A new system of simple groups.
 By
 Leonard Eugene Dickson of Chicago.

Introduction.

One of the five isolated simple continuous groups not occurring in Lie's four systems is the group of 14 parameters studied by Killing, Cartan, and Engel. This group is a special case of a linear group on 7 variables with coefficients in an arbitrary field or domain of rationality. The structure of the latter has been determined*) by the writer for fields not having modulus 2. The problem for modulus 2, which requires a different analysis, is solved in the present paper. For $q>1$, we obtain a simple group of order $2^{6 q}\left(2^{6 q}-1\right)\left(2^{2 q}-1\right)$. For $q=1$, the group has a simple subgroup of index 2 and order 6048. The latter is shown to be holoedrically isomorphic with the simple group**) of all ternary hyperorthogonal substitutions of determinant unity in the Galois Field of order 3^{2}. The generational relations of the isomorphic abstract group are determined and a transitive representation on 36 letters exhibited.

For $q=1$, the group of order 12096 is shown to be simply isomorphic with a subgroup of index 120 of the senary Abelian group modulus 2 , of order $2^{9} \cdot 3^{4} \cdot 5 \cdot 7$. The latter is known***) to be simply isomorphic with the group of the equation for the 28 bitangents to a quartic curve without double points. It therefore has resolvents of degrees $63=2^{6}-1$ and 120 , the latter not hitherto noticed.

Definition of the group G_{q}.

Consider the linear homogeneous transformations S on 7 variables with coefficients in the Galois Field of order 2^{q} which leave invariant

$$
\begin{equation*}
\xi_{0}^{2}+\xi_{1} \eta_{1}+\xi_{2} \eta_{2}+\xi_{3} \eta_{3} \tag{1}
\end{equation*}
$$

*) Transactions Amer. Math. Soc., vol. 2 (1901), pp. 383-391.
*) Annalen, Bd. 52, pp. 561-581.
**) Jordan, Traite, pp. 229-242; a simpler proof by the writer, Transactions, vol. 3, pp. 377-382.

We study the group G_{q} of those of the transformations S which, when operating cogrediently upon the two sets of variables

$\xi_{0}, \xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}, \xi_{3}, \eta_{3} ; \quad \bar{\xi}_{0}, \bar{\xi}_{1}, \bar{\eta}_{1}, \bar{\xi}_{2}, \bar{\eta}_{2}, \bar{\xi}_{3}, \bar{\eta}_{3}$,

leave invariant the system of 6 equations

$$
\begin{equation*}
X_{l}+Y_{m n}=0, \quad Y_{l}+X_{m n}=0 \tag{2}
\end{equation*}
$$

where l, m, n form any cyclic permutation of $1,2,3$, and
$X_{i}=\left|\begin{array}{l}\xi_{0} \xi_{i} \\ \bar{\xi}_{0} \bar{\xi}_{i}\end{array}\right|, \quad Y_{i}=\left|\begin{array}{l}\xi_{0} \eta_{i} \\ \bar{\xi}_{0} \bar{\eta}_{i}\end{array}\right|, \quad X_{i j}=\left|\begin{array}{l}\xi_{i} \xi_{j} \\ \bar{\xi}_{i} \bar{\xi}_{j}\end{array}\right|, \quad Y_{i j}=\left|\begin{array}{l}\eta_{i} \eta_{j} \\ \bar{\eta}_{i} \bar{\eta}_{j}\end{array}\right|, \quad Z_{i j}=\left|\begin{array}{l}\xi_{i} \eta_{j} \\ \bar{\xi}_{i} \bar{\eta}_{j}\end{array}\right|$.
A very simple discussion*) shows that, for modulus 2, a transformation S which leaves (1) absolutely invariant must have the form

