ON A CLASS OF CONDITIONALLY CONVERGENT INFINITE PRODUCTS

By J. E. LITTLEWOOD.

[Received May 10th, 1909.-Read May 13th, 1909.-Revised October 24th, 1909.*]

1. In a paper recently published in these Proceedings,[†] Mr. Hardy raises the problem: to find a product $\Pi(1+a_n)$, such that $\sum a_n^k$ is always convergent [i.e., for positive integral values of k], but never absolutely, and whose convergence, divergence, or oscillation is capable of proof.

Mr. Hardy shows that the product $\Pi(1+a_n e^{n\theta_i})$ is divergent when θ/π is rational, where a_n is a positive function of n, which tends steadily to zero as $n \to \infty$, and which is such that $\sum a_n^k$ is divergent for all positive integral values of k.[‡] The question naturally arises : Is such a product ever convergent when θ/π is irrational? This question will be seen to admit of a comparatively simple answer, *i.e.*, an answer not cumbered with elaborate restrictions as to the nature of a_n . It will be shown that, if a_n be any positive decreasing function of n which tends to zero as $n \to \infty$, the product $\Pi(1+a_n e^{n\theta_1})$ is convergent for a certain class of irrational values of θ/π , which class is independent of the a's, and includes all algebraic numbers.

2. It is well known that, if $\lim_{n \to \infty} |u_n| = 0$, the product

$$\prod_{n=1}^{\infty} \left[(1+u_n) \exp\left(-u_n + \frac{u_n^2}{2} - \frac{u_n^3}{3} + \dots \pm \frac{u_n^n}{n}\right) \right]$$

is convergent, so that the same product, when taken from n = 1 to ν ,

* Shortly after the paper was communicated, and at the suggestion of the Council, I altered the original title, and gave a more explicit account of Abel's lemma, which is used in § 2. Some time later I discovered that the original discussion corresponding to \S 2 and 3 was incomplete. The part of the paper then rewritten (October 24th) consists of § 3 and the part of \S 2 which follows the result (3) of that article.

⁺ Ser. 2, Vol. 7, p. 40, "On the Continuity or Discontinuity of a Function defined by an Infinite Product." See, in particular, pp. 47, 48.

[†] The simplest example of such a function is $\pi (1 + e^{n\phi} / \log n)$.

02

tends to a definite limit as $\nu \to \infty$. Taking $u_n = a_n e^{n\theta_n}$, we see then that

$$\prod_{n=1}^{\infty} (1 + a_n e^{n\theta_1})$$

is convergent, provided

$$\prod_{n=1}^{\nu} \exp\left[\sum_{m=1}^{n} \frac{(-)^{m}}{m} a_{n}^{m} e^{nm\theta_{1}}\right]$$

tends to a definite non-zero limit, or (on taking the logarithm) provided

$$f(\nu) = \sum_{n=1}^{\nu} \sum_{m=1}^{n} \frac{(-)^m}{m} a_n^m e^{n m \theta_1}$$
(1)

tends to a definite limit as $\nu \to \infty$.

Let
$$heta_m = 2\pi \left[rac{m heta}{2\pi}
ight]$$

where [x] denotes the difference between x and the nearest integer. Then, if θ/π is irrational, we evidently have

$$0 < |\theta_n| < \pi. \tag{2}$$

Since $m\theta$ differs from θ_m by a multiple of 2π , we obtain from (1)

$$f(\nu) = \sum_{n=1}^{\nu} \sum_{m=1}^{n} \frac{(-)^{m}}{m} a_{n}^{m} e^{n\theta_{m} \cdot}.$$

If in this expression we change the order of summation, we obtain

$$f(\nu) = \sum_{m=1}^{\nu} \sum_{n=m}^{\nu} \frac{(-)^m}{m} a_n^m e^{n\theta_m}$$
$$= \sum_{m=1}^{\nu} \frac{(-)^m}{m} \sigma_m(\nu)$$
$$\sigma_m(\nu) = \sum_{n=m}^{\nu} a_n^m e^{n\theta_m}$$
(3)

where

A necessary and sufficient condition that a function $f(\nu)$ of ν should tend to a definite limit is that, for an arbitrarily small positive ϵ , and for all values of $\nu' > \nu$, we have

$$|f(\nu')-f(\nu)| < \epsilon$$
, when $\nu > N$,

where N depends on ϵ , but not on ν' .

In the present case we have

$$f(\nu') - f(\nu) = \sum_{m=1}^{\nu} \frac{(-)^m}{m} \left\{ \sigma_m(\nu') - \sigma_m(\nu) \right\} + \sum_{m=\nu+1}^{\nu'} \frac{(-)^m}{m} \sigma_m(\nu').$$
(4)

Now the expressions

$$\sigma_{m}(\nu') - \sigma_{m}(\nu) = \sum_{n=\nu+1}^{\nu'} a_{n}^{m} e^{n\theta_{m}t},$$

$$\sigma_{m}(\nu') = \sum_{n=m}^{\nu'} a_{n}^{m} e^{n\theta_{m}t},$$

and

are sums of the type considered in the theorem known as Abel's lemma. The theorem is as follows.*

