On a theorem relating to the Multiple Thetafunctions.
By
A. Cavrey of Cambridge.

I propose — partly for the sake of the theorem itself, partly for
that of the notation which will be employed — to demonstrate the
general theorem (3", p. 4, of Dr. Schottky’s ,, Abriss einer Theorie
der Abel’schen Functionen von drei Variabeln®, (Leipzig, 1880), which
theorem is there presented in the form:

(8) €7 O (423, s, v) e TR @ (1 ity v0),
but which I write in the slightly different form

exp [~H (u; 4',v)]-© (ut-2®"; g, v) = exp[—2mipv']- O (w; 4, v4-0).

I remark that the theorem is given in the preliminary paragraphs
the contents of which are, as mentioned by the Author, derived from
Herr Weierstrass: and that the form of the thetafunction is a very
general one, depending on the general quadric function

G(u,“ sy Uy My, v ”e)
of 2¢ variables, ¢ being the number of the arguments u;, - -+ %, (in
fact the periods are not reduced to the normal form, but are arbi-
trary); and the characters v, - - - vo; yy, - - - pp instead, of having each
of them the value O or 1, have each of them any integer ‘or fractional
value whatever. The meaning of the theorem (# denoting a set or row
of o letters u,,:--#g, and so in other cases), is that the function
O(u; p-4u, v+ ) with the new characters g + ¢’ and » 4 o'
1s, save as to an exponential factor, equal to the function © (u+42%"; u, )
with the original characters g, », but with the new arguments
w4 2%".
Notation.

This is in some measure a development of that employed in.my
,, Memoir on the Theory of Matrices® Phil, Trans. t. CXLVIiI (1858)
pp.- 17—37. 1 use certain single letters u etc. to denote sets or rows
each of g letters, w == (u, - - ug): or if to fix the ideas ¢ = 3, then
% = (u;, U,, #3), and so in other cases,

But I use certain other letters g, ete. to denote squares or matrices

each of o? letters; thus ¢ = 3 as before,
8*
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@ == Oy, U, A
{1y Aoy Gy
A31, Q325 Oy
and in any such case the transposed matrix is denoted by the same
letter enclosed in parentheses
(@) =] ayy, Qy; Oy
Qjyy  Ggpy O3
Gy3y  Ggyy Oy
The sum %+ of the row-letters «, = (u,, ul,ua) and v, == (0,04, ¥3)

denotes the row (u, +v,, %,-v,, #3+;): and in like manner the sum
a-+b of the two matrices or square-letters @ and b, denotes the matrix

ay 4 by an A+ by A+ b
Agy + bygy  Qay by gy by
| @y 4 byys Ggo + by2s  Ggs T+ by
and similarly for a sum of three or more terms.
The product v, == (4, Uy, t;) (v, ¥, v3), of the two row-letters
v denotes the single term u,v, + u,v, + 4395, We have uv = vu.
The product

at, = | @y, Gy Gy | (U, Uy, ),
Aoy oy Oy
31y Gygr Oy
of a preceding square-letter @ and a succeeding row-letter u, denotes
the set or row

(@y1 Bygy Ay3)(tyy Ugy Uy)y (@yyy Gagy Bag)(Ugy Uy Ug) s (@g1y By B3 )(thyy Uay Us);
the notation ua is not employed.
The product
auy = | @y, @y, gy | (U, Uy, u)(0,, vy, vy) of a preceding square-
Uogy; iy, (g3
Qyyy 39y Gy
letter a followed by the two row-letters u et », denotes the single term

(@g1s @y g5 By3) (U, thy Ug)0 (G 1y Ty Wy )ty Uiy g Y0 (Cy g By ) {2y U 25 Y05
Observe that auv is not in general = aovu; but it is easy to verify
that ¢ uv = (a)vu; and hence if (a) = a, that is if the matrix a be
symmetrical, then auv = avu.

A product of two matrices

w

ab.=|am Qg @ by by bl%‘

L yys  Qayy oy by bass b?al

Ggyy Qzqy Oy ban b32) baa
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denotes a matrix

(byys bags Bar)s  (Buas Bgy Bys),  (Byyy By byy)

(alt) 9, an) b2 » ”
(Qgyy Gy, @g3) ” " ”
(@355 @3y, gy) 2 » ”

viz. the top-line of the compound matrix is

(ay1, 84 a,s)(b“,b?,,bm)', (@yy, Byas @13) (D120 020: D5 s (@44, @ygy @y5) By, D, Big)

and so for the other lines: or expressing this in words, we say that
any line of the compound matrix is obtained by compounding the
corresponding line of the first or further component matrix with the

several columns of the second or nearer component matrix,

Clearly @b is not in general = ba. We may easily verify that
(ab)==(b)(a), that is, the transposed watrix (ad) is that obtained by the
composition of the transposed matrix (b) as first or further matrix, with
the transposed matrix (@) as second or nearer matrix. Even if ¢ and §
are each symmetrical, we do not in general have ab = ba, but only
(ad) = ba, or what is the same thing ab = (ba).

