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Mit Hiilfe der beiden Stetigkeitsaxiome V.1 und V. 2 ist es noch
nicht méglich, die ebene Geometrie als identisch mit der gewdhnlichen
analytischen ¢ Cartesischen” Geometrie nachzuweisen, in der jedem
Zahlenpaar ein Punkt der Ebene entspricht. Zu diesem Nachweise
ist aber weder das Axiom vom Dedekindschen Schnitte, noch das
Axiom von der Existenz der Grenzpunkte notwendig ; vielmehr
geniigt dasjenige Axiom allgemein philosophischen Charakters,
welches ich bereits in der franzisischen Uebersetznng meiner Grund-
lagen der Geometrie* anfgestellt habe, nnd welches wie folgt lantet:

V. 3. Axiom der Vollstiindigkert.

Zu dem System der Punkte und Geraden ist es nicht mdoglich ein
anderes System von Dingen hinzuzufiigen, so dass in dem durch
Zusammensetzung entstehenden System siimtliche aufgefiihrten
Axiome I.-IV., V. 1, 2 erfiillt sind ; oder knrz: :

Die Elemente der Geometrie bilden ein System von Dingen, welches bet
Aufrechterhallung simtlicher Axiome keiner Erweiterung mehr filig ist.

On the Groups defined for an Arbitrary Field by the Multiplication
Tables of certain Finite Groups. By L. E. DicksoN. Re-
ceived and vead April 10th, 1902. Received, in modified
form,t October 20th, 1902.

In his paper} * On the Continnons Group that is defined by any
given Group of Finite Order,” Burnside obtained by a new method
the most fundamental ones of the theorems of Frobenius§ on group-
matrices and group-determinants, and gave a new aspect to the
theory. A more general theory for an arbitrary field (domain of
rationality) was later developed by the writer.] An exceptional case

* Annales de UEecole Normale, 1900, Vgl. auch meinen Vortrag iiber den
Zohlbegrift : Berichte der deutschen Mathematiker- Vereinigeng, 1900,

t The original manuscript was lost in transit. From rough notes on a part of it,
the present paper hus been prepared.

1 Proc, Lond. Math. Soc., Vol. xx1x., pp. 207-224, 546-565.

y Berliner Sitzungsberichte, 1896, pp. 985-1021, 1343-1382 ; 1897, pp. 994-1015;
1898, pp. 501-515; 1899, pp. 330-339, 482-500; 1900, pp. 516-534; 1901,
pp. 303-315. An elementary exposition of Frobenius's theory is given by the
. writer in the Annals of Mathematics, October, 1902,

|| Tyans. Amer, Math. Soc., Vol. m1, (1902), pp. 285-301. Additional devclop-
ments are given in the University of Chicago Decennial Publications, Vol, I1x.,
Pp. 35-51 (separate prepriunts, pp. 1-17, Oct. 1, 1902).
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not treated in the paper just cited is that of a field having & modulus
which divides the orderof the given finite group. As this exceptional
case appears to offer special diflicultics, it seems desirable to have n
detailed treatment of & number of examples both for the general case
and for the various exceptional cnses. Sucl: are the contents of
§§1-7; the methods employed are very elementury and eutirely
independent of the general theory. The next step in the extension
“of the general theory is very naturally a detailed study of the
explicit developments in the eavlier investigations which cease to
hold true for the above exceptional cases. The contents of §§8-12
are of this natare.

Cunonical Forms of the Group-Matriz for the Symmetric Croup ¢,
on Three Letters.

