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Theory  of  Critical 

1. In a recent paper~) Lord Rayleigh has attempted to investigate 
the conditions of stability of a frictionless liquid when there are cr//ical 
planes. The statement of the problem ~s as follows: -- 

Liquid is flowing in s~eady motion between the t;wo planes y==0 
and y ~- a, the velocity being parallel to the axis of x and equal to V, 
where V is some function of y. A small disturbance is communicated 
to the liquid, it is required of investigate the conditions of stability~ 
the motion being supposed to be in two dimensions. 

In steady motion ~he component velocities are (IT, 0); after 
disturbance they an (V-{-u,  v), where u and v are small quantities 
in the beginnA~ 9 ~f the. disturbe~ motion, and Lord Rayleigh proves/hat 
v is determined hy the equation**) 

Xdy~ - -  ~ v. 

This equation is obtdned in the following manner, Whatever 
the character of the disturbance may be~ the velocity v can be ex- 
pressed by means of Fourier:s theorem in a series of (or definite integrals 
involving) sines and cosines of x. It is therefore sufficient, so far as 
the coordinate x is concerned~ to consider the is, pical term e ~ .  Also 
if the disturbed motion is stable, the time factor must be a periodic 
function~ and therefore expressible in the form e,,t. It will thus be found 
that if these substitutions be made~ and the pressure and velocity u be 
eliminated from the equations of motion and continuity, the result will 
be expressed by (1). 

In steady motion ~he molecular ro~atio~ is equal to --  ~d V tdy; 
accordingly if this qnan~ity is constant, the right hand side of (1) 

*) Prec. Lend. Ma~h. Soc. vol. XXVII, p. 5. 
**) Ibid. vol. X_I, p. 57. 
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vanishes and the equation splits up into two factors, the second of which 
when equa~ed to zero furnishes the differential equation for v. I t  may 
however happen that e e r ~ n  planes exist, which are called crit~al 
planes, at which the first factor vanishes; and at such a plane it cannot 
be asserted without further investigation that the second factor vanishes. 
This circumstance has led Lord Kelvin*) to throw doubts upon tile 
universal application of results which are based upon the solution of the 
differential equation which is formed by equatiug the second factor to 
zero: and Lord l~ayleigh has therefore attempted to meet this objection 
by examining what takes place when a critical plane exists, but the 
results on pages 10 and 11 are erroneous owing to the fact that they 
make the molecular ro/~tion infinite at such planes. Some observations 
are added at the end of the paper which are apparently intended to 
meet this objection, but they miss the points at issue. 

2. The fallacy of the results to which a wrong method of ap- 
proximation has led him can be shown as follows: 

In questions relating to stability, the velocities produced by the 
disturbance are by hypothesis small quantities in the beginning of the 
disturbed mot&m; but a statement of this kind has no meaning unless 
the standard of measurement is defined. In cases like the present, 
the meaning of the phrase is, a velocity whose numerical value is a small 
~uantity in com2arison with the numerical value of the velocity in steady 
motion. Moreover by Newton's second Law of Mogon, the forces 
required to produce these small velocities must be proportional to 
them, and the numerical values of these forces must therefore be small 
quantities compared with the numerical values of the forces required 
to generate the steady motion in a liquid at rest. Under these 
circumstances it is an obvious impossibility for a small disturbance 
to suddenly change the value of the molecular rotation from a finite 
to an infinite one; and any solution which leads to this result must 
necessarily be erroneous. 

3. The quantity d~v ] dy ~ - -  key is proportional to the difference 
between the molecular rotation just before and just after disturbance, 
and must therefore be a small quantity in the beginning of the disturbed 
motion. Accordingly if the molecular rotation is not constant in steady 
motion, in which case d2YIdy  ~ will not be zero, it follows that at a 
critical plane we must have d2Ftdy ~-~- 0 or v ~--0. But the first 
condition is one which cannot he satSsfied except for special values of V; 
and if the form of the function which determines the velocity in 
s+~ady motion is not of this special form, it follows that v = 0 at a 
critical plane. 

~) Phit. Maj. vol. XXIV, p. ~75. 
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4. We are now prepared to work out the theory of critical 
planes. 

For simplicity we shaft suppose that the steady motion is such 
that ~here are no vortex sheets~ in which case 

r - -  

where r is a given function which is finite and continuous throughout 
the space occupied by the liquid. I f  possibl% let y ~-~ c be a critical 
plan% the condition for which is that 

This equation determines the value of the time constant n in terms 
of the wave constant k, provided a real value of c exists which 
lies between 0 and a. I f  no value of c exists which lies between these 
limits~ equation (3) represents an impossible sta~e of motion and a 
critical plane cannot exist. 

Substituting the value of n lk from (2) in (1) and integrating, we 
shall obtain 

(4) v = A/ ,  (y) + .Bf~(y) 

where A and B are the constants of integration, and f l ,  f2 are two 
independent functions whose form depends upon tha~ of tp. The boundary 
conditions require that v ~--0, when y ~ 0 and y ~ - a .  

