m + 13 requires at least 13 ninth powers: thus G(9) > 13.

Considerations of this character concerning cubes lead only to the
Hurwitz-Maillet inequality; and when k=5 or k=7 the resulting
inequalities are entirely trivial, for any residue to modulus 25 can be
generated by 3 fifth powers, and any residue to modulus 49 by 4 seventh
powers. It will be found that these simple facts have a very interesting
bearing on the structure of our singular series.

2. The formal theory of the singular series.

2.1, The singular series is absolutely convergent for sufficiently
large values of s,'?) and is then expressible as an infinite product

(211) S=1+d4+ 4,4 .. =24, =tatoty .. =7,
where # is a prime and
(2. 12) Zo=1+A +A . +...=24,"

The sum y_is a finite sum, for 4_; is always zero from a certain value
of 2 onwards'?). '

The question of the absolute convergence of the series and product will
be discussed more precisely later. Our immediate object is to determine
the form of the factors y_.

2. 2. We suppose that ¢ =2%(4 > 1), and we denote by »(&, g, n)
the number of solutions of the congrence

(2. 21) 2 xf=n {mod ¢)
r=1
for which
{2.211) 02, <& (r==1,2,...,8.
We write
(2.22) v(g,q,n)=M(q,n)=M(q).")
Finally, we denote by
(2.23) N(g,n) =N (q)
12y P N. 1, S. 40.
) P, N. 2, 8. 18,
¥) P.N.2, 8. 22 (f. n. 7). This will also appear incidentally later (S. 374).

..

=
!
=

en it is unnecessary to show explicitly the dependence of M on .
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the number of solutions of (2.21) for which 0 <, < ¢ (r £ ), and for
which not every z is divisible by #. Such a solution we may call a pri-
mitive solution.

Following Landau, we write ‘y|z’ and ‘y + 2’ for ‘z is divisible
by y’ and ‘z is not divisible by %’. We shall find it convenient, moreover,
to have a special notation to express ‘y"|z, y™*' + 2’, i.'e. ‘yr is the
highest power of y that divides 2’. In these circumstances we shall
write ‘yr|z2’. ,

This being so, the value of y, is given, in terms of the numbers N,
by the following theorem.

‘Theorem 2. Suppose that
(2.24) k>2, alk (020), (a*)|n (B20)"
and let o
(2.25) p=0+1 (#>2), o@=0+2 (a=2)
Then
(2.26) g2 =DBa®-9N(z7,0) 4 afE-2+ei-a N (ﬂ", ”—;‘L) )
where
(2.2611) B=0 (B=0),
(2.2612) B =1+ at-s4 n2E-9 | z6-0GE-9 (8>0).
The proof of this theorem rests on a series of lemmas.
2.3. Lemma 1. If
7%k (020), gq=a% 1>041 (>2), i>0+2 (2=2),

(2.31) z =&+ ani—9-1,
. then
(2.32) w":——:ék+;’%a£k_lni'1 (mod g).
- We have

k
) k) k= s
kb r(i~-0-—1)
xt = 2 (r et ' X

r=0
The terms r = 0,1 are those which occur in (2.32).

Suppose then r>2. The index of the highest power of = that
divides r! is

[H + [1%] + < :::l-'

18) (:ri)”| n means, of course, .‘«Tﬂk' 0, aftNE + n. Its meaning is different from
that of =" *|», which would mean x¥{n, wf¥+1.Ly
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Hence the r-th term is divisible by a¢, where
-2 .
e>0— T4 r(i—0-1)=i4+Igr+(r—1{E—-0-2)-2.

f 2>2 ¢c—i>ir—22>2—-1. Ifa=2 126043, and s0
¢—i>r—1—22—1. In either case ¢ —4> —1, or c—iz20.
]

2.4. Lemma 2: 2Aﬂ;(n)=n-"“‘”M(n“‘,’n).
i=o0
Writing, as usual, ¢ ~ z%, we have

=4, = 3 (29) (- np)

P
. a-1
. y 7 \
=Y X qGitait . el —n) =g 2 o (X),
P T By Tg=0 T X Tgeeen z,

where X = gf+z}-1- ... +2f—n and ¢, (X) is Ramanﬁjan’s sum?%)

cq(X)=2e_(pX).
I i=1, ’

g=m 6 (X)=—1 (z+X), x(X)=7—1 (=] X),
and
(2.41) A,=n—’(2(— 1)—|—-2n) =n-¢(— a'+aM(n)) = 22~ M (z)— 1.
i1, i T

6 (X)=0 (@i~ + X), ¢ x(X)= —ait (a3 X),

¢ (X)=n*1(z—1) (=*| X),

A_,=nts (Z’(_ at=1) +2”1)

nl—l‘x ﬂ"lx
= qi18 M (7} — gi-ta~1y(gh ai=1 p),

If now .

. xr = E1- + arnl_l (0 é Er< ”l—l’ 0 é»“r < '")’
we have ' » :

2a=D8 (mod &#~1),
and so _ » '
v(a% mt-1 n) -—-Z'w(n’-‘l, At~ n) = n* M(n*-1),
®#1,8g550 050 :

(2.42) A_; = att-0 M (at) — n(;.—l)'(x—a)M(aA—x)t

") See S. Ramanujan, Un certain trigonometrical sums and their applications
in the theory of numbers, Transactions of the Cambridge Philosophical Society, 22
(1918), pp. 259—276; G. H. Hardy, Note on Ramanujan’s function ¢, (n), Proceedings
of the Cambridge Philosophical Society, 20 (1921), pp. 263—271; and P. N. 3.
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The lemma follows from (2.41) and (2.42). As corollaries we have

Lemma 3: 4, =0,

Lemma 4: If n is representable in any manner as a sum of s
( positive, negalive, or zero) k-th powers, then y_> 0.

