

Technische Universität Braunschweig





# Selective area micromachining of InGaN/GaN LED chips using ultrashort pulse laser

Nursidik Yulianto<sup>1,2</sup>, Steffen Bornemann<sup>1</sup>, Jan Gülink<sup>1</sup>, Lars Daul<sup>3</sup>, Ludger Konders<sup>3</sup>, Nurhalis Majid<sup>2,4</sup>, Winfried Daum<sup>4</sup>, Andreas Waag<sup>1</sup> and Hutomo Suryo Wasisto<sup>1</sup>

<sup>1</sup>Institute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Germany <sup>2</sup>Research Center for Physics, Indonesian Institute of Sciences (LIPI), Indonesia <sup>3</sup>Physikalisch-Technische Bundesanstalt (PTB), Germany <sup>4</sup>Institute of Energy Research and Physical Technologies, Technische Universität Clausthal, Germany

 $E_{a2} < 2hv < E_{a1}$ 

## Motivation

- InGaN/GaN LEDs are epitaxially grown on sapphire by MOVPE, but sapphire provides poor thermal and electrical conductivity and no reflectivity.
- For sophisticated designs (e.g., high power LEDs or flexible inorganic microLEDs), tailored environment is needed [1].
- Transfer of thin LED film to alternative substrates by laser lift-off (LLO), usually with pulsed UV lasers in the nanosecond regime [2].



Is LLO also feasible based on two-photon absorption with a femtosecond laser?

Laser lift-off processing

**Design 1** 

benefits: reduced impact of shockwave, possible extension to AlGaN

Design 2

## Femtosecond laser micromachining system



### Beam characterization and GaN damage threshold







#### Tests with variable pulse energy and working distance (with design 1):

| WD <sub>rel</sub> (mm)                  |    | Microscopic images of surface — 100 µm |                   |               |               |          |
|-----------------------------------------|----|----------------------------------------|-------------------|---------------|---------------|----------|
|                                         | -1 | <i>p</i> -GaN                          | <i>p</i> -GaN     | <i>p</i> -GaN | <i>p</i> -GaN | p-GaN    |
|                                         | 0  | Sapphire                               | p-GaN<br>Sapphire | Sapphire      | Sapphire      | Sapphire |
|                                         | 1  | Lift-off                               | Lift-off          | Lift-off      | Lift-off      | Lift-off |
| Nominal laser power (mW)                |    | 400                                    | 450               | 500           | 550           | 600      |
| Integrated fluence [J/cm <sup>2</sup> ] |    | 3.1                                    | 3.5               | 3.9           | 4.3           | 4.7      |

#### **Processing steps for laser lift-off:**

- Assuming Gaussian pulse shape [3]:  $\phi(x,y) = \phi_0 \exp\left(-2\left(\frac{x^2}{\omega_x^2} + \frac{y^2}{\omega_y^2}\right)\right)$
- Directing single laser pulses to GaN surface at varying pulse energy  $E_p$
- Crater formation with diameter  $D_{x/y}$ , where  $\phi\left(\frac{D_x}{2}, 0\right) = \phi\left(0, \frac{D_y}{2}\right) = \phi_{th}$ . Then:  $D_{x/y}^2 = 2 \omega_{x/y}^2 \log\left(\frac{\phi_0}{\phi_{th}}\right)$
- Calculated damage threshold for GaN: ~0.6 J/cm<sup>2</sup>











- This work is performed within EU project of ChipScope funded by the European Union's Horizon 2020 research and innovation program under grant agreement no. 737089 and LENA-OptoSense funded by the Lower Saxony Ministry for Science and Culture (N-MWK).
- N.Y. acknowledges financial support from the Ministry of Research, Technology and Higher Education of the Republic of Indonesia (RISTEKDIKTI, Ph.D. scholarship of RISET-Pro) and support from the Indonesian-German Centre for Nano and Quantum Technologies (IG-Nano)
- Thanks to A. Heidemann, K.-H. Lachmund, A. Schmidt, J. Breitfelder, and M. Rühmann for technical support.

Laubsch A, et. al. High-power and high-efficiency InGaN-based light emitters. *IEEE Trans. Electron Devices* 57 79–87 (2010)
Ueda, T., Ishida, M., and Yuri, M. Separation of Thin GaN from Sapphire by Laser Lift-Off Technique. *Jpn. J. Appl. Phys.* 50 (2011)
Liu, J. M. Simple technique for measurements of pulsed Gaussian-beam spot sizes *Opt. Lett.* 7 196 (1982)