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finite number of quadrilaterals inscribed in the curve (see p. 186,
Darboux, "Sar nne classe remarquable, de courbes et de surfaces
alg&briques " ) .

If the trinodal quartio

y V+aV+a$V + 2xy z (ax + by + cz) = 0

is capable of being written in the form (13), it is easily seen that we
must have c = 1 + ab, or either of two similar relations.

9. The investigation in § 6 will include the case of a quartic with
a triple point. For the equation (4) will represent such a quartic, if
a + b + c + d=: 0, the triple point being x = y = a = i*. The equation.
(8) then gives (S + l ) 8 = 0, and is irrelevant, showing that there are
no conies which touch the sides of an. infinite number of triangles
inscribed in a qnartic with a triple point.

On the Theory of Screws in Elliptic Space. (Supplementary Note.)

By ARTHUR BUCHHEIM, M.A.

[Head November Uth, 1884.]

At the January Meeting of the Society, I read a paper " On the
Theory of Screws in Elliptic Space," which has since appeared in the
Proceedings. • My object was " to show that the Ausdehnungslehre
supplies all the necessary materials for a calculus of screws in
Elliptic Space." When I wrote that paper, I did not see how the same
methods could (except in one obvious and unsatisfactory way) be
extended to other kinds of space. In a paper on biquaternions,
which is to appear in the American Journal of Mathematics, I have
developed Clifford's calculus, in such a way as to make the methods
and formulro apply simultaneously to the three kinds of uniform
space. While writing that paper, I saw how Grassmnnn's methods
may be extended so as to give the metric formulas for all kinds of
space. This extension I explain in the present note.

The fundamental idea of the exteusion in question is that the sym-
bol K no longer denotes the Ergdnzung (complement) of a figure, but
its polar with respect to the absolute. Besides this extension of the
Ausdehnungslehre11 give a few kiaciuatical investigations.
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In this note I use Professor Cayley's matrix notation, especially as
applied to quadrics. Judging from the look of some recent work on
Theta Functions, this notation does not seem to be as well known as.
it should be; I accordingly begin by explaining it.

Consider any symmetrical (or, as I prefer to call it, self-conjugate)
matrix, and the substitution defined by it. To fix the ideas, suppose
we have four variables; we take

a n g I 0 a5j, x i t %S} x ^ . ^"J

h b f in
9 f e n
I w n d

Now, using (to denote the set (£u £„ („ O> a n ( i , in the same way, using
x to denote the set (xu xt, xt) xt), and using A to denote the matrix of
the substitution, I write this equation

viz., this is a symbolic equation, to be understood as standing for the
developed equation (*) above.

Now, let y be a new set: that is, we write y for (yu yt> yt} y j , and

define xy = xlyl+x%yi+x8yi+z#v ,

Then we get xl — (abcdfghlmn ][ xp xp xit »4)J.

But we had £ = Ax.

Therefore, writing Ax* for (Ax) x, we can say that, if A denotes the
matrix

( a h g I )
h b f m
9 f c n
I m n d

then we can nse Ax* to denote the quadric

(abcdfghlmn ][ xv xi} xsi aJ4)
f.

I call A the matrix of the quadric, and shall refer to the quadric as.
the quadric A.

It is hardly necessary to point out that, if ® is a point, I is its polar
plane with respect to the quadric A, and that the "tangential" equation
is A'1? = 0, or that what precedes' applies to sets containing any
number of letters.
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As before, I denote the points of reference by e,, e,, e8, e4, and the
complement (Erganzung) by K. I call to mind that, if the four co-
ordinates of a plane are lv £,» £» £<> * n e V^&nQ itself is

Now consider the polar plane of e, with respect to the quadrio A of (1) ;
its coordinates are (ahgl) : that is, the plane is

and we get similar expressions for the polar planes of the three other
vertices of the tetrahedron of reference.