$$
\left\{\begin{array}{l}
\xi_{i}^{\prime}=\sum_{j=1}^{3}\left(\alpha_{i j} \xi_{j}+y_{i j} \eta_{j}\right), \quad \eta_{i}^{\prime}=\sum_{j=1}^{3}\left(\beta_{i j} \xi_{j}+\delta_{i j} \eta_{j}\right) \quad(i=1,2,3) \tag{3}\\
\xi_{0}^{\prime}=\xi_{0}+\sum_{j=1}^{3}\left(\alpha_{0 j} \xi_{j}+y_{0 j} \eta_{j}\right)
\end{array}\right.
$$

where

$$
\begin{equation*}
\sum_{i=1}^{3}\left(\alpha_{i j} \beta_{i k}+\alpha_{i k} \beta_{i j}\right)=0, \sum_{i=1}^{3}\left(y_{i j} \delta_{i k}+y_{i k} \delta_{i j}\right)=0 \tag{4}
\end{equation*}
$$

(6) $\sum_{i=1}^{3}\left(\alpha_{i j} \delta_{i k}+\beta_{i j} y_{i k}\right)=0$

$$
\begin{equation*}
\sum_{i=1}^{3}\left(\alpha_{i j} \delta_{i j}+\beta_{i j} y_{i j}\right)=1 \tag{5}
\end{equation*}
$$

For modulus 2, (5) and (6) are precicely the conditions that the partial transformation (3) on $\xi_{i}, \eta_{i}(i=1,2,3)$ shall leave absolutely invariant**) $Z_{11}+Z_{22}+Z_{33}$, so that it belongs to the senary special Abelian group. Hence G_{q} is simply isomorphic with a subgroup of the senary special Abelian group in the $G F\left[2^{q}\right]$.

The conditions obtained in Transactions, p. 385, for the invariance of equations (2) now simplify considerably, since we have $\alpha_{i 0}=\beta_{i 0}=0$ $(i=1,2,3), \alpha_{00}=1$. We obtain
(8) $\quad \beta_{l i}=\left|\begin{array}{ll}y_{0 j} & y_{0 k} \\ \delta_{l j} & \delta_{l k}\end{array}\right|+\left|\begin{array}{ll}y_{m j} & y_{m k} \\ y_{n j} & y_{n k}\end{array}\right|, \quad \delta_{l i}=\left|\begin{array}{cc}\alpha_{0 j} & \alpha_{0 k} \\ \beta_{l j} & \beta_{l k}\end{array}\right|+\left|\begin{array}{cc}\alpha_{m j} & \alpha_{m k} \\ \alpha_{n j} & \alpha_{n k}\end{array}\right|$,

[^0]\[

$$
\begin{gather*}
C_{11}=C_{22}=C_{33}, \quad C_{r s}=0 ; d_{11}=d_{22}=d_{33}, \quad d_{r s}=0 \tag{9}\\
(r, s=1,2,3 ; r \neq s),
\end{gather*}
$$
\]

where l, m, n and i, j, k from any cyclic permutation of $1,2,3$, and

$$
C_{r s} \equiv\left|\begin{array}{cc}
\alpha_{0 r} & y_{0 s} \\
\alpha_{l r} & y_{l s}
\end{array}\right|+\left|\begin{array}{cc}
\beta_{m r} & \delta_{m s} \\
\beta_{n r} & \delta_{n s}
\end{array}\right|, \quad d_{r s} \equiv\left|\begin{array}{cc}
\alpha_{0 r} & y_{0 s} \\
\beta_{l r} & \delta_{l s}
\end{array}\right|+\left|\begin{array}{cc}
\alpha_{m r} & y_{m s} \\
\alpha_{n r} & y_{n s}
\end{array}\right| .
$$