Lemma 3 is an immediate consequence of Lemma 2. To prove
Lemma 4 we have only to observe that A_; =0 from a certain value
of 2 onwards'®), and that, under the hypothesis of the lemma, M (#%) >0
for every /.

2.5. Lemma 5. If ¢k (6 > 0), then
(2.51) N(at,m)=n=ne-DN (z9 m),

where ¢ is defined as tn Theorem 2, 1o > ¢, and m is arbitrary.
We may suppose u > ¢, and write

(2.52) B,= &m0 (0L E < an-0-1 0 <a < aht),
Let k =n®%k,. Then (k,,n)=1. Also
(2.53) wf=t} 1 koayéf'lnf'—l (mod ),

by Lemma 1. If now

(2-54) m=m1+m2n!l—l (O§m1<.}7'“—1),
the congruence

(2.55) _7x,’f=:—m (mod =¥, 0 <z, < ar),

s equivalent to the pair of congruences

(2551 e =m (mod it 05 6, <o),

and

(2.552) S ko =, ™ (mod 7, 0 < < 8+
: s Mo Yror ==ty i1 y VS e, <o .

In what follows we take into consideration only primitive solutions
of (2.55) and (2.551). In such a solution of (2.551) some &, say &,, is
not divisible by n. This being so, the values of «,,¢,,... in (2.552)
may be assigned arbitrarily, and .then, since (%, 34 —1’7!) =1, the value
of o, will be determined uniquely to modulus n. There will therefore
be 79 possible values of o, less than #0+!, and =8 (m8+1)s~1 = n@+Dx-1
sets of «’s associated with every solution of (2.551). That is to say
we havé

(2.56) N (a#,m) = n@+vs-1 Nl,i

1%) See S. 369, footnote ™).
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where N (7#,m) is the number of primitive solutions of (2.55) and N,
the number of primitive solutions of (2.551).
Again, N (n¥~',m) is the number of primitive solutions of

(2.57) ' NMaet=m (modar1, 0 <z <nvl).
If here we write

' z, =&+t (0K <nvm8l, 0 <o, <),
and use Lemma 1 and the hypothesis ,u >, we obtain

xk= &k (mod z#—1).

Hence
(2.58) N(a*=1t,m) = N, ==a®N,.

ye tige. ey ily
From (2.56) and (2.58) we deduce
(2.59) _ N (n*,m) *—n”‘N(n“ ~Lm) (>

and the lemma follows Mmmediately.

. Proof of Theorem 2.
2.61. Let » be the integer such that n#¥+*|{n, so-that 0 <» <k; let
(2.611) dp=Max(Bk +»+1, Bk + ¢);

and suppose that 1 > i,.
We divide the solutions (primitive or imprimitive) of

(2.612) Dlzt=n . (modat, 0Lz, <at),

into classes as follows. In the first class we put the primitive solutions,
N (#*n) in number; in the second class the solutions in which every =
is divisible by x but not every x by =*; in the third those in which
every x is divisible by n*® but not every z by n%; and so on.

The second class of solutions is correlated with the class of primitive
solutions of

(2.613) : DlyF=L (modatk, 0 Ly, < ni).

X
If we write
y,=¢ toaait (0S5 E <at % 6L, < ab-1),

Dyr= sk | (mod sr#~¥),

and the number of primitive solutions of (2.613) is plainly z%*-* times
the number of similar solutions of

then

25:‘5;}}- (modni-¥, 0 <& <at-h),
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2k-1s N (,,;.—k, _% )

Similarly the number of solutions of the («--1)-th class, where
a< B, is

(2.615) na(b—l)sN(“,;_.,‘kV n >

mak

or is

There are no solutions of any higher class, since (f-1)k> gk +»+1
and nfk+r+1 4 n. Hence, if 1> Sk +»+1, and so certainly if 4> i,
we have

14
(2.616) M (ak, n)zzna(k—l)aN (ni.—uk’ ”':‘k>_
a=0

2.62. Again, if 1 — ak > ¢, and so certainly if 1> 7, and « < f.
we have, by Lemma 5,

(2. 621) AN(J:"_"", ;%) =n(‘{’””‘_’l“)‘(‘“‘l’N(n¢, _”__)

mak /"

Making this substitution in (2.616), and multiplying by #4¢-#, we
obtain ’

b
‘9 A - o - Ai— k—1 k=) (38— . _h
(2.622) #n*0-2 M (2%, n) —,,_';'on 1=8). galk—1s. gl~ak=q)(s- I)N(nt/’ m)

4
. n
=D a0 tr - N (r, 1Y,
oy Te .v/

Hea<pand p<E -7 is divisible by av, and we may re-
place it in N by 0. If n>2, o=04+1<20<2%<k. If n=2,
p=04+2<L20<k unless =0 or =1, in which cases ¢ <3< k.
Hence we may replace every N in (2.622), except that for which
«==f, by O.