1. The body of & left-hand multiplication table for g, is*

I a B v & €

B I « § € ¥y

a B I ¢ y ¢

O y § e I « 8
8 e v B I «

€ ¥y ¢ a« 3 [

Let T, be a linear transformation on &, ..., &, the matrix of whose
coefficients is of the form (1) with I, q, ..., € in a given field F.
Employing the standard notution, let B; ;. denote the linear truns-
formation which alters only the variable &, replacing it by &+Ag,.
The inverse of B, is evidently B;; ... Transforming 1, of
matrix (1), by
(t) Bz,l,-lBa,l,-|~Bt,|,-lBs,l,-l-Bn,n.-u

we obtuin a transformation 7, with the matrix of coeflicients

p @ B y =@ €
0 I—a a—f é—y e—08 y—¢
. 0 B—a [—f} e—y y—8 d—c¢
(Z) ) vy I ’ ]
0 0—a e—f I—y a—08 P—e
0 e—a y=—B PB—y I-8 a—c¢
0

o

y—a 6—fB ‘a—y B—08 I—¢

¥ Weber, Alyebra, scoond edition, Vol. 11., p. 124,
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where p and p,, used below, have the values
p=It+ut+P+y+8+e¢ p =I+atp—y—i—c.
Transforming 1%, of matrix (2), by the product
(ts) B-z, %1 B-z,a, -1 B, 5 -t Bz, 8 -1y
we obtain a transformation 7T, with the matrix
p a B—a " y+a d4a- et+a )
0 p 0 0 0 0
@) 0pB—a I-28+a B+e—a—y f+y—a—3 f+d—a—e
0 d—a g—ﬂ—s-i-e I—a—y+9d 0 B+é—a—e
10 €e—a a—pB+y—e Bte—a—y I—a—0+e¢ 0
0 y—a a—p3—y+3d 0 B+y—a—8 I—a+y~¢

Transforming T, of matrix (3), by the product
(ta) B:S,&,—IBG.S.-I:
we obtain a transtormation 1% with the matrix

p a B+e By o+a e+a
0 I 0 0 0 0
4 10 B—3 I—p34é~e¢ 0 B+y—a—@ 0
0 i—a 0 I+e—3--y 0 f+é—a—ce

0 €c—a aty—pP—e 0 I+e—a—3@ 0
0 y+d—a—p3 0 atd—p—y 0 I+y—a—e
It ¥ does not have modulus 2 or 3, we transform 1’ by
(t) =6+ +3E+HE+ELE), E=60E>D,
und obtain a transtormation 7 whose matrix differs from (4) only
in the tirst row, that being now p00000. Transtorming 1y by

£ = B, , .1, we obtain a transformation Iy whose matrix differs from
that of 715 only in the fourth and sixth rows, those being now

0 B—vy 0 I—a—d—e 0 Bt+e—a—y,
0 y+é—a—B 0 a«4d—p—y 0 I+d—B—ec
Transforming T} by
(t) &=&—38 E=&—3 &E=6&+3 &=4+36
we obtain a transformation 7} whose matrix differs from that of U’

only in the second column, that now having all zeros except p, in the
second row. Trausforming 1}, by

) E=—in E=tn &=t
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we obtain a transformation with the matrix M :

p 0000 O
0 p 00 0O (a = I—B+d8—¢
M= 0 0 ad 00O b=a—f+8-1y,
—10 0 ¢ d 0O c=-—-—a+B—-y+e,
0 0 0 0 ¢ b d=IT—a—d+e).
0000 ¢ 4

The product ¢ = £,4,4,¢,4:8,¢, 18 found to be

El’ = % (EI+EQ+ES+$J+§5+£O)$ f; = £1+$9+£a_‘£;_§5 _‘an

&= —% (§1+£2_2£a+264_$5—§n)3 61 = %(261_$g—53+ 54—255'*’60),
65’ = - % (§|—2$a+$a—§4+2$5_£ﬂ)7 ft’i b —%‘ (f] +£2—'2€3‘_$¢_§5+2§u)'
This transformation* ¢ therefore transforms 7, of matrix (1), into
& transformation of the canonical form M, the cases of moduli 2 and 3
being excluded. The six functions p, p,, ¢, b, ¢, d are readily seen to
be linearly independent. The group of transformations of matrix (1)
is therefore simply isomorphic with the product of two general unary
linear groups and the general binary linear group, all with coefticients
in the given field F, and affecting different variables.