Case I. We shall first suppose that  a ~ V l d y  2 ~ 0 at the critical 
plane; and also that neither of the functions f becomes infinite between 
y ~ 0 and y ~ - a .  In this case the boundary conditions will enable 
us to eliminate the two constants of integration, and we shall thus 
obtain an equation of the form 

F ( a ,  c) .= 0 

which is the equation h~r determining c. The condition for the 
existence of a critical plane is, that the above equation should have at 
least one real root lying between 0 and a. 

It may however happen that one of the functions, say f~, becomes 
infinite between the limits, in which case /~ ~ 0, and the boundary 
conditions then require that fl (0) ~= 0 and fl (a) ~ 0; is other words 
that 0 and a should be roots of the equation fl (Y) - -  0. These con- 
ditions cannot be satisfied except for special forms of the function f~, 
and when they cannot~ the existence of a critical plane is impossible. 

Case II. In ~ i s  case d~Vidy  ~- does not vanish at a critical 
plane, and consequently v must satisfy the three conditions of vanishing 
when y ------ 0,  y =-= c and y ~--- a;  but as the value of v cannot certain 
more than two arbitxary consCants~ these three conditions cannot in 
general be satisfied, in which case a critical plane cannot exist. 

5. I f  the steady motion is such that vortex sheets exist~ the 
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equations must be separately applied ~ each region bounded by two 
consecutive vorfcex sheets; and the relations between the various constants 
of integration which occur in fhe solutions must be determined by 
means of the boundary conditions which exist a~ a vortex sheet. 

6. When the molecular rotation is consfant in steady motion, 
the problem is one which is best treated by special methods. In this 
case d r VIdy  ~ is zero throughout the whole space occupied by the 
liquid, and consequently the second factor of (1) must vanish except 
at a critical plane. 

In steady motion 
(5)  V = A - -  2coy 
where .4 is a constant, and ~ is the cons~an~ molecular rotation. If 
co "4- { be the the molectflar rotation after disturbance, ~ satisfies the 
equation 

(6) a--{ + ( r +  u) + v ~ = o. 

Since u and v are small quantities in the beginning of the 
disturbed motion, equation (6) reduces to 

d~ d~ - - 0  d-iA- V ~  

so that putting 
C = F(y)  g * ' + ~ '  

where F is an undetermined .function of y, we obtain 

(7) (n[k -].- V) -~'(y) ~- O. 

This equation shows that ~(y)  must be zero except at a critical 
plane. 

Let ,# be the difference between Earnshaw's current function before 
and affer disturbance; then 

Equations (7) and (8) shew that !b is the potential of a surface 
distribution of matter upon the critical plane, whose density is pro- 
portional to ~v(c); consequently unless F(c) be zero~ the critical plane 
must he a vortex sheet. But it is known from the general principles 
of Hydrodynamics that a vortex sheet cannot be generated by a 
disturbing force; hence ~'(c) must be zero unless the critical plane be 
a vortex sheet in s ~ d y  motion. 

7. To investigate the conditions for the existence of a critical 
plan% we must therefore suppose that a vortex sheet exists in steady 
motion. Let y ~ c be the equation of the vortex sheet~ and on the 
positive side of this plane let 

V = V, = A --  2co(y--c) 
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and on the negative sid% let 
V =  r~ = B -. 2~o(y--c). 

The condition that the vortex sheet should be a critical plane is 
that A or ~ .should be equal to - -  n[k; and we shall adopt the tbrmer 
alternative. Writing ~i~-~. i . ,  for ~ in (8) we obtain 

~ k~p ~ - -  2F(y)  (9) dy* 

and since F ( y ) ~  0 except at the cri~icat plane, are must have on the 
positive side of the plane 
(10) ~o, ~-- C sinh k(y---a) 
and on the negative side 

(11) 02 -~- D sinh ky 

the constants being determined so that v or - - d O l d x  vanishes when 
y - ~ O  and y ~ a .  

At the critical plane where y--~ c, we must have 

<2V,cty 4-qy-dV' ~__ 2F(c) 
which gives 

1 (12) ~ (~ )  = ~ k { c  cosh (~ --~) + ~ cosh k~} 

which determines the surface density F(c). 
After disturbance, the particles which originally lay on the criticM 

plane will lie on a surface whose equation may be taken to be 

(13) y - c - / ~ ' ~ + ' - ~ - -  f(x,  y, t) = O. 