We shall take the quadric A as absolute, and we denote the polar
planes of ex, &c. by we» &c We have, by what precedes,

(uev we,, we8, we4) = ( a h g I ]£ Ke^ Kei} Keit JTe4);
h b f m
g f o n
I wn> n d

say, this is
(wej, we,, we8, we4) = (A J K^, Kev Kelt JTeJ,

and then, if we define that

w is obviously an operator which changes any point into its polar.
In exactly the same way, if we%e3ei denotes the pole of e,eseit

and we,e8 denotes the polar of e,es, we get

(we,e8e4, (-4'^e,, e,, e8) e4),

(weae3, weft, we^,, we^, we,e4, we3e4) = (-4"][exe4, eae4, e8e4, eseS) c,eu e1ea),

where A\ A" are self-conjugate matrices of the fourth and sixth sides
respectively, and are, in fact, the matrices of the plane and line
equations of the absolute.

If A is the matrix unity, A\ A" are also the units of their own orders,
and each equation of the absolute is of the form 2gs = 0, and then we
have simply w = K\ and for any other form of tlic absolute w has the
same meaning as K has for the special form.

Now, though the absolute was not explicitly used there, it is toler-
ably obvious that all the formulas of the paper on the Theory of Pemvs
,iu Elliptic Space have reference to this special form of the equation of
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the absolute. To see this, we have only to consider the expression for
the distance between two points; this is given by

cos (xy) = —_ y—:
vxKxvyKy

Bat this is what the ordinary expression for the distance becomes if
we take a^+asg+ajg+aj9, = 0 as the equation of the absolute.

It is now obvious that the formulae of the paper become applicable
to any form of the equation of the absolute, provided that for K7 de-
noting the complement, we substitute a>, denoting the polar with respect
to the absolute.

I use u> partly because it is necessary to have two symbols for the
two things, and partly to make the formulae look like the biquaternion
formulas of the paper above referred to. In the following section, I
take a special form of the equation of the absolute, and show how we
get formulae applicable to the three kinds of space.

3.
I shall now, to my own and my readers' relief, discard suffixes, and

use the ordinary notations (xyzw) for the coordinates of a point, and
(Imnp), (dbcfgh) for planes and screws respectively. I also use a, /3,
y, 8 for ev e3, e8, e4.

Let the point equation of the absolute be

Then the plane equation will be

and the line equation will be

It is obvious that e1 = ± 1 gives elliptic and hyperbolic space. It is
not quite so obvious that e? = 0 gives parabolic space, if w = 0 is tho
plane infinity; but it is not hard to see if we remember,—

(1) That the absolute is a curve, viz., the " circle at infinity " taken
twice over, BO that its point equation is (plane infinity)1 = 0;

(2) That therefore a line touches the absolute if it cuts the " circle
at infinity " ; and that

(3) /»g> h are proportional to the direction cosines of (abefgh).



1884.]

We have

Theory of Screws in Elliptic Space. 19

, ya$, a/35, y/3a),,, w/3, wy, toB) = ( e», 0, 0, 0

0, e», 0, 0

0, 0, e8, 0

0, 0, 0, 1

(o»j3y$, wyaS, waft, wyjSa) = ( 1, 0, 0, 0 J o, 0, y,
0, 1, 0, 0
0, 0, 1, 0
0, 0, 0, e*

(w/3y, wya, waj3, waS, w/3S, wyS) = ( 0, 0, 0, 6s, 0, 0 $ (3y, ya, a/3,

0, 0, 0, 0, e8, 0
0, 0, 0, 0, 0, e*
1, 0, 0, 0, 0, 0
0, 1, 0, 0, 0, 0
0, 0, 1, 0, 0, 0

It is necessary to change the definition of [a&] (p. 91) and to write

where, of course, .wa.

To show how the formulro apply to parabolic space, I take the ex-
pression for the distance between two points and the expression for
the axis of a screw.

We take a = (xyzw), b = (x'yz'w) ; and we must remember that,
in parabolic space, w = 0 is the plane infinity, so that w = const, for
all points not at infinity, and we can take w == 1.

We have

a = zu+yfi + zy + w$t

wa = esJCj3y5 -f f?yyaS + e22a/35 + viyfta.

Therefore rPa=.ab>a=ei (x*+y*+zx) + w*.

Moreover, if (abefgh) are the coordinates of the line a&, we get easily

+
c 2
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Therefore, putting in the values of the coordinates, we get

(te.iii—flj'uiV -

{*(x*+y*+z>)

Now, if we take e = 0 and w = u/= 1, we get

which is right.