2. Let next ¥ have modulus 2. Transforming 7, of matvix (2), by
e: = $1+£4+Es+£m & = $1+£3+£4+£5+£0; 5: = f-’ (7'>2)a .

we obtain & transformation of matrix

p y+d+e o - 0 0 0
0 » 0 0 0 0
0 a+f3 I+a at+PB+y+e a+fB+y+8 a+PB4+0+¢
0 a+d a+pB+8+¢ I+a+y+d 0 at+fB+d+e |’
0 ate a+fi+y+e a+P+y+e Itat+dte 0
N0 a+y a+f+y+98 0 a+pP+y+38 I+a4y+e

Transforming it by the product B, ,,B; ., B, ), we obtain a trans-

¢ The product of ¢ on the right by .
=065 E=£&, b=—3& &=—3k & =—3k & =—>3%,

which transforms M into itself, gives a transformution with integral coefficicnts of
determinunt —2.3% which offects tho reduction of 7y to M. It is given, without
proof, in the Trans. Amer. Math. Soc., Vol. nu1., 1902, p. 296 (viz., mutrix 7).
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formation with the matrix

p v+d+e 0 0 0 O
0 p 0 00O
) 0 B+8 e 0 b O
0 B4y 0 d 0 ¢
0 ate . ¢ 0 4 0
0 at+B+y+5 0 b 0 a

Tra.nsformi'ng it by ¢, which for modulus 2 becomes
&==&+&s¢“=&+f”'&:=&+&, }

we obtain & transformation whose matrix differs from (5) only in the

second column, that being now y+é+¢p,0,0,0, 0. Finally, trans-

ferming by (&&)(é44), we obtain a transformation with the

canonieal matrix

P 00000
7y+3+e p 0 0 0.0

— 0 0 a b 00
M= 0 0cd 00O
0 000 ayd

0O 000 ¢ 4d

The six functions p, y+8+¢, a, b, ¢, d of I, a, /3, v, 8, € are seen to be
linearly independent modulo 2. The group is therefore simply
isomorphic with the product of the binary group of transformations
('; g) and the general binary linear group, the two affecting different

varinbles,

3. Let, finally, F have modulus 3. For any modulus, the trans-
formed of T\, with matrix (1), by ‘
£h=&+&+&+ﬁ+&+§’éh=&+&+&7§¥=&a€¥=&’
=& &L=46&
has the matrix of coefficients
P 0 0 0 0 0
y+8+e p 0 0 0 0
a e—a J—a B—a y—e d&—¢
B 8—B a—B I—B -8 y-38
8 B—8 y—8 é-8 I-B8 a—PB
€

a—e¢ 8—¢ y—e B—u I—u
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Transforming it in succession by the three transformations (mod. )
f:: = f.'i_ft-f'fﬁ_gﬂ! f/' = fa+§n+§m SC.'II = fr,—fm
further simplifications avise, the finnl matrix heing

p 0 0 0 0 0
vy+d4+e p 0 0 0 0

T T ) 0 0 0
B+o+e a—e a—B+y—e  p 0 0’
0—e€ " y4+3+¢ 0 P 0

€ a—c¢ d—e y+8+e B-a—y+38 p
where r =a—p@+8—e. Subsequent simplifications arise by trans-
formation b)’ Bz. L1y Bn, ENT) Bo, §,=11 Bd.b.l) (fsfa‘fxfo&i)y Ba, 2,1 -B(i,:'y,ly in
succession, the final matrix having the canonical form*

p 0 0 0 0 O

¢ pp 0000
|k —rp 0 0O
My= 0000 p 00/

0 00 p O

0 00 v» o p

where o =a—f3— 3+e, k=a+PB+8+e v=—u—PB+8+e The six
functions p, p,, o, 7, x, v are readily seen to be linearly independent
modulo 3. For the Galois field of order 3", the group is ev 1dently of
order 3" (3"—1)*

The transformations [p, p,, o, 7, &, v], of matrix M, form a solvable
group. Indeed, the transformations [1,1, o, 7, «, »] form an invariant
sab-group, the quotient-gronp being a commutative group [of order