In a symbol such as abuv, we first combine @, b into a single
matrix ab, and then regard the expression as a combination such as
auv: the expression denotes therefore a single term. The theory might
be explained in greater detail; but the mode of working with row-
and square-letters will be readily understood from what precedes.

In all that follows u, g, v, ¢/, ¥, n, &, §{ are row-letters; a, b, &,
@, @, 1, ¥ are square-letters: @ and b are symmetrical, viz. @ = (a),
b=(b).

And 1 write

(*)(u7 ”)2) = (a; h’ b)('“-) V)z
= au’® 4 2huv L bv?
= |G, Gy, @yl (B, g, wy)?

!
Qory Agq, Ay,

[
Ayys gy, Ay,

+ 200y, By, by (g, g, w)(vy, vy, vy)
Bors Py hog
Bars Pags Dy
+ by by, bis | (vy, va, v3)%.
by, b
by, b

22 b23

32> b.53
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to denote the general quadric function of the 2o letters w, v, with

yo(o+1)+ 02+ to(o+1), =0(20-F1) coefficients. It is assumed
that the determinant formed with the }o(¢- 1) coefficients b is nega-
tive: this is the necessary and sufficient condition for the convergence
of the series.

Definition of O(u; g, v)
O(u; u, v), the general thetafunction with @ arguments u, and
2¢ characters g, v is the sum of a g-tuple series of exponentials

O(u; w, v) = Zexp. [(¥)(u, n+2)* + 2xip(n+v)]

where each of the letters n, = (n,, - - - ny), has all integer values (zero
included) from — oo to 4 oo.

The general theorem in regard to O(u; g, v).
This 1s
exp.[— H(uj ', v)} - O(u 4 2975 ¢, v)
= exp. [—2mipv] O(u; p+y, v+v),
establishing a relation between the function ©(u; w4 u', v-'), with
arbitrary character-increments g', v’, and the function ©(u+2a"; u, v)
with the original characters, but with new arguments u | 2%
H(u; u', v') denotes a function, linear as regards the arguments u,
but quadric as regards p’ et »'; — 2miu?’ is a single term depending
only on p et 2'; and the theorem thus is that the two functions differ

only by an exponential factor. The relations between the constants
will be obtained in the course of the investigation.

Demonstration.

The truth of the theorem depends on the equality of correspon-
ding exponentials on the two sides of the equation: viz. substituting
for the thetafunctions their values, and comparing the exponents or
arguments of the exponentials: writing also for convenience

G+ 2%, nt v
to denote the quadric function (#)(#+42%", n+4 »)?; we ought to have
— H(u; ¢, v')+ G (uA-20, nt-v) +2wip (n4-v)
— —2mipy + G (4, i v o) 4 2mi (utw) (i),

or say
H(uyuw',v') = Gu-+2%,n+v)— Glu,nt+v+v)—2rxi(n+v4ov ).

In this equation, if true at all, the terms containing » must destroy
eachother, and assuming that they do so, the equation becomes

Huw',v') = Gu+2%,2)— G(u, v4v) — 2ui(v42)y"
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Consider first the terms in »: the right hand side is

=a@42%) 4 2h(w4-2®)(nt+v) + bt )

— au? — 2hu(nt+rv+v) — b(ntv+vH? — 2ring
and the terms herein which contain # thus are

2h(u+2@)n 4 b 4 2bnv
—Z2hun —bn? — 2bn(v+v) — 2miny,
=4h@'n — 2bnd — 2xiny
which, b being symmetrical, may be written
=22h% — bV — mip)n
and these terms will vanish if, and only if
2ha — bv — miy =0,

a system of ¢ equations connecting @, u', v

Assuming them to be satisfied, the remaining relation,

Hu; u,v) =Gu42%,v) — G, v+v) — 2ai(v )y,
hecomes
Hu; @', V)= a(u4+28)2 4+ 20 (u4-2%")n 4 bo?

— au’ —2hu(@4v) —b(v+v)—2xi(v4 ).

Here a and b being symmetrical, we have a(u42%")?=au’+4a@ u
+4aw'?, b(v4-v)?=01*+20vv4bv'?, and the value therefore is
=4 (T ut+ N+ 2RRT v —ur) — b@Vv+v'?) — 2ai(v4v) .
On the right hand side putting the term in % under the form
—2h(u++w)Y 20T 2v+v), =—2R)V (u+T)+ 2R (2v 47

and the last term under the form — mip'(2v 4 v') — mipg'v', the
equation becomes

Hu; @, v) = (da® — 20 (u 4 @) — mig'v’
4 @he — v — =) 2y 4 V),
where the second line vanishes in virtue of the foregoing equation
2hw — by — miy = 0; the equation thus is
Hu; @, v) = @a® —2(h)v) (v + @) — mipg'y
which equation, regarding therein @’ as a linear function of ', v
shows that H(u;u, ) is a function linear as regards u, (and con-

taining this only through « 4~ @’) but quadric as regards @', v,
Introducing the new row-letter {', we may write

