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On the Form of the Ilnergy Integral in the Varying Motion of a
Viscous Incompressible Fluid. By J. Britt, M.A.  Received
May 29th, 1895, Read June 13th, 1895, Recsived, in new
form, September 11th, 1895.

1. In the varying motion of a viscous incompressible fluid, the
energy integral can, in two special cases, be put into the same simple
form as in the motion of the perfect fluid. These are the two-
dimensional case and the case in which the motion is symmetrical
about an axis. In the three-dimensional motion of the viscous fluid
the energy integral is of a more complex form than in the corre-
sponding case of motion of the perfect fluid.

2. We will first consider the case of two-dimensional motion. If
we write
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the equations of motion may be written in the form
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Eliminating @ from these equations, we obtain, for the equation
controlling the vortex motion,
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If m = const. and B = const. be two independent integrals of these
-equations, we have
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Also, in virtue of equation (2), we see that m and.(- may be so
-chosen that we may write
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from which it follows that there exists a certain function a, such that
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* If we guhstitute from equations (4) and (5) in the first of equa-
tions (1), it becomes
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Similarly, the second of equations (1) mAy be reduced to the form
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From equations (6) and (7) we immediately deduce the energy
integral in the form
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Now, if we write
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then equations (3) assume the form
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from which it follows that m and B satisfy the equations
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3. In the case in which the motion is symmetrical about an axis,
the equations of motion assume the form
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Eliminating Q, as before, we obtain
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Thus, if m and 8 be two independent integrals of the equations
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:and, in virtue of equation (10), we see that m and B8 may be so
-chosen that we may write
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Thus we see that there exists a function a, such that
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Substituting from equations (12) and (13) in equations 9), we
readily find that they reduce to the form

8Q+8(8a+ aﬁ)_o

or \ ot 8_
8Q+aii (aa+ %1:)

These equations at once give us the energy integral in the simple
form Oa
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which is exactly like equation (8).

Further, if we write
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we see that equations (11) assume the form
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4. We now come to the discussion of the three-dimensional case.
We will write .
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The equations which control the vortex motion in this case are
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Guided by our former work, we will now make the assumptions
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"Substituting these values in equations (15), and taking account of
the values for £, n, { given above, we obtain
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These equations indicate the existence of & function 9, such that
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Now the equations of 1 stion of. the fluid may be written in the:
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By means of the results given above, these equations may be easily
reduced to the forms
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Hence we obtain for the form of the energy integral

The function $ satisfies the'equa,tion
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From equation (16) we see that the energy integral can only be-
.come reduced to the simple form that obtains for the motion of the
perfect fluid if the vortex lines can continually be cut orthogonally
by & family of surfaces. This is necessarily so in the two special
.cases we have considered. It, however, indicates a state of affairs
that must be very rare in cases of three-dimensional motion.

If we write wu=1u'+f, v=1"+g, w=w'+h,

:and determine f, g, : so as to satisfy the equations
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From these equations, we obtain
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which may be replaced by the two equutxons
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From these we easily deduce
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Comparing this with the equation given above, we sec that k=1,
and the above equations assume the form
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- Thus m and 3 are solutions of the equations
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It is to be noted that equations (20) allow one degree of freedom
in the choice of the quantitics f, g, k, us should bo the case.

On an Ezpansion of the Potentinl Function 1/R*™' in Legendre's
Functions. DBy E. J. Rouru. Received May 29th, 1895.

Read June 13th, 1895.

1. When we 1"equi1'e the potential of a body attracting according
to the inverse square of the dismnco, we use Legendre’s series

L SRR (L),
I .

where R =1—2ph + 1.
But, when the law of attraction is the inverse s** power of the dis-
tance, we require the expansion of 1/R<-!. There are two ways.of
extending Liegendre’s series.

First, we may continue to make the expansion in powers of &", and
put 1
IF'—‘ = EP.,’L" ...’...........................(2).

If k—1 is an odd integer equal to 2m+1, we have
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