(3"—1)" for. the GF [p"]] The sub-group itself has an invariaut
sub-group formed by the commuta,twe transformations [1,1,0, 7, x, v].
In fact,

[l 1,0,7« »][1,1, 0, Uk, v =[11,0,r+7, k4, v+'],

1 00 . 1 00
while (a 1 O), whose inverse is ( — 1 0>, transforms o

k —r 1 —k—ro 1 1
ternary transformation, leaving fixed the first two variables, into & 4

1 .
transformation lea.%ring them fixed; likewise (r 1 O), whose in-
1 0 0 v o 1
verse 18 < — 1 O), transforms (& =§&, & = &+AE,
—v+or —o 1 : '
.f' &+ p£) into a similar transformation. -

* Asa chcck note that the trunsformations of matrix My form » group
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Canonical Matrices for the Cyclic G,
4. The body of a left-hand multiplication table for @, is

I a B
(6) ( B 1 a>.

Let w be an imaginary cube root, of unity and set
81.=I+a+,3, 8 =I+vatw’B, & = I+w'a+twf,
m=&+&+E w= fl"'”“"fs"'"’fs, 15 = & +wb+ 0y

If F' does not have modulus 3, 8,, J;, &, are linearly independent with
respect to F, and likewise n,, n,, 5, Expressed in terms of the latter,
the transformation on §, &, &, with matrix (6), takes the form

7)) m=3dmn, '7;:8-2"]27, e = Oy

Hence, if w belongs to F, the group of transformations of matrix (6)
is simply isomorphic with the direct product of three groups each a
geneval unary linear group. If w is not in F, it serves to extend* ¥
to a field Fy. . Then the conjugate of w with respect to F'is w = o*;
sothat ny =7, 8 = §,. The group is therefore simply isomorphic
with the direct product of the general unary group in I and the
general unary group in Fy. Thus, if F' is the GF [p"], so that F; is
the GF [ p*], the orders of the two factor groups are p"—1 and p*—1
respectively.
If p = 3, a transformation of matrix (6) is transformed by

e d— &~ & & &l & o ! —
Sl =—&—&—8& & =& 63 - —ésy

of period 2, into a transformation of canonical matrix
) 0 0
(8) <a— B @ 0).
a a—B 9

The transformations of matrix (8) form a commutative group. Since
a, a—pB, 8 = I+ a+pB are linemly independent modulo 3, the order
of the group for the G'F[3"] is 3* (3"—1). i

* To avoid introducing o, note that n tronsformation of matrix (6) is trans-

8 0 0 1 3 3
formed into ono of matrix (0 I~a a—8 | by <—l 1 0

0 B~—a 1-8 -1 01
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‘ Cunonical Matrices for the Cyclic C%,.
9. The body of a left-hand multiplication table for G, is

a a ag gy a, a
a a, a a a3 a
) a a; a, o f’s as | .
@ a; a5 a, a; a,
oy ag a; a; ay qa,
dl ag a3 "0y Az aq
Let p be u primitive sixth root of unity and set
8 = ag+pla,+pay+p%ay+pt g+ plla;
= &+ p"f,+p'ﬁf:+p'3‘fs+p_"'f4+p'“"$, )
The determinant of the coefficients of ay, ..., a5 in 8, ..., 8 equals the
product of the differences p"—p’, and is zero if, and only if, 2® =1 has
i double root in the field F, <.e., if F has as modulus either 2 or 3.*

} ((=0,1,...,5).

lixcluding these cases, &, ..., 8, are linearly independent functions of
ag, ..., ag; likewise, 1wy, ..., are linearly independent functions of
&, .-y & A transformation on &, ..., & with coefficients of matrix (9)

yives rise to the canonical transformation on %, ..., n;:
10) 7 =8n (=0,1,..,5).
The structure of the group is now quite evident.f When F is the
(*F [p"], the order of the group is (p"—1)" or (p"—1)*(p"—1)*
according as p does or does not belong to the GF [p"], viz., according -
as p" = 6k+1 or p" = 6k+5.
6. Next, let F' have modulus 2. Introduce the variables}