We may readily express all the coefficients in terms of the 18 $y_{i j}, \delta_{i j},(i, j=1,2,3)$, using (7),$(8)_{1}$, and (4). The expressions for the $\alpha_{0 j}^{2}$ are initially very long, but simplify*) greatly. Thus (10) $\alpha_{02}^{2}=\left|\begin{array}{ll}\delta_{23} & \delta_{21} \\ \delta_{33} & \delta_{31}\end{array}\right| \cdot\left|\begin{array}{ll}y_{23} & y_{21} \\ y_{33} & y_{31}\end{array}\right|+\left|\begin{array}{ll}\delta_{33} & \delta_{31} \\ \delta_{13} & \delta_{11}\end{array}\right| \cdot\left|\begin{array}{ll}y_{33} & y_{31} \\ y_{13} & y_{11}\end{array}\right|+\left|\begin{array}{ll}\delta_{13} & \delta_{11} \\ \delta_{23} & \delta_{21}\end{array}\right| \cdot\left|\begin{array}{ll}y_{13} & y_{11} \\ y_{23} & y_{21}\end{array}\right|$, the expressions for $\alpha_{03}^{2}, \alpha_{01}^{2}$ following by cyclic permutation. To avoid loss of symmetry, we will, however, retain all the $\alpha_{i j}, \beta_{i j}, y_{i j}, \delta_{i j}$.

Generators and order of $\boldsymbol{G}_{\boldsymbol{q}}$.

Theorem: The group G_{q} is generated by

$$
\begin{gathered}
M=\left(\xi_{1} \eta_{1}\right)\left(\xi_{2} \eta_{2}\right)\left(\xi_{3} \eta_{3}\right), \\
T_{i, \tau} T_{j, \tau^{-1}}: \xi_{i}^{\prime}=\tau \xi_{i}, \eta_{i}^{\prime}=\tau^{-1} \eta_{i}, \xi_{j}^{\prime}=\tau^{-1} \xi_{j}, \eta_{j}^{\prime}=\tau \eta_{i}, \\
Q_{\hbar, j, \lambda}: \xi_{i}^{\prime}=\xi_{i}+\lambda \xi_{j}, \eta_{j}^{\prime}=\eta_{j}-\lambda \eta_{i}, \\
X_{i, \lambda}: \xi_{0}^{\prime}=\xi_{0}-\lambda \eta_{i}, \xi_{i}^{\prime}=\xi_{i}-\lambda^{2} \eta_{i}, \eta_{j}^{\prime}=\eta_{j}+\lambda \xi_{k}, \eta_{k}^{\prime}=\eta_{k}-\lambda \xi_{j},
\end{gathered}
$$

for i, j, k any permutation of $1,2,3$.
These transformations are seen to leave invariant (1) and the system (2), modulo 2. From them we obtain

$$
\begin{equation*}
Q_{j, i, 1} Q_{i, j, 1} Q_{j, i, 1} \equiv P_{i j}=\left(\xi_{i} \xi_{j}\right)\left(\eta_{i} \eta_{j}\right) \tag{11}
\end{equation*}
$$

(12) $M X_{i, \lambda} M \equiv Y_{i, \lambda}: \xi_{0}^{\prime}=\xi_{0}-\lambda \xi_{i}, \eta_{i}^{\prime}=\eta_{i}-\lambda^{2} \xi_{i}, \xi_{j}^{\prime}=\xi_{j}+\lambda \eta_{k}, \xi_{k}^{\prime}=\xi_{k}-\lambda \eta_{j}$.

Let S be any given transformation (3) of G_{q}. We show that there exists a transformation K derived from the preceding, such that $K S$ is the identity. We may assume that $\alpha_{11} \neq 0$. For, if $\alpha_{1 i} \neq 0, P_{i 1} S$ has $\alpha_{11} \neq 0$; if $y_{1 i} \neq 0, M S$ has $\alpha_{1 i} \neq 0$. Then $S_{1}=Q_{1,3, \alpha_{13}} Y_{2, y_{13}} T_{1, \alpha_{12}^{-1}} T_{2, \alpha_{11}} S$ replaces ξ_{1} by a function of the form $\xi_{1}+y_{11} \eta_{1}+\alpha_{12} \xi_{2}+y_{12} \eta_{2}$. Then $S_{2}=Q_{1,2, \alpha_{12}} S_{1}$ replaces ξ_{1} by a function of the form $\xi_{1}+y_{11} \eta_{1}+y_{12} \eta_{2}$. If $y_{11} \neq 0, X_{1, y_{12} / 2} Q_{2,1, x} S_{2}$, where $y_{12}-x y_{11}=0$, leaves ξ_{1} unaltered. If $y_{11}=0, Y_{3, y_{22}} S_{2}$ leaves ξ_{1} unaltered.
*) To α_{6}^{9}, given by (4) , we apply (7) and (8) $)_{1}$. Expanding, we obtain 48 terms, including the 12 terms of (10). The coefficients of y_{01} and $y_{0 \mathrm{~s}}$ are $\equiv 0$ (mod. 2), while that of $y_{01} y_{0 \mathrm{~s}}$ is zero by (5$)_{2}$ for $j=1, k=3$. The remaining terms are