H(u; @, v) =28 (u + @) — mip'v/
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viz. the expression on the right hand side is here assumed as the
value of the function
H(u; ¢, V), = Gu4-2@",v) — G, v+v) — 2mi(v+)y;
and the theorem then is
exp. [— H(u; @, v)] - O(u+2%"5 u, v)
= exp. | — 2mipv| - O(u; u ¢, v V),
where by what precedes
2w — bV — mwip =0,
2aw — (W)v —§ =0,
2¢ equations for determing the 2¢ functions @', § as linear functions
of w', v+ which equations depend on the ¢(2¢ - 1) constants a, b, k.
Suppose that the resulting values of @', £ are
T = ou 4+ o',
= nw 417,
where o, ', ,  are square-letters; then, regarding a, b, h as
arbitrary, the 4¢* new constants w, @', %, % cannot be all of them

arbitrary, but must be connected by 4¢* — 0(20+1), = 0(20—1)
equations.

We may regard o, ', 7, 7 as satisfying these ¢ (29 — 1) equations,
but as being otherwise arbitrary; the foregoing equations then are
20’ — by — mip =0,
20w — (h)v — ¢ =0,
B =0y + &'V,
§ = + 7',
which lead to the equations connecting a, b, b with o, @, 3, 1.

The first and second equations, substituting for @', § their
values, become

Cho —nd)y -+ Cheo’ — b)v =0,
(2e0 — ) p + @Che — 5 — (R)Y =0,

or g, v being arbitrary, we thus obtain the 4¢°® equations

2a — 7 =},
2ho — 79 =0,
200 —n —(h)=0,
2he’— b =0,

which are the equations in question. It is to be observed that =i is



On the multiple Thetafunctions, 121

like the other symbols a matrix, viz. it is regarded as containing the
matrix unity; or what is the same thing it denotes

x| 1, 0, O

0, 1, 0

Ry

We can from these equations eliminate @, b, % and thus obtain
the 9(2¢ — 1) equations before referred to, which connect the 4¢*
constants @, &', 7, 7. Igive, but without a complete explanation, the
steps of the elimination.

The equation 2a® — n =0, may be written in the form

2(aw) — (1) =0,
2(@)(a) — (@) =0,

(@) =a, 2(@)a— () =0;
from the original form, and the new form respectively, we find
2(@)aw — (@)1 =0, 2(@)a(®) — [@)o = 0;
and comparing these
(@) — (o =0, (first result),
The equation 2a6" — % — (k) == 0, or say (h) = —- ' + 20" may
be written in the form & = — () + 2(vww"), that is, siuce ¢« = («)
h=— () + 2(e)a,

that is

or since

and we thence deduce

ho=— (e + 2(@)aea.
But from the equation 2¢w — 5 = 0, we have 2(0)aw — (0)y =0,
and the equation thus becomes ko = — (y)® + (©")%; which in virtue
of 2h@ — mi = 0, becomes
}Tm' = — (§)o 4 (@)n, (second result),
From the equation above obtained, i = — (y) + 2(&")«, we have
ho' = — (7)o’ + 2(0)ae’;

in virtue of 2k’ — b= 0, this becomes — 2(n)w + 4(@)aw' =1b; an
equation which may also be written — 2(1%) @) + $((@)aw’) = (b), or
what is the same thing — 2(@")%’ 4 4(@)(a)®” = (b); or since (@) = «
and (b) = b, this is — 2(@)y 4 4(0)aw =b: and comparing with
the original equation — 2(y)w + 4(0)ae’ = b, we obtain

(@) — ()@ =0, (third result).
We have thus the three systems

(@)y — ()@ =0, = e(¢ — 1) equations
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(@) — (1w = —;—M' , ©° equations

@) —@e =0 , zele—1) ,

in all @(2¢ — 1) equations. As to .these systems, observe that (@)1,
(m) @, ete. are all of them matrices of ? terms; each of the three systems
denotes therefore in the first instance @® equations, viz. the equations
obtained by equating to zero the several terms of such a matrix: but
in the first system each diagonal term so equated to zero gives the
identity 0 = 0; and equating to zero the terms which are symmetrical
in regard to the diagonal we obtain twice over, in the forms P == 0,
and — P = 0, one and the same equation; the number of equations is

thus diminished from @* to % o(¢ —1); and similarly in the third

system the number of equations is = »-é« e (g—1): but for the second

system the number of equations is really = @2 It is hardly necessary
to remark that in this second system 4 w4 is as before regarded as
a matrix.

The foregoing three systems of equations are in fact the equations
(6) p. 4 of Dr. Schottky's work.

Cambridge, 12. July 1880.