This surface fulfills the conditions of a bounding surface, and therefore 

(14) V _t~f d]" O. ~ A-" e. + v-@= 

Applying (14) to the positive side we get 

.E(n-l-k V,) "4- Ck sinh k ( c - - a )  .== 0; 

and since by hypothesis 

n + k V t  =0,  
i~ foIlows tha~ C ~-= O, 

Applying (14) to the negatlve side we get 

.E(n + k V~) -t- .D k sinh kc ~ 0 

which determines the relation between /~ and D. 
From these results it follows that, to the first order of small 

quantities, the liquid on the positive side of the vortex sheet is un- 
influenced by the disturbance. The only effect of the latter is to 
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displace the part/ties of liquid which originally formed the vortex sheet 
into the sinuous surface (14), whilst the surface itself moves forward 
with the same velocity V 1 which the particles on its positive side had 
in s~eady motion. 

8. We have lastly to determine the value of c, which fixes 
the posit/on of the critical plane. 

The pressure equation is 

d~ [_vgV i ,~p Fa~ 

whence recollecting that x and t enter in the form of the factor 
# ~ + i ~ ,  we easily obtain: 

(" (15) - z+  @ - - v ~ = - - - ~ - ,  

whence the condition of cont/nui~ of pressure requires that the left 
hand side of (15) should be continuous. Since v 1 and dv 11dl] are 
zero, the condition becomes 

o r  

(16) tanh kc = k(V,  --  V2) 12co. 

Now c must be a positive quantity lying between a and zero; 
moreover since 2~r]k is the wave-length of the disturbance, k must 
also be positive; hence the first condition that the vortex sheet may 
be critical plane is that 

(17) 0 < k(V~ --  F~) ! 2~ < 1. 

If this condition is satisfied, let ~n be the value of kc furnished 
by (16); then if ~t be the wave-length, we shall have c - -  Zm [2~; 
and since c cannot be greater than a,  we obtain the second condition 
tha~ 
(18) Z < 2%a}m. 

Unless both the conditions (17) and (18) are satisfied, a critical 
plane cannot exist. 

9. With regard to the method of procedure, it may be objected 
that the hypothesis that x and t enter into the solution in the form 
of the factor #*~d-**t is a pure assumption~ that it would be easy 
to invent examples in which this is not the case. The answer to 
this object/on is, that by making this hypothesis in the first instance, 
a particular solutSon can be obtained which can always be generalized 
by Fourier's theorem or in certain cases by definite integrals of a 
simpler form. I t  is also necessary to recoltee~ t;tmt before embarking 
in any mathematical investigations, we must first settle the practical 
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question as to how the disturbed motion is to be generated. To talk about 
an arbitrary disturbance is beside the mark, untill we have fi~t in- 
vented or imagined some machinery by which this operation can be 
effected; for if we omit to d~ this~ it may be found that some 
proposed disturbed motion is an ~npossibili~, and our mathematics 
will show this by leading us into all sorts of difficulties and apparently 
inexplicable results. 

10. In the class of problems discussed by Lord Rayleigh, a plane 
of discontinuity y ~ e usually exis t ,  at which the steady mo~ian 
changes its character by reason of the molecular rotation or the 
tangential velocity ]r being discontinous. We sha~l therefore suppose 
that the disturbed motion is generated by mea~s of an impulsive 
pressure applied to this plane, which produces a velocity v ~ (p (x) 
at the plane in question. 

The differential equation for v is satisfied by 

(19) v ~ F(k ,  y) cos ( k x  - -  ~tt) 

and the equation of continuity shows that 

u ~ - -  k --~ F ' ( k ,  y )  sin ( b x  ~ n t )  

which is an example of the genezal dynamical theorem, that an 
impulsive force of one twpe may produce a velocity of a different type. 

The differential equation for ~ being of the second order will 
contain two constants. I f  therefore we confine our attention, for 
the present, to the liquid lying between ~he planes y ~ -c  and y ~ a, 
where the latter is one of the bounding planes, the constants must 
be determined so that 

F(k ,  a) ~ O, 

we may therefore write in the place of (19) 

v = A f ( k ,  y)  cos (ka~ - -  nt) 
where 

f ( k ,  a)  = O. 

The usual process of solutkm gives a relation of the form 

and when the steady mutton is stable, n must be real for all 
values of k. 

The constant A may have any value which is independent of 
x, y and t; we shall therefore put 

A ~ 2ep(~t) cos lk 
=f(k,  e) 

which shows that 
uf(k, y) ~(z) ~os ;t/~ cos{ k x  - -  tv(lc) } 

v ~- =/(~, c) 
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is a solution of (1)~ and therefore 

v - ~ - -  d �9 
= f~k,  c) 

is also a solution. The initial value of v at the plane y ~ c ,  is 
obtained by putting y ~ - c  and t - ~  O, which gives 

= q , ( x )  

by Fourier's theorem, which is the proposed initial value of v at the 
plane in question. 

The solution for the liquid lying between the planes y ~ 0 and 
y ~ c can be obtained in a similar manner. 

F l e d b o r o u g h  H a l l ,  Holypor~, Berks,  England 
30. April 1896. 