It follows that the right hand side of (2.622), is equal, when i > 4.

to the value for y_ _giveri in Theorem 2. It is also independent of Z,
and therefore, by Lemma 2, equal to

(2.623) hmn*t-9 M (nt, ny=y_.
) ' L
This completes the proof of the theorem. We may observe that we
have shown incidentally that

(2.624) Ai=0 (i g
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3. Some properties of the sums S, ,.

3.1. In this section we establish certain properties of the Gaussian
sums

< Y] B
(3.11) . sp,q=sp,q;k.—_§eq(7 P)

which will be useful for the further study of the singular series'?). We
have not attempted to make the theory complete, though we have deve-
loped it a little further than is absolutely necessary.

We denote by

2= 1,= 1,(m) (1Sx_<.h=¢(q))
the  Dirichlet’s ,characters’ to modulus ¢.%%) #, is the principal character,

and 7, is the character conjugate to y,. We shall be concerned only with
the case ¢ = n*, where # >2 and 1 >1.

It will be convenient to write

(3.12) e —me Ye (i*p) = 3¢, (i p).

go=1

It is plain that, if 1 <k,

(8.13) Sy; =s,;,+21= 8, 4+ a7t
alj
3.2. Lemma 6. If (I,q)=1 then
21Nz (m)=0

unless m =1 (modg), sn which case the sum s h.
The result is obvious if (m, ¢)>1. If (m,q)=1, we determine m
from the congruence mm’=1 (modg). We have then

1)z, (m) =77, (m") =7 (Im"),

2 1(m") =

unless Im'=1 or m =1, in which case the sum is h.

and

%) What we do i, in effect, to develop from our own point of view certaia
portions of the theory of the division of the circle (Kreisteilung). It is not unlikely
that the substance of our analysis is to be found elsewhere; but it is not altogether
easy to extract, from the classical accounts of the theory, the particular parts which
we require.

%) A systematic account of the theory will be found in Landau s Handbuch, 1
(Zwmtes Buch)
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We write
(2.21) o= (h, k)= (p(q), k) = (a*~Yz — 1), k).

3.3. Lemma 7. There are just 6 characters y_which possess
the property

(8.81) rk=1,.
These characters are given by
(3.82) 1,(1) = e(%),

where gr#(), 1,2,...,0 —1 and z is the index of 1.
We have generally
: L

(3.33) 7, () =e(¥),

where y is the index which specifies x.*') The necessary and sufficient
condition for (3.31) is that kyz =0 (modh) for every z, or that

(3.84) ky=0 (mod & ).
From (3.34) we deduce v
c ky __ I

which has the single solution y==0 to modulus —2— Thus (3.35) has the &

solutions

i

[{~3
N3

Y lo=0,1,..., o—1)

to modulus 4. These are all solutions of (3.34), and are plainly the
only solutions.

We shall call the characters y’ ==y which satisfy (3.31) the special
characters. It is clear that 7 . is a special character.

‘Lemma 8 We have
(3.36) 2LW=00642), r.0=00]a2).
For . .

o=0

210 —>e(- %)

Lemma Y. Suppose that g=n* (1 >1), and that k | n—1. so
that § = k. Then

(3.37) | e, (lp)=0,
I

) Landau, S, 401--402.
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if (p,q) =1 and the summation is extended over those residues I of ¢
for which & | z.

We denote by

G=g+ma

the primitive root (modq) to which the indices refer, g being a primitive
root (mod x).??)

Suppose first that 6 =k =a — 1. Then the indices of the I’s in
question are '

0, a—1, 2@—1), v (@11 (= —1).

Suppose that z, and z, are any two of these n*~1 indices, z,>2,,
and /, and I, the corresponding values of I. Then

L— L, =G%(@% % —1) = (G"° —1) (mod ),
where u is an integer, and
G —1=¢""—1=0 (mod ).

Hence I,— ;=0 (mod=). On the other hand, J, and /, areincon-
gruent to modulus g, since ud =z, — 2, <a*~'(x—1) and @ is a pri-
mitive root for ¢. It follows that the I’s in” question are the numbers
of the arithmetical progression

1, =41, 2a+1, ..., (A1—Da+1,
so that :

;’e.,(— Ip)=e,(— p;;:—el(_— n’fl‘) —0.

The lemma is therefore proved when 6 == —1. The extension to
the general case is immediate. The indices of .the I’s in question are

now
0, 0, 28,..., a—1,..., A Y(z—1)—

and form ’1—}—1 arithmetical progressions of the type

A, A+4-a—1,..., A!-I—(n""l—-l)(n——l),

where 4 is one of 0, 4, 20 ..., x —1—4. The I’s corresponding to
the indices contained in any one of these progressions form an arithmetical
pregression of difference n, and the sum of the lemma splits up into

TO -

! sums which vanish individuslly.

*) Landau, Handbuch, S. 394.
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3.4, Lemma 10. We have

g-1

(3.41) 8,4 =Ze <Zp)27 (),

the summah%n with respect to »’ extendmg over all special ckamcters

‘We may plainly restrict I to values prime to ¢. If (1,¢9)=
(m, q)——l we have, by Lemma 6,

e (lp)Zx )z, (m)722+£2’ =he,(mp).
m = I£m »

Hence, if j runs through values less than and prime to g,
of ’ PR 1 - .
Spo= 2 ¢(* P =5 2 > 2 e, (10 1,0 2.(G")

7 7 4 »
1 . Y ok
=5 2 ep) 21,1 (2,60
: I x . Fl

The sum with respect to j is zero unless y,_ is special, when it is h:
whence the lemma.