Consider therefore a transformation S^{\prime} which leaves ξ_{1} unaltered. Then $\delta_{11}=1$ by (6) $)_{2}$. Applying to S^{\prime} in succession the left-hand multipliers $Q_{3,1, \delta_{13}}, X_{2, \beta_{12}}, Q_{2,1, \delta_{12}}$, we obtain a transformation $S^{\prime \prime}$ which replaces ξ_{1} by ξ_{1}, and η_{1} by $\beta_{11} \xi_{1}+\eta_{1}+\beta_{12} \xi_{2}$. Then

$$
\Sigma \equiv X_{3, \beta_{12}} Q_{3,1, \beta_{11}^{1 / 2} \beta_{12}} Y_{1, \beta_{12}^{1 / 2}} S^{\prime \prime}
$$

leaves ξ_{1} and η_{1} unaltered.
Giving Σ the notation (3) and applying (5) and (6), we have
$\alpha_{11}=\delta_{11}=1, \quad \beta_{11}=y_{11}=0, \quad \alpha_{1 j}=\alpha_{j 1}=y_{1 j}=y_{j 1}=\beta_{1 j}=\beta_{j 1}=\delta_{1 j}=\delta_{j 1}=0$

$$
(j=2,3)
$$

Then $\alpha_{01}=y_{01}=0$ by (4). By (9), for ($\left.l, r, s\right)=(2,2,1),(2,3,1)$, $(3,2,1),(3,3,1)$, we get $\beta_{32}=0, \beta_{33}=0, \beta_{22}=0, \beta_{23}=0$, respectively. Then $\alpha_{02}=\alpha_{03}=0$ by (4) ${ }_{1}$. Hence $y_{l i}=0(7, i=1,2,3)$ by (7) . Then $y_{02}=y_{03}=0$ by (4) . By (8) $)_{2}$ we get

$$
\delta_{32}=\alpha_{23}, \delta_{23}=\alpha_{32}, \delta_{33}=\alpha_{22}, \delta_{22}=\alpha_{33}
$$

Finally, by (7) for $l=i=1$, we get

$$
\begin{equation*}
\delta_{23} \delta_{33}-\delta_{23} \delta_{32}=1 \tag{13}
\end{equation*}
$$

Hence Σ is the following transformation of determinant unity:

$$
\begin{align*}
& \eta_{2}^{\prime}=\delta_{23} \eta_{2}+\delta_{23} \eta_{3}, \eta_{3}^{\prime}=\delta_{32} \eta_{2}+\delta_{33} \eta_{3} \\
& \xi_{2}^{\prime}=\delta_{33} \xi_{2}+\delta_{32} \xi_{3}, \xi_{3}^{\prime}=\delta_{23} \xi_{2}+\delta_{22} \xi_{3} \tag{14}
\end{align*}
$$

If $\delta_{22}=\delta_{35}=0, \Sigma=T_{2, \delta_{32}} T_{3, \delta_{22}} P_{23}$. If δ_{22} and δ_{33} are not both zero, we may take $\delta_{33} \neq 0$, transforming by P_{23} if necessary. Then

$$
\Sigma=Q_{2,3, \delta_{32} \delta_{33}^{-1}} Q_{3,2, \delta_{23} \delta_{33}} T_{2, \delta_{33}} T_{3, \delta_{33}^{-1}}
$$

Corollary. The order of G_{q} is $2^{6 q}\left(2^{6 q}-1\right)\left(2^{3 q}-1\right)$.