Now take the expression for the axis of a screw: nsing (0) above
instead of the equation on p. 91, the expression for the axis on p. 94

becomes 6 = a c o s ^ — a"1 wasin^,

where e"1 sin &p = £f
j t Ob

Now we need only consider the case 6 = 0, and then we have

b = a— wa . -£-,

or 6 = a — ^ r - , w a = a—X.wasay.

Now let the coordinates of a be (abcfgh): then the coordinates of wa
are (e1/, e'gr, eVt, a, 6,c), and we get, since e = 0,

6 ss (a, &, c, /—Xa, gr—X&, ft—Xc).

But X - J
2T*2T*a~ 2

Now; in a paper " On the application of Quaternions to the Theory
of the Linear Complex and the Linear Congruence" (Mess, of
Math., Vol. xii., p. 129), I have (allowing for a mistake in sign) given

as the vector coordinates of the axis of the screw (a, /3), where.
a=fi + gj+/' lc, ft = ai + bj + clc: o •* d these values obviously ngvcc witli
the value of b just given. There are one or two points in which the
formulae of the paper on the Theory of Screws require modification.
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The two conditions for parallelism are

a dt e-'wa = X (6 ± emlu)b), :

and the definition of a rector is

a =fc e"ltaa = 0.

Writing

I find it convenient to replace Clifford's right and left by I, n used
as prefixes: that is to say, a, b are {-parallel if {a = X£2>, and a is a
I-vector if la = 0: there are, of course, corresponding definitions of
'/-parallels, and of the j;-vector.

I t is easy to prove and important to notice, that, if a, b are any two
screws, we have

wa.oib = e9(a6).

For the next section the following definitionandtheoremare required:
—If x is any point, and if a is any screw, xa is called the plane cor-
responding to x with respect to a: if a is a line, xa is the plane joining
a?, a : in the same way, if «is a plane, we have a point xa which, in the
case in which a is a line, becomes the point of intersection of the line

' and plane.
If a? = (zyzw) and a E= (dbcfgh) and xa = (Imnp), we have

(htnp) = ( 0, Ji, — g, a ][ xyzw).
-*» 0, / , b

9, - / , 0, c
—a, —b ~-c, 0

If (xyzw) is on the line (dbcfgh), (Imnp) — 0.
The plane (Imnp) always passes through (xyzw).

4.

A motion* is defined as a linear transformation not altering the
absolute: therefore, if (xyzw) moves to (x'y'z'io'), we have

(x'y'z'w') = (1+X$xyew)}

where X is a matrix.

I now suppose the motion to be infinitesimal, and for 1 + X I write

• Of. Liiidemann, Math. Ann., Band vn.



22 Mr. A. Buchheim on the [Nov. 18,

X+e, where X is a scalar matrix, differing infinitesimally from unity,
and e is an infinitesimal matrix to be determined. Now let A be the
matrix of the absolute: then, since X+e is to be an antomorphio of A,
we have, using e' to denote the conjugate of e,

p being a scalar, and p—1 infinitesimal; multiplying out, and neglect'
ing infinitesimals of the second order, we get

\*A+eA+AezzpA.

Therefore all the conditions of the problem are satisfied, provided we

take X* = p,

Ae+e-A = 0.

Now this last condition asserts that Ae is a skew matrix, say

0 h —g a).

-h 0 f'b
Ae = n = '

g -f 0 c
—a —b —c 0

Then, if ij (xyzw) represents a plane, e (xyzw) = A~xn (xyzw) will
represent the pole of that plane. Now we have

(a»y«V) rs X (xyzw) + c (xyzw),

that is, the new position of the point (xyzw) is on the line joining the
point to the pole of the plane 17 (xyzw) ; but it is obvious, from (3),
that this plane is the plane corresponding to (xyzw) with respect to
the screw (abefgh) ; moreover the line joining any point to the pole
of a plane is (by definition) at right angles to the plane. Combining all
this, we get the theorem:—Every infinitesimal motion of a rigid body
is defined by a certain screw, in such wise that every point of the
body moves along the normal to the plane corresponding to the point
with respect to the screw, and that every plane of the body turns
about the normal to the point corresponding to the plane with respect
to the polar screw.