- Lemma 11. If g=n* (11 k) and 6= (h, k), then
(3.42) S;ak=S;§5
This is an immediate consequence of Lemma 10. For the right hand

side of (3.41) involves £ only in 0 far as the special characters are fixed
by k, and is therefore unaltered when k is replaced by 4.

Lemma 12. If g=a* (1<1<k) and n 1k, then

(3.48) 8, g =41, %)
It is plain from (3.13) that what we have to prove is
(3. 44) Sper=0,
or, by Lemma 11,
(3.45) - 8y,40=0.

By Lemmas 10 and 8, we have
Spas=2 e (10) 27, (D=0 e,(1p),
) ! ]

where the last summation is restricted to values of ! whose indices are
multiples of &; and this sum is zero, by Lemma 9 2¢).

%) This has been proved already, in a different manner, in P. N. 2, 8.19~21;
but it is interesting to see how the result arises from our present point of view.'
) Since §|z—1 when = | k.
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8.5, Lemma 13. If A=1, ¢g==, and 0 =1, then

(3.51) 8, 0:=0.

But if 6> 1 then

(3.52) Sp,q,k'=2t§,x”,(p‘),
where g

(3.53) 7, =$eq(l) 7.(1),

and the summation with respect to »” extends over the special characters y’,
exclusive of the principal character y,. Also
i3.54) 18, ¢l (6 —-1)Vq.

We may regard (3.52) as including (8. 51), since its right hand side

disappears when & =1.
We have, by (3.13) and (8.41),

Spar=1+Sper=1-+ e (10)7, 1)+ e, (1p) X1,..(1),
' H 1 x’

where the principal character is now excluded from the summation with
respect to x’, and ! runs from 0 to ¢ —1. The sum of the first two
terms is

1+e,(p)=1+p{g)=0.
2/ (p) 2 e (19)7,. (1)

Since Ip runs through the residues of ¢ when [/ does so, the inner sum
is 7;,, whence the resuit of the lemma.

Finally, to prove (8.54), we ‘have only to observe that, g being
prime, 7 is primitive (eigentlich)®®), and

The third term is

i, | = VE-

4. The behaviour of y_for large values of x.

4.1. In this section we are concerned with large values of =, and
may suppose sz >k, so that 8 =0, @ =1. The O’s which occur refer
to the passage of = to infinity; the constants which they imply depend
upon %k and s, but not upon n.

We suppose that k> 8.

Lemma 14. We have
(4.11) A= e (—np)( 3r,1,(p)

x’

8
H

»
#) Landau, Handbuch. S. 479.
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where the summation with respect to x’ extends over all special characters
other than the principal character.

This follows at once from (3. 52).
Lemma 15. If =1, g=0, then

(4.12) 2, =1+ 0(at"#%).
We suppose first that n4n, so that » = 0. Then
(4.13) 1,=1+4,.

Here we replace A, by the right hand side of (4.11). Any product of
x’sisa y and so, when we expand by the multinomial theorem and invert
the order of summation, we obtain

Ar=a 3 T 3 y(p)es(— np),
P .

where T' is a product of s ©’s, x a product of 8 y’s, and the number of
terms in 211 is O(1). The inner sum is O(Va) for every y and all
values of n in question®¥), and so

A.=0(a* (Va)-Va)=0(at~¥*),
which proves the lemma when x4 n.

Next suppose =|n, so that 0 <» < k. In this case i,=» -1 and
v+1

(4.14) 2o~ 1+ A+ D) A
- 3
Now 8, ,i=a*1 for 2<LAi<L»+1Lk%, by Lemma 12; and so
A _=.n"’2’e,,l (—np)=a"%c.2(n),
-

A, =ai-s-1(g — 1) (2§{1§v), A= —gi-s=1  (l=w+41),

r+1

Z, A i = — zl-s,
3

1,=1+0(nt"4%) —al-e =11 O(at ).
This completes the proof of Lemma 15.
If n is fixed, =+ n from a certain value of = onwards. Hence we
obtain
Theorem 3. The singular series 8= 24, and the product
P =1IIy_, are absolutely convergent for s > 4, and S = P.

Thus

) It is —1 if y is the pﬁncipa.l character, and the product of a y and a 7 if y
is non-principal (and so primitive: Landau, Handbuch, S. 480).
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$4.2. Lemma 16. If s 2>1 then
(421) 140 ¥) <y, <(14at—r+ ...+ 2f%9)(1+ 0 (ai"})).
This is proved already if § =0, and we may suppose f > 0. From
Theorem 2 we have, on the one hand
{4.22) 1. (n) = 22N (=x,0),
and on the other
{4.23) 2,(n) L1+ ats .. L agb-DE-9)z1=2 N(z, 0)
+ npE=o+1-2 N (7, n'),

n . . . = e .
where n’= —. Bince neither n nor #’ is divisible by =*, we have
4

a4 N(n,0)=n'""*N(z,n)=z_ (=), At~ N(z,n") =g (n'),
and each of these is, by Lemma 15, of the form 1+ O(n#~#*). Thus

(4.21) follows from (4.22) and (4.23).
As a corollary we have

Lemma 17. If s2k+2 then 3, =14 O(x~%).