If the sequence $(v_1, v_2, ...)$ of positive terms never increases, then

$$\left|\sum_{n=1}^{p} a_n v_n\right| \leqslant H v_1,$$

where H is the upper limit of the expressions

 $|a_1|, |a_1+a_2|, |a_1+a_2+a_3|, ..., |a_1+a_2+...+a_p|.$

In $\sigma_m(\nu') - \sigma_m(\nu)$, we may take

$$(a_{\nu+1}^{m}, a_{\nu+2}^{m}, ..., a_{\nu'}^{m}), (e^{(\nu+1)\theta_{m'}}, e^{(\nu+2)\theta_{m'}}, ..., e^{\nu'\theta_{m'}}),$$

respectively for the sequences of v's and a's, and for $\sigma_m(\nu')$, we have the sequences $(a_{m,}^m, a_{m+1}^m, \ldots, a_{\nu'}^m), \quad (e^{m\theta_m t}, e^{(m+1)\theta_m t}, \ldots, e^{\nu'\theta_m t}).$

Now the sum $\sum_{n=\nu}^{\prime} e^{n\theta_m \cdot}$ of any number of consecutive terms of the sequence $e^{\theta_m \cdot}$, $e^{2\theta_m \cdot}$, $e^{3\theta_m \cdot}$, ..., has a modulus less than $2\pi |\theta_m|^{-1}$. Hence the number H corresponding to each of the expressions $\sigma_m(\nu') - \sigma_m(\nu)$, $\sigma_m(\nu')$, is less than $2\pi |\theta_m|^{-1}$. By the theorem, then, we have

$$|\sigma_{m}(\nu') - \sigma_{m}(\nu)| < 2\pi a_{\nu+1}^{m} |\theta_{m}|^{-1},$$

 $|\sigma_{m}(\nu')| < 2\pi a_{m}^{m} |\theta_{m}|^{-1}.$

* The theorem in Abel's original form is given in Bromwich's "Infinite Series," pp. 54, 55. The theorem for complex α 's given above follows by a trifling modification of the argument: it is also a particular case of the result to be found at the bottom of p. 205.

+ We have
$$\left| \sum_{n=p}^{q} e^{n\theta_m} \right| = \left| \frac{e^{(q+1)\cdot\theta_m} - e^{p\theta_m}}{1 - e^{e^{\theta_m}}} \right| < \frac{2}{|1 - e^{\theta_m}|}$$

Now, if $|\theta_m| < \frac{1}{2}\pi$, then

$$|1-e^{i\theta_m}|^{-1} < |\sin \theta_m|^{-1} < [|\theta_m|/(\frac{1}{2}\pi)]^{-1} < \frac{1}{2}\pi |\theta_m|^{-1};$$

and, if $\frac{1}{2}\pi \leq |\theta_m| < \pi$, then

$$|1-e^{i\theta_{m}}|^{-1} \leq |1-\cos\theta_{m}|^{-1} \leq 1 < \pi |\theta_{m}|^{-1}.$$

It follows that in any case $\left| \sum_{n=p}^{q} e^{n \cdot \theta_{m}} \right| < 2\pi |\theta_{m}|^{-1}.$

$$|f(\nu') - f(\nu)| < 2\pi \sum_{m=1}^{\nu} \frac{1}{m} a_{\nu+1}^{m} |\theta_{m}|^{-1} + 2\pi \sum_{m=\nu+1}^{\nu'} \frac{1}{m} a_{m}^{m} |\theta_{m}|^{-1} < 2\pi \sum_{m=1}^{\nu} a_{\nu}^{m} |\theta_{m}|^{-1} + 2\pi \sum_{m=\nu+1}^{\nu'} a_{\nu}^{m} |\theta_{m}|^{-1}$$
(since $\frac{1}{m} \leq 1$, $a_{\nu+1} \leq a_{\nu}$, and $a_{m} \leq a_{\nu}$, when $m > \nu$)
 $< 2\pi \sum_{m=1}^{\nu'} a_{\nu}^{m} |\theta_{m}|^{-1}.$ (5)

3. Let us now suppose that for all values of m we have

$$|\theta_m| > K^{-m}$$

where K is some positive constant. Then, from (5) above,

$$|f(\nu')-f(\nu)| < 2\pi \sum_{m=1}^{\nu'} (Ka_{\nu})^m.$$
 (1)

Let ν be chosen so large that

$$Ka_n < \frac{1}{2}.$$

Then we shall have, taking the geometric series in (1) to infinity,

$$|f(\nu')-f(\nu)| < 4\pi a_{\nu}.$$

This last expression is independent of ν' , and may be made less than ϵ by choosing ν sufficiently large. The function $f(\nu)$ will consequently tend to a definite limit.

4. We conclude, then, that $\Pi(1+a_n e^{n\theta_i})$ is convergent, provided we can find a constant K, such that

$$|\theta_m| > K^{-m}$$
, when $m \geqslant 1$.

This condition will certainly be fulfilled if θ/π is an algebraic number. For it is well known that, if x is an algebraic number, and r/m an arithmetical fraction differing from x by less than (say) unity, then

$$|x-r/m| > hm^{-q},$$

where q is the degree of the equation with rational coefficients of which x is a root, and where h depends only on x.* Hence, in the case we are considering, if $m\theta/(2\pi) = \theta_m/(2\pi) + r,$

so that r/m differs from $\theta/(2\pi)$ by less than unity, we have

 $ert heta / (2\pi) - r/m ert > hm^{-q},$ $ert heta_m ert > hm^{1-q}.$

We shall then have, for all values of $m \ge 1$,

or

$$|\theta_m| > K_1^{-1} e^{-(m-1)},$$

where K_1 is a constant, for the expression

$$e^{-(m-1)}/(hm^{1-q})$$

has, for positive values of m, a finite maximum value when m = q-1. If now we choose K to be the greater of e and K_1 , we have

$$|\theta_m| > K^{-m}.$$