Yo=fo+f|'+£g+fa+f4+fm Yi=&L+&+6

Y, = $0+ "’E] 4 we§,+ €3+UEA+ wsfm Ya = fo"" "'gfs"" “’647

Y, = &+’ b+ &+ ot wé, Y, = &4 wé o',

w being & root of w'+w+1 =0, and therefore a cube root of unity.
Then the transformation on ¢, ..., & with matrix (9) becomes

11) { Y, =4, Y;=4,Y, Y, =4,
Y, =AY, +4&Y, Y,=pY,+3,Y, Y= Y+4,Y,,

* Compare Dickson, ‘¢ Linear Groups,’’ Corollary of § 74, p. 54.-
t University of Chicago Decennial Publications, Vol. 1x., p. 38 (preprints, p. 4).
1 The determinant of their coefficients is congruent to unity modulo 2.
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where A = o, ta,+a, p=o’e+atwa, v=uwa+at o

Here A, p, v ave linearly independent functions of ay, ay, «;, since the
determinant of their coefticients is =1 (mod 2). Then &, &, o,
A, p, v are seen to be linearly independent modulo 2. If w belongs
to F, the group of transformations (11)is the direct product of three
binary linear groups in F, each & commutative group of transforma-
tions C = (() (B)) for the GF [2'] its ovder is 2" (2"—1). Ifw
o

extends F' to a larger field Fy, the group is the direct product* of a
binary group in F and a binary group in F,, each formed of trans-
formations of type C'; for the GF [2] its order is

on (2u__1) 2 (22»_1).
7. Finally, let F have modulus 3. Introduce the variables
Zo = fu+£1+'fs+ss+£a+fsa Z1 = 51—534'54_55’ Za = £o+£av
Zy=§~b+b&—&+E—& Z,= —q—&té&+s Zi=4— 4

The transformation on &, ..., & with matrix (9) becomes
Z, = 34,2,  Z,=4,7,
12) {Z=q2+82%,  Zi=sZ+d4,7,
Zy=12,+qZ,+ 0,2, Z;=thy+sd,+ 7,
where 1=E—ata—ata;, r=—a—a,—a,—ay
s= a4+ a3— a;—a;, t=a, —~a,—a;+u,

To show that ¢, r, s, ¢ are llnem]y mdependent functions modulo 2,
we note that

1+t=a—u;, q—t=a,—ay, r+s=a,+a;, r—s=a,+a; (mod 3);

so that a,, a,, a,, a; may be expressed in terms of ¢, 7, 5, t. It follows

that _
60 Sa,toatatatata;, 5= a,—a;+ay—agt+a,—ag

and ¢, 7, 5, ¢ are six linearly independent functions of a ..., a;
modulo 3. Hence the group of transformations (12) is the direct
product of two groups, affecting d\ffexent variables, each a commuta-
tive group of the type

8 0 0
</\ S 0> [8, A, x arbitrary in F'; 8 £ 0].
k A 8

* Given & and A arbitrarily in F, §; and p arbitrarily in F,, the values of
any ...y az follow uniquely.
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Ilemarks on the General Theory.

8. In the writer’s treatment* of a group matrix of order » for an
arbitrary field I, the case in which F has a modulus which divides n
was excluded.. The question of the first invariant factor of the
characteristic determinantt of the special group-determinant D
depends upon the nature of the greatest common divisor of all its
first minors. The adjoint minor of an element ¢, in the determinant
D equals 1 82, where n, is the number of operatorsin the k-th set

21y, ,(:)E‘k .
of conjugates in the given group of order n. The necessity of a
variation in the treatment will be evident from' the following
examples. '

9. For the symmetric group g, on three letters, the special group-
-determinant D is the determinant of matrix (1) when a =3,
y =d=c¢ From the form of matrix M of § 1, we conclnde’ that

D=(T+2a+3y)(I+2a—3y)(I—a)"

Let I,, a;, y, denote the adjoint minors of I, a, ¥, respectively (by a
theorem the same wherever I, a, y occur in D). Then}

' L =13 ?)]I) = (I* +3Ia+2a*—0y*) (T—a)",
‘.} o o
a, iﬁ,‘(ﬁf = (3y'—Ia—2a®) (I—a)’,

Nn=+vs = —y ([—a)"
dy

For I, a, y arbitrary in F, the greatest common divisor of I, a,, v, is
therefore (I—a)?, if I' does not have modulus 3; but is (I—a)’, if 2
has modulus 3.