5. The numbers v_, I'(k).

5.1. Given & and =, and any positive integer m, there are two
possibilities. Either (i) there is a number

(5.11) h.="h(k,s,n)>0
such that
(5.12) -y

for 8 >m and all values of n, or (ii) there is no such number. We
define ‘

.= (k.7)
as the least value of m for which (i) is true, and I"(k) by
(5.13) I'(k)=Maxy_

Further, we define ‘
7, =7'(k,).
as the least value of m such that
(5.14) 2,>0
for s > m and all values of =.
It is evident that y <y .

Lemma 18. If x >0 for all sufficiently large values of n. then
2,> 0 for all values of n.
Mathemstische Zeitschrift. XIT. 12



178 G. H. Hardy and J. E. Littlewood.

In proving this Lemma we leave out of account for the moment the
special case k= 4, n = 2. That the result is still true in this case will
appear incidentally later.

It is easy to see that, apart from the exceptional case, ¢ < k. Thus
fz>2 g=0+1L2%<29<%.

HEn=2, 023, then p=042<2°<k.

Ifn=2,0=0, kisodd and p =2< 8Lk

If 7==2, =1, then k is oddly even and ¢ =8 < 6 < k.

If 72, 0=2, then o= 4 <6 <k, unless k& = 4.

Thus @ <k in every case except that in which ¥ — 4, » = 2. when
p=k.

Now let

n=n"m-+n’' (0 < av).
If "4 0 then #=0 (since ¢ < k) and so, by Theorem 2,
Xz (n) = AT AN (7, n)=nr0-9 N (a?, n') = y,(n’).
But y.(n)>0 for large values of wm, and therefore y.(n')>0. It
follows that y, > 0 for all values of n that are not divisible by 7.
Again, if (m, n)=1, we have, by Theorem 2,
X (mTm) = n?0-a N (2%, 0),

since @ <k. The left hand side is positive if m is Jarge, and so
N (=%, 0)> 0. Hence, whatever be the value of m (prime to =).

t=(m7m) 2 ara-9N (7, 0) > 0.

It follows that 1= > 0 also when n’ =0, which proves the lemma.
5.2, Lemma 19. The necessary and sufficient condition that

(5.21) N(zr,n)>0,
for every n, is that s > y,. Further,

(5.22) Ya=Px
except when %k — 4, n =2, in which case

(5. 23) ya=16, 3l =15.

Leaving aside the exceptional case, so that ¢ < k, let s> y,. Then
Zx(n?)>0. But =0 when n=nv (since ¢ < k), and so
%=(77) = n?U-9N (57, 27) =n70-9 N (2%, 0).
Hence _ '
N (=%, 0)>0.
If on the other hand 7 == 0 (mod z7), then B=0 (since p < k).

Hence
Aa =P N (n?, 1)
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and
N (n?,n)> 0.

Thus s > 7. is a sufficient condition that (5.21) should hold for every n.

Next, suppose that (5.21) holds for s = s, and every n. Then it
holds, a fortiors, for s >s, and every =, and the N’s that occur in
Theorem 2 are both positive. Hence

A = 2P0~ (82 8,)

8 = ¥z = V-
It follows, first that s> y. is both necessary and sufficient for (5.21),
and secondly that s > y; involves 8 > y., 4. e. that y, =y..
If =4, n =2, then 2%=16. Now =z* is congruent to 0 or to 1
to modulus 16, according as « is even or odd. It follows that N (16, n) > 0
for s > 16 and every n; that
N(16,2)>0 (164 n), N(16,0)=0
when s ==15; and that N (16, 15)= N (16, 0)=0 when 8 < 15. Finally
it follows, from Theorem 2, that
X2 > by (8 216), %2> 0 (8=15),
2o (167, 15) = 2PU=19HU—10 7 (15 15y 9=116+D (8=15), ¥

and so

and
2a (167, 15)—0 (s < 15).

Since 27 *%#*Y_, 0 when — co, these results embody (5. 23). Incidentally
we see that Lemma 18 is still true in the exceptional case.

5.8. Theorem 4: G (k) = I'(k).

Leaving aside for the moment the exceptional case k=4, n'=2,
suppose that &> G (k). Then any sufficiently large m is the sum of
8 k-th powers, so that x, >0 for every m and all sufficiently large
values of n. Hence, by Lemma 18, 3. > 0 for every n and every =, so
that 8> y,. It follows that G (k)>>y. for every m, which proves the
theorem, apart from the exceptional case. “In this case yr_l() and the
result is still true, since 0(4)2 16 %).

"’) N(186, 15)-—: 8" when 8=15, since each x may have any one of the values
1,38,5,...,15.

") The lower bound F for @ is associated with the vamshmg of the singular
series S for s F—1 1, except when k=4. When k=4, I'=16, and the series is
positive for 3= 15, but assumes arbitrarily small values for suitable values of n.

It should be observed that our proof (see § 5. 5 below) that

G (m =172y, =a® (a>2)

{Fortsetzung der FuBnote 28 auf niichster Seite)
12#
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5.4, Lemma 20. Suppose that |k, and that ¢ is defined as
in Theorem 2. Further, suppose that

(5.41) k=n0ck,
where

(5. 42) e=(a"%k,x—1),
and

(5.43) d=2=1

£

80 that + n —1 and (k,,d)=1. Then
(5.44) wLe=c,=clk,n)=

F—]'—l

We write g =x7. We must distinguish the cases 7 > 2 and & == 2.