Simplicity of the group G_{q}, for $q>1$.

Suppose that G_{q} has a self-conjugate subgroup J which contains a transformation S, not the identity, of the form (3).

Lemma I: If $q>1$, the group I contains a transformation which multiplies ξ by a constant and differs from the identity.
a) Let first $y_{11} \neq 0$. From what precedes, G_{q} contains a transformation R which leaves ξ_{1} fixed and replaces η_{1} by

$$
\beta_{11} \xi_{1}+\eta_{1}+\beta_{12} \xi_{2}+\delta_{12} \eta_{2}+\beta_{13} \xi_{3}+\delta_{13} \eta_{3} \quad\left(\beta_{1 i}, \delta_{1 i} \text { arbitrary }\right)
$$

By suitable choice of the $\beta_{1 i}, \delta_{1 i}$, the product $P=T_{1, y_{4}} T_{2, y_{n}} R$ will replace ξ_{1} by $y_{11}^{-1} \xi_{1}$, and η_{1} by the same function as that by which S replaces ξ_{1}. Hence J contains $S_{1}=P^{-1} S P$, which replaces ξ_{1} by $y_{11}^{-1} \eta_{1}$. The demonstration is completed as in Transactions, p. 389.
b) For $y_{11}=0$, but α_{12} and α_{13} not both zero, we readily make $\alpha_{12}=1$. The transform of S by $Y_{1, y_{13}} Q_{2,3, \alpha_{13}}$ replaces ξ_{1} by $\alpha_{11} \xi_{1}+\xi_{2}+y_{12} \eta_{2}$. We make $\alpha_{11}=0$ by transforming by $Q_{2,1, \alpha_{21}}$. Transforming by $X_{2, y_{12}} / 2$, we obtain in J a transformation S_{1} which replaces ξ_{1} by ξ_{2}. Then J contains

$$
S_{1}^{-1} \cdot T_{2, \lambda} T_{3, \lambda^{-1}} S_{1} T_{2, \lambda^{-1}} I_{3, \lambda} \quad(\lambda \neq 0,1)
$$

which replaces ξ_{1} by $\lambda \xi_{1}$.
c) For $y_{11}=\alpha_{12}=\alpha_{13}=0$, either S replaces ξ_{1} by $\alpha_{11} \xi_{1}$ or is conjugate with S^{\prime} which replaces ξ_{1} by $\alpha_{11} \xi_{1}+\eta_{2}+y_{13} \eta_{3}$. Then $Q_{3,2, y_{12}} X_{3, \alpha_{11}}$ transforms S^{\prime} into S_{2} which replaces ξ_{1} by η_{2}. Hence J contains

$$
S_{2}^{-1} Q_{3,1,1}^{-1} S_{2} Q_{3,1,1}
$$

which leaves ξ_{1} unaltered and is not the identity.
Lemma II: If $q>1$, the group J contains a transformation which leaves ξ_{1} and η_{1} unaltered and differs from the identity.

By Lemma I, J contains a transformation $S \neq 1$ which replaces ξ_{1} by $\alpha \xi_{1}$, and η_{1} by $f=\Sigma\left(\beta_{1 j} \xi_{j}+\delta_{1 j} \eta_{j}\right)$, where $\delta_{11}=\alpha^{-1}$ by (6) $)_{2}$. We may assume that f has one of the three forms

$$
\beta_{11} \xi_{1}+\alpha^{-1} \eta_{1}, \quad \beta_{11} \xi_{1}+\alpha^{-1} \eta_{1}+\eta_{2}, \quad \beta_{11} \xi_{1}+\alpha^{-1} \eta_{1}+\xi_{2}+\delta_{12} \eta_{2}
$$

For if β_{12} and β_{13} are not both zero, we may take $\beta_{12} \neq 0$, transforming by P_{23} if necessary. To make $\beta_{12}=1$, we transform by $T_{2, \lambda} T_{3, \lambda^{