On this I remark:—(1) The second part is inserted in virtue of tho
principle of duality; (2) The normal to a point, in a plane, is the
intersection of the plane with the polar plane of the point j (3) If a is
any screw, <aa is the polar screw.

If a is a line, it is obvious that a point moves at right angles to the
plane joining it to the line, and that the motion is of the nature of a
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rotation about the line: for we have

(x'y'z'w) = (\+A-lrf$xyzw);

but, if (abcfgh) is a line, we have for all points on it tj (xyzw) == 0, and
therefore A'1 JJ (xyzw) =• 0, and therefore

(x'y'z'w') = (\T$xyzw).

Therefore all points on the line are unaltered, that is to say, the
motion is a rotation about the line. But it appears, in precisely the
same way, that all planes through the polar of the line are unaltered
so that the motion is at the same time a translation along the polar.
It is a well known and easily proved theorem, that any rotation about
a line is at the same time a translation along its polar. For, since the
absolute is unaltered, if a point P moves to f, the plane wP will move
to tap1; and therefore, if all points \P1+fxPi are unaltered, all planes
\(t)Pl+fio)Pi are unaltered: but the points are the points of a straight
line, and the planes are the planes through its polar; moreover, a
motion which does not affect the points of a line is a rotation about
the line, and a motion which does not affect the planes through a line
is a translation along the line. The theorem is therefore proved.

I t is worth while to consider space of more than three dimensions.
It is obvious that all the investigations of this section apply, and we
get the theorems :—

" Every infinitesimal motion of a rigid body in a space of n dimen-
sions is defined by a certain form a of order n—2 in the units of re-
ference, in such wise that any point x moves along the normal to the
(w-l)-flata:a.M

"Every rotation about an r-flat is at the same time a rotation
about the polar (n—r—l)-flat."

5.

I now take the equation of the absolute in the canonical form

and I take (abcfgh) as the coordinates of the screw defining the motion.
Then, if (xyzw) moves to (xy'z'w), we have

(x'y'z'w') = ( X h —g a $ xyzw) ;
-h X f ' b

g - / X c
—e'a — &b — e'c X
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and then, if (A, B, 0, F, G, H) becomes (A\fft O\ F, Q'i E*)t we have

(A'BfOfFG'E1) = { X2 h -g 0 c -b $ ABOFGE)
-h Xs / - o 0 a

g _ / \« b - a 0
0 e»c -e»6 X1 h -gi

-e8c 0 e*a -fc X" /
e'J - e ' a 0 g -f XJ

we can verify at once that the two screws (abcfgh), (e?f, e*gr, e% a, &, c)
are transformed into themselves.

Moreover, it is a known property, which can be easily verified in the
present instance, that if a transformation of line - coordinates is
derived, as this is, from a transformation of point-coordinates, then
AF+BQ+CH, and therefore AF'+A'F+BQ'+B'G+OH'+C'H are
invariants ; therefore, if we call the screw (abcfgh), A, and say that
two screws a, y are reciprocal (in involution) if xy vanishes, we get as
the first result that every screw reciprocal to A or to wA is transformed
into a screw reciprocal to A or to wA.

Moreover, since A is absolutely unaltered by the motion, the axes of
A are also unaffected by it, and therefore any point on an axis (plane
through an axis) is transformed into a point on the same axis (plane
through the same axis) : therefore every infinitesimal motion is a
rotation about an axis of the screw defining the motion, and therefore
also a translation along an axis of the screw.

We get also
(A'± e'W, K± e-'G', (7± e-'E")

X1 iefaie-1/)
dbe^dbe"1^) T e ^ i f i " 1 / ) ' X2 j

Therefore

(1) If A ± e"1^ = B =fc e-*G = 0 ± e^B" = 0, A'± e->F, Frfc e"1

Crfc e"1^, all vanish: therefore £-vectors are transformed into
vectors; i;-vectors into J;-vectors.

A±e-lF
(2) If

we have also
Al±e-iFl

A'±6'^ B[±e-lG[ O'x±e-lH[*

that is, parallel lines or screws become parallel lines or screws.
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(3) If a±e-lf= b±e-lg = cdbe-1^ = 0,

we have A±e-*F " B±e-lQ " O±e-*H ~ '

Therefore, if the screw defining the motion is a vector, every screw
becomes a parallel screw.