(i) If 2>2, ¢p=0-41. We suppose that @ is a primitive root
(mod g). We divide the residues to modulus g into classes as follows.
Consider first the residues n, prime to o. Ifo is the index of n,,, we have
ny=G" = @™’ (mod 9),
where
o b(e) _ P(a®) a' “Y(x—~1)

o qa 4 d

—_ -1 29
=" £, )

m, has one or other of the d values 0,1,...,d — 1, and e one or other
of the y, values 0,1,...,y,—1. The d values of n, with a common
e we class together and call the numbers

ey (e=0,1,...,y5—1);

the-class of numbers «! with a fixed ¢ we call C;.
Next, consider the residues n; for which n?|n,, where 0 < ¢ < g.
We have
n,=a'N,,

where the N’s are the ®(z7~%) numbers less than and prime to =v~¢.
As @ is also a primitive root to modulus #v~%, we can write
Ni = Gm,'l/vﬁ’l (mod Y ——i),
n; =t N, 2z gt @M7¢ (mod a*),
is essentially the same as Kempner’s proof (see pp. 45—46 of his Inaugural;Disser-
tation) that
G(29)>27 =202
His proof too fails when la 4, and he has to appeal to the structure of the particular

number 31.

) We write @ (o) for Euler’s function usually denoted by ¢ (o), as ¢ is used
herc in s different sense.
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where ] )
_e@Th _ At @)

Yy, = d

== me=i-lg,

m, has again one or other of the values 0,1,...,d—1, and ¢ one or

other of the values 0,1,...,%,—1. The y; new classes obtained in

this manner we denote. by

‘ C; (e=0,1,..., 4, —1),

and a typical member of C! by «/. '
‘Finally, the single number 0 is.the sole member ¢, of a class (.

The total number of classes into. which the residues are divided is

a?—1

Vot ¥t F ¥ Fle=T gt l=c=c.

We may denote the whole system of classes, in the order in which
they have been defined, by 00,01, eers C,y . l, C,, and a typical member
of C. by «,. ‘ ‘

The class U, consists of the residues of k-th powers of numbers
x prime to n. For

O(y
k=”"5ko"‘="on'(::1 V= o Yo+

Also #  G' for some ¢ (since (z, n) =1), and
k= G“‘o'l'o = @™ ro

so that x* is an «,. Moreover we can choose ¢ so that {k, has an arbi-
trary residue m, to modulus d, since (%), d) =1, so that every «, is an z*.

Finally, to complete the properties of the classes which are imme-
diately relevant, (1) 1 belongs to C,, (2) «,«,, where o, and «, are any
members of C, and C, respectively, belongs to C,, and (8) ¢,«,, where
«, is a given member of O, can be identified with any member of C,
by choice of «,.

Of these properties (1) is obvious. To prove (2) we observe that, if

— — Moy . — — s rymy oy, e
° =ﬂ0:G ollo’ a,_-:n,.—_-—n’G’ U ,

then
is an «,, since y, y,. Finally

Moo + My, = (aimy + my) v,
and we can choose m, so that n¥m,4- m, shall have an arbitrary residue

(mod @), since (, d) =1; hence «y¢, can be identified with any member of C,,
5.5. To prove Lemma 20 it is enough, by Lemma 19, to show that

(5.51) N(z®,n)> 0
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for s > ¢ and every n. And the necessary and sufficient condition for
(5. 51) is that every m should be congruent (mod #%) to the sum of at
most ¢ numbers 'oco. If any «, is' the sum of not more than ¢ «,’s, then
so, by (2) and (3) of the last paragraph, is every .. In these circum-
stances we shall say that C, is representable, and what we have to prove
is that this is so for all the ¢ values of r.

- Suppose that 1 < ¢’ <e¢. Then there are ai least ¢’ different classes
representable by not more than ¢’ «,’s. For, in the first place, this is
true when ¢’ == 1. Suppose that it is true for ¢’ =& < ¢ but false for
¢’ =21, and let C be a typical class representable by ¢ ¢,’s, and C,
a C. Then «_ belongs to a C, and therefore, since no new classes become
representable when ¢ is changed to €41, . + 1 belongs to a C.
Similarly &, + 1+ 1 =&, 4 2 belongs to a C, and, repeating the argument,
every residue (mod g) belongs to a C, which is a contradiction,

Taking ¢’ = ¢ we see that ¢ distinct classes, and therefore all residues
(mod @), are representable by ¢ «,’s, which proves the lemma, when n > 2.
(ii) There remains the case 7 =2, in which ¢ =0+ 2, e=d =1,
¢=x%=p. In this case there is nothing to prove, for any residue
(mod g) is representable by at most P’s.
A particularly interesting case is that in which d=1, e=n—1.
In this case ]
=n0(n— 1)k,,
where k, is prime to 7. Here
7, Sar=abt (2>2), 5, <27=20" (7 =2).
If 2>2, y =ar. For
gk = gm0k = | (mod =7,

so that 1 is the only «,. Hence N (2?,0)=0 if 8 <27, and y, > =",
by Lemma 19. In particular

v.=a=k-+1
if bmn—1. Thus y, =5 if k=4, y, =7 if k=6.
If n=2, k=2%k,. Suppose first that 6> 0. Then
220 =1 (mod 2°%%),

~and 8o 2¢#=1 (mod 2”). Except when & = 4 our argument above applies,
and we obtain : '
g = 2% ==28%* (8>0).