10. Forthe quaternion group (Weber, Algebra, 2nd ed., pp. 216-218),
D = o,0,050, (7,—m,)*,
oy = w, o+ 20+ 20,4 20, 0y = 0yt 4 20— 20, - 20,
oy = o 4o, —20, 4+ 20, =20, o=, +..1'A_, — 2y — 2w, -2,

* Trans. Amer. Math, Soc., Vol, 111, 1902, pp. 285-301. Seec p. 293,
+ It is derived from /) by replacing the identity element I by /—p,
1 The values of I) and v, were alro computed direct as determinants of order 5,
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Denote the adjoint minor of 2 by X.. Then
X, = (m—)® {=, (2, +2,)°—2 (2, +=,) (B, + 25) (42} +2])
. — 32, + 2, 2y, + 40m, 24257, + 8 (2, +2p—27)*},
= (3 —wy)* {4l —dayal —doryal + day, (2, +2p) —ay (2 +25))

Smce X. =&, o ; is derived from X _——a—— by interchanging a,

Oz, 1© On,

with a2, D being thereby unaltered, the expression for X; may be
written down by inspection. Similarly for X, and X,. It follows
readily that the greatest common divisor of X,, X;, X,, X, X, is
(x,—=,)%, if F does not have modulus 2; but is (z,—z,)° if F has
modulus 2. The special character of modulus 2 is also shown by the
fact that it is the only case in which the factors o, oy, oy, 0y, 2, —~x,
are all equal.

11. For the alternating group G,, on four letters, we have®*
= (I+3e+4a+48)(I+ 3e;i- dpa+4p°B) (L + e+ dp’a+4pB) (I—¢)®,
where p =} (—1+4 v/ —3) is a cube root of unity. Hence
D= {(I+3¢)*+64a+648°—48aB (I+3¢)} (I—e¢)".
Fof the adjoint minors I, a,, B,, ¢, we get

L=+ %P = (I—¢)*{ (I +3¢)* (I+2¢) +48a®+ 488°—40aBI—104afe},

o =45 %—_ (I—¢€)°(4a*—IB—38¢),

— __12.___ —¢)? S __ [a—3ae
B.—z’saﬂ (I—¢€)’(4f*— Ia—3ae), .

= %—D = (I—¢)* { —e(I+ 3e)?— 16a3—lﬁﬁs+8aﬂl+40a,3€} .

The greatest common divisor of I, a), 8, ¢, is therefore (I—e)®if I
does not have modulus 2; but is (I—¢)" if F has modulus 2, since
then

L=I(—¢€)" a=BI—¢" Bi=a(l-€)" ¢=c¢ (I—e)™
The exceptional character of the case of modulus 2 is also shown by

* Using table of characters, Weber, Algebra, 2nd ed,, 11., p. é06.
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two further facts. The linear factors of D are thenall equal. Again,
the general group-determinant then decomposes entirely into three
linear factors each to the fourth power. For any field, the theory of
Frobenius gives* for the general group-determinant of Gy,

A = ff fo @,
f=T+etetetata+a,tag+B+B,+B:+8s
h=T+etea+g+p(ata+ay+ay) '*'!”T B+B+Bi+5y),
fisItetete+p’ (ata +ay+a)+p (B+B+B+By),
e=I'+e+++a’+a’+al+al+ B+ B4 B+
—De—I'e,— I'e,— Id— I —[&— &, — e’

o2 2
€ e—€e

—ge—ge—a’a,—a'a,—a’a,—aja—ala,—ala,—ala—ala,
—daa,—ala—aja —ala,—fB8 —B'B,—B'B,—B BB B,— BB,
—BB—B;B,—B;B,—B;B—B;B8,—B;B,

