

Technische Universität Braunschweig

Halbleitertechnik

InGaN/GaN nanoLED arrays for bioimaging applications

Jan Gülink¹, Steffen Bornemann¹, Hendrik Spende¹, Shinta Mariana¹, Muhammad Fahlesa Fatahilah¹, Matthias Auf der Maur², Aldo Di Carlo², Joan Daniel Prades³, Hutomo Suryo Wasisto¹, Andreas Waag¹

¹Institute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, D-38092 Braunschweig, Germany

²Department of Electronic Engineering, Universitá degli Studi di Roma "Tor Vergata", Via del Politecnico 1, I-00133 Rome, Italy ³ MIND-IN²UB, Department of Engineering: Electronics, University of Barcelona, C. de Martí i Franquès, 1, E-80124 Barcelona, Spain

What is the purpose of nanoLED arrays?

Physical laws of diffraction limit the spatial resolution of optical systems → A new approach to optical super-resolution by nanoLED arrays is investigated

Core idea: spatially resolved illumination instead of

spatially resolved detection for microscopy functionality

- Advantages:
- + chip-sized + affordable and ubiquitously available
- + robust since no lenses are needed

Requirements: very small light sources with individiual pixel control

Fabrication

Top-down approach is more versatile and reproducible than bottom-up:

- free choice of material \rightarrow wavelength selection for biocompatibility
- Different geometries and leads can easily be employed

Processing steps include:

- · MOVPE growth of the LED wafer
- · Optical lithography
- · Hybrid etching (dry etching + wet etching)

TCO and contact deposition

Processing results

Sequential iterations of optical lithography and hybrid etching lead to determined fin structures in the LED wafer. The fins will be connected by orthogonal TCO-lines on top to establish a passive matrix control

 High-aspect ratio fins with 1 µm width and 2 µm pitch with smooth sidewalls Monochromatic CL emission shows the position of the MQW and its uniformity

· Filling of fin structures with a low-k polymer

Conclusions & future work

- Processing of high aspect ratio fin structures as a basis for nanoLED arrays
 Small LED light sources have been produced and characterized with a
- dedicated micro manipulator setup → Light sources with dimensions smaller than the wavelength can be produced and still emit light
- Usage as a new microscope technique
- Applications in tissue engineering and optogenetics

CMOS broad area single pixel photodetector

sync and control link

GaN nano LED array

Principle of hybrid etching

- DRIE ICP etching forms initial truncated structure
 Wet etching (KOH-based) removes ion-damaged parts and forms a smooth
- sidewall, thus reducing surface defect channels

After ICP DRIE	
ł	After ICP DRIE and wet etching
A A A A A A A A A A A A A A A A A A A	
5 µm (a)	5 μm (b)

Hybrid etching allows well controlled widths and heights of fin and rod structures

Opto-electrical investigation

Measuring setup: Tescan Mira 3 FEG-SEM with micro manipulators enabling (threepoint) I-V, EL, CL and EBIC measurements Test sample:

Micropillars with different sizes $(1.4 \ \mu m \text{ to } 100 \ nm)$ etched in an LED wafer

Specific example: Diameter of 0.56 μm with thin Pd/Au p-contact

Droop characteristic

Acknowledgement

This work has been supported by **European Union's Horizon** 2020 research and innovation programme under grant agreement No 737089 – ChipScope.

The presented work has been partly performed within the **epitaxy competence center** (**ec**²), a joint research institute between **TU Braunschweig** and **Osram Opto Semiconductors GmbH**.

epitaxy competence

Contact: Jan Gülink, j.guelink@tu-braunschweig.de