The result still holds when k — 4, since then y, = 16 = 2*.
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The argument fails if 6 = 0 (so that k is odd). Here o =2%=4;
~ lis a k-ic residue (mod 4); and 0,1, 2, 3 are all representable by
at most two of the numbers + 1. Thus

PP (6= 0).

5. 6. In generalitis posmble to go a little further than in Lemma 20.

Lemma 21. Suppose that d, ]d where d,>1. Then
(5.061) -y, EMax(d;, ¢ —1).

Since d, |« — 1, (5. 61) gives in particular

y,EMax(z—1,¢c— 1)
in all cases and, '

y, <Max(b—1,¢—1)
if 0> 0.

To prove Lemma 21, suppose that 1 < ¢’ < ¢, and let »(¢’) be the
number of classes, other than the class C, (containing the residue O' only),
that are representable by not more than ¢’ ¢,s. Then
(5. 62) v(¢'+1)=Min(»(¢') + 1, ¢c—1).

For, if (5. 62) is false »(¢’+1)=»(¢')<c— 1. Let C be a
typical class of the-»(c’) classes, and €, a C. Then, if «, belongs to C
«, -+ 1 must belong to a C or to C,, since no new classesv other than
perhaps C,, are representable by ¢’ -+ 1 fs. If « +1=0, «, +2
belongs to C,, and therefore to a C. If «, + 1 belongs to a C, o, + 2
must belong to a C or to bc. Repeating the argument we see that
every residue, other than 0, belongs to a C, which is a contradiction.

From (5. 62) it follows that

vie—1)2e-1,

so that all residues, 0 perhaps excepf,ed are representable by at most
c—1 «,’s. It remains to consider the residue 0. Let d = nd, and

o =G"" (mod o).
Then «§== 1, since yy, < ¢ (o) and @ is a primitive root (mod 0),
(al)dx__ Gd'l’n G"’(e) ._...1 (mod 9_‘), »
‘ , . RPN 1—(a!)8
1o+ (@) +. (@) =75 0 (modo),

and 0 is represenfable by d, ¢,’s, which completes the proof of the
lemma.
Suppose in particular that &, =d = 2, so that 7z > 2 and

k=30 (x— 1)k
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In this case the «,’s are the two numbers + 1, and

Y, %—(ﬂ” —1).
But
6= 1=g (0% — 1) =g(ar 1),
so that
y =a(a® —1)=c—1.

Thus in this case also we can' determine y_ exactly.

5.7. It is convenient to sum up onr results concerning the cases
d=1 and d =2 in a separate lemma.

Lemma 22. If k=n%(a— 1)k, where a7 >2 and k, is prime
to n,‘then

(5.71) y, =m0+,
If k=2°k,, where 0> 0 and k, is odd, then
(5.72) e =2"%

If k& is odd, then y, = 2.
If b= -%»n“(n— 1)k,, where 7> 2 and k, is prime to n, then
1
(5.73) | 7, =g (70 —1).
5.8, We know that G(k)=>I'(k)=Maxy_. Thus, when k is
given, every value of y_gives a lower bound for G(k). These, when
less than k-2, add nothing to our knowledge of G(k), since G (k) is

always greater than k. There is therefore a special interest in determining
as systematically as possible all cases in which

7., > k+1.
Lemma 23. We have
(5. 81) y, <k+1
unless () k=2° (0>0), n=2, when y,=2°* =4k,

. 4
(B) k=2°8 (0>0), =2, when y,=2°"" =3

or (y) k=nb%¢ (0>0), where n > 2 and e|n — 1.
In cases (bu) and (8) (5. 81) is false; in case (y) & may be irue or false.
We write k=n%¢k,, as in Lemma 20. If =0, 2> 2, then
yo<o—st+1<k+1,

by Lemma 20. If =0, 7z =2, then 3, — 2 by Lemma 22. Thus we
need only consider cases in which 6 > 0. '

k.
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Suppose first # >2. If k> 1, we have

0+1 o (0+1_ 8
71'_S_c=f’a+ ;1e+1<—{-(i—L—ll£+ISneak +1 E41.

Thus (5. 81) is true unless k) =1, k=n%¢, which is case (y).
Next suppose n =2, k=2‘.’k Iﬁ k, > 3, we have

=2 =t <kl

Thus (3. 81) is true unless ky=1 or 3 cases («) and (8).

The case in which % = 6 is interésting as falling under both () and (7).
Hrn=38k=82=a(z—1),e=n—1,d=1,andy,=3"=9. And
s =2"=3,

In case (y), (5. 81) may be true or false. Thus it is true when
k=13, n=3, for then y;=4. But it is false when k=6, »=3.

5.9. We must now collect our results and state them as theorems
concerning I'(k). We shall say that k is exceptional if it has one of
the forms in («), (8), or (y) of Lemma 28.

Theorem 5. If k is not exceptional, then

I'k)£k+1.
This is an immediate covollary of Lemma 28.

Theorem 6. If 0 >1 then I'(2%)—=2°%**,

Theorem 7. If 0> 1 then I'(293) = 2%*%

Theorem 8. I'(6)=Y.

'These theorems follow from Lemma 23, when we observe that the
numbers in question in each case exceed k -- 1.

Theorem 9. If n>2, 8>0, then I'(n®(n — 1)) ==a%+1. This
equality holds also when 8 =0, provided that k=== —1 i8 not exceptional.