+ 2¢e, €+ 2T e, + 2L e, + 2 ¢, ¢+ 2aa, 0y + 200, 0,4 2aa 0,

+2a, 0305+ 288, By + 2B, Bs + 288, Bs + 28, B Bs

+I(0B, +0By+ By + 0, B+ 0Byt @, By+ ag B+ as By + a4,

+aaﬁ+asﬁl+“a.32)
+(€+€1+es‘-31)(“ﬁ+ “131+°spa+°sﬂa)

—3e (aB,+a,B+ 0385+ a;By)

—3e, (aBy+a, By +a,B+as3)

— 3¢ (afy+a By + 0y B, +asB)

+e (af;+ afy+ay B3+ a1 Byt e, 8+ a3 8, +a, 8+ a, B)
+ € (af + afy+a, 8+, 83+ 0B+, By +ay 8+ a5 8,)
+¢;(aB,+afy+a, B+, B3+ 0,8+ e, By +ay B, + ay By).

For the case of modulus 2, we find that

®=fff, (mod 2), ASfF'f (mod 4).

¢ The computation of ¢ was checked as follows. For ¢ = ¢ = €3, a = a; = ag = a3,
B =P, = By= By, &= (I-¢)? thereby agreeing with the above result for the
special group-determinant D. Again. the coefficients of I3, I%;, I%a;, I%8; in ¢
agree with 5\056 given by using the characters for the factor ¢.
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12. For the symmetric group Gy, on four letters,*
D = aefS’y%",
‘a =0a+3b+6c+8d+6e, €= a+3b—06c+8d—6e,
B=a=b+2c—2, y=a-b—2c+4+2, 8&=a+3b—4d.
By direct computation (see § 8), we find for the adjoint minors
dy = B9 {3 (c+e)*—d (a+3b+8d)},
¢, = [3y%8* { 4eb® + dead —c (a’+ 2ab + 5b*) + (c*—e*) (20r + 16¢)
—(c—¢)(Bad+24bd + 324°) },
= %% {(a—b) (a+3b+8d) (848 —ab—3b —4bd) + 24 (F—e?)?
+ (a—b)(c+e)* (3a+33b—364)
—(c—e)’ (a+3b+8d)(a+3b+4d)},
@, = B8 {(a—b)(a -+ 3b-+8d) (a*+ 5ab + 4ad + 6b + 8bd—244?)
—(c—e)* (a+3b+8d)(a+3b+4d) +24 (' —é%)*
+ (a—b)(c+e)* (—33a—"75b+1084)}.
Since D is unaltered by the interchange of ¢ with e, we derive
& =143 g—lez from ¢, = T{—;aa{‘) by interchanging ¢ with e,

It F does not have modulus 2 or 3, the greatest common divisor g
of ay, by, ¢, d,, € i8 %%, in accord with the general theory. If F has
modulus 2, so that e ==y =¢ =e=a+b (mod 2), then

dy = a¥ {(c+e)*+d (at+ b).}', ¢, = a® (ca® +cb?),
b, =a‘°{b(a+b)’}, a, = a" {a (a+b)3}.
Hence the greatest common divisor y is (a+b)*. For modulus 3,

d, =% { —d (a—d)},

& = %% {eb (a+Db)+c (b*+ab—a®) + (e—c) (¢ —e'—ad—d*) },

b, = %% (a—d) { (a—b)(—ab—bd—d')—(c—e)* (a+d)},

a, = y°® (a—d) (a+d) { (a—b)*— (c—-e)’} ,

and a =e= 06 = a—d. Since a—d is not a factor of the expression
in brackets in ¢,, the greatest common divisor g is 8*%¢*. Hence the
cases of moduli 2 and 3 are both special.

¢ Frobenius, Berliner Sitzungsberichte, 1896, p. 1012, -