I now find the distance through which a point moves. I use
quaternions to shorten the calculation.

We have, for the distance between the points,

T (xvf—xw)*+(yw'-—y'to)% •{• (jtw—«'u>)9 "I
9 {(^-^)8+QrtWq>)'+ (xy'-x y)'}J.

If p = xi+yj+zk, p'= x'i+y'j+z'k, this is obviously

e'TiVpp+Ti(wp'-w'p)

Now, in the present case, we have

(xy'z'w) = (Xa? + Ay—gz + aw, \y +/«—hx + 6«>, X«+gx-fy +CM>, •

\z—e9ax—e*by — e2cz).

Now take o = fi+gj+hk, o '= a i+ bj+ck: then we have

p' = Xp + Fpa+wa,

w'= \w+e*8pa.

We have therefore, if we omit terms which obviously cancel, to
calculate

X = <?T*Vp (Fpa+wa ) + T* (e'p/Spa-wFpo-w»a').

Now the first term is

PPpT* (Vpa+wa)-e'SV(7po + wa')

The second term is

e*T1pS*pa'+2e>wtStpaf+w'iTiVpa-2w%8paa'+wiT'a.

This gives

Z = (e*lop+wi)(T2Vpa+w1T2a'-2w8paa'+eiSapa')
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Moreover, neglecting terms of the second order,

Therefore

Now introduce the notation of the rest of this paper, calling the
screw of the motion A, and we get

= f. sin [PA].

If .4 is a vector, we have o = ± ea, and we get from

_(<?Tip+wi)Tia

Therefore the translations of all points are eqnal.
Moreover we have

pw'— 'w—eVpp'

= e^pSpa— wVpa—10V- eVpVpa—ewVpd

== e*pSpa — w Vpa+v?a + ep Spa—eapJ

= ep (/Spa+ejbfpa')-w (Fpa + eFpa')—

Therefore, if a+eo '= 0, we get

pw-p'w-eVpp= -a (

That is, the left-hand side is constant to a factor prfa; therefore, if
the screw of a motion is a vector, the translations of all points are
parallel.

In precisely the same way we can prove that, if the screw of a motion
is a vector, the axes of rotation of all planes are parallel, and that the
amount of rotation is constant for all planes, and equal to the amount
of translation of all points.

Now consider the motion of aline: let the coordinates of the line be
(ABCFQH), and let Fi+ Gj + Ek = cr, Ai + Bj + Ck =p ; then, if vt\ p'
are the corresponding vectors for the new position of the line, we
have tsr'= £Vpa -f Vma+X'er,
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But e'Fpa'+Fwa, Vpa+Vma' are the vector coordinates of a screw
which I have elsewhere (in the memoir on Biquatemions, already
referred to) called the axis of the oylindroid determined by the screws
(«r, p) and (a, a').

Therefore we can say that the new position of a line A is in the
cylindroid containing A and the axis of the cylindroid (Aa) if a is
the screw defining the motion.

In conclusion, I prove Professor Ball's theorem that every {-vector
is reciprocal to every g-vector.

Let a be a £-vector, b an ij-vector: then we have

wa = —ea,

aib = eb.

Therefore («a) («&) = — e'db.

But we have universally
(wa) (<D&) = e3ab.

Therefore, unless e vanishes,
ab = — db,

or ab = 0.

On the Motion of a Viscous Fluid contained in a Spherical Vessel.

By HORACE LAMB, M.A., F.R.S.

[BeadNovember IZth, 1884]

In several of the most important problems in Viscosity which have
as yet been solved, the fluid is supposed limited, whether externally or
internally, by a single spherical, or nearly spherical, boundary. For
instance, we have the case of a ball pendulum oscillating in an un-
limited mass of fluid (Stokes), t l^ c-aan of a hollow spherical shell
filled with liquid, and oscillating by the torsion of a suspending wire
(Helmholtz), and so on.* In a previous communicationf to the
Society, I have given formulae by means of which all pi'oblems of this

* See Hicks, " Report on Hydrodynamics," B. A. Rep., 1882.
f Proceedings, T. x.ui., p. 01.