The second parv follows from Theorem 5 and Lemma 22. We may
therefore suppose 0 >0. We have already seen that y_ ==n9+1, which
is greater than k4 1. If n, is a prime other than =z, ‘7. < k41 unless
Ay =2, a%(x—1)=2% or A, =2, a%(x— 1)—20'3 or z, > 2,
n(n— 1)=nfr¢,, where ¢ |n, — 1.

It is easy to see that the first and third alternatives are impossible,
and that the second can occur only ‘when.n =238, 0=1, k=6. In this
case the result has been proved alréady; in all other cases we have
Yy <7, 80d I'(k) =y =nb+1,

Theorem 10. If n>2, 0> 0, then

P(-;—n”(n - 1)) =-—3 (n0+1 —1).
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Here y, = }(n9+} — 1), since d = 2. This is greater than & - 1 except
when 7 =8, 6 =1, k=3, when the two numbers are equal. Moreover
$7%(x — 1) cannot be equal to 201, 2613, or nf1¢,, where n, + =, 6, >0,
& |m, — 1. Hence y,, < 7. and I'(k) = Yz -

Theorem 11. If n> 2 and k=n%c, where 6 >0, ¢'7 — 1, then

I'(k) £ Max (y., k+1).

It may be verified at once that z®¢ cannot be of any of the forms
201,203, nbre,, except when 7 =3,0=1,e=2,k=6. In this case
(k) =yy,=9. The result follows from Lemma 23.

Theorem 12. In all cases
I'(k) < 4k.
The sign of equality occurs if and only if k=26 (6> 2).
Theorem 13. In all cases
r(k)y<(k—2)2*'+5.

This theorem, which is included in Theorem 12 except when k = 3,
is inserted only because it is what we require for the proof of Theorem 1.
Our actual bounds for I'(%) are much better.

When k=3,'l"’(3)=4<_9=1-4+5.

It may help to elucidate the results which we have obtained if we show
in tabular form the actual values of I'(k) for a number of values of k.

k=3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
F(k)y=4 16 5 9 4 32 13 12 11 16 6 14 15 64 6 27

k= 19{ 20 21 22 23 24 25 26 27 28 29 30 31 82
I'ik)= 4 25 24 23 28 32 10 26 40 29 29 30 5 128

The values of I'(k) for k= 3,4,6,8,9, 10, 12, 16, 18, 20, 21, 24,
27 and 28 are given by the actusl theorems and lemmas which we have
proved; the determination of the remaining values demands further cal-
culations into which we cannot enter here.

6. The behaviour of the singular series when s > I'(k).
6.1. Theorem 15. Suppose that k > 2 and s, = Max (I'(k), 4). Then
(6.11) S>¢
for 8 > s, and all values of n.
By Lemma 16, we have

2x>1—aa ¥ (8 > 8, ).
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Hence there is a 77, = n,(k,s) such that

11,z R
t=>1=0a >1—062° (828,22 7,);

and so

(6.12) I[2->0 (82 8)
ﬂ;};ﬂo

But 7., >0 if 7 < 7, and 8 > I'(k), and so

(6.13) ]Ix,i>o (s=8,);
alay

and (6.11) follows from (6.12) and (6.13).

It is plain that our main purpose is now accomplished; with Theo-
rems 13 and 15, the proof of Theorem 1 is completed.,

6.2. It is of some interest also to obtain an upper bound for §.
Theorem 16. Jf s> k-2 then

6.21) S <o.
For, by Lemma 16,

3
3

1<l 4ol +oaf <l +0a"h
and the result follows immediately. .
Theorem 17. If s > k> 3, then

(6.22) S<nt
for all sufficiently large values of n.
’ By Lemma 16

1< (140270,
where o, =1 unless n*|n, and then g, =1+ §. It is plain that

Il e-<J] (1 +a)=d(n),

-Zin

where x%|n. As d(n)= O (n), the theorem follows.
The interest of this theorem lies in the resulting equation

(6.23) 0, (n)=0(n*).
There is some reason for supposing that
(6.24) Tp2(n) =0 (n"),

an equation from which very important consequences would follow. This
equation would cease to be plausible if (6.23) at any rate were not true.

6.3. In conclusion, we return for a moment the equations (1.15)
and (1.151). As we remarked before, the equation (1.15) is sufficient for
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our present purpose; but it is interesting to bring the remark of Ostrowski
into relation with our analysis.
Suppose that

N(av,n)21
for every n and for s=g,. There is then a primitive solution of
L s S +m£5n (mod s )

for every m. Consider now the similar eongruence in which s, is replaced
by 8>s,. Of the 2’s, the last s — s, may then be selected arbitrarily.
and there will be at least one primitive solution of the ensuing congruence
in the first s,. Hence '
N, (nr,n) = art-s,

It follows that the inequalities which we have used, of the type

Yo 2 77005
may be replaced by inequalities of the type

Ax _.2_ ar(1=8 71 ¥ 8= 80) ;—_n‘l’(l—r?n);

- and our numbers h,="h(k,n,s8) and ¢ = o(k,s) by numbers of the type
he=h(k,n,s)=h(k,x), and 6 =o0(k,s,)=0(k). It is however unne-
cessary to develop this remark further at the moment.

We add, finally, that the number I"(k) has a simple and interesting
arithmetical interpretation. In fact I'(k) is: the least number m such
that every arithmetical progression coniains an infinity of numbers which
are sums of m k-th powers.

(Eingegangen am 31. Oktober 1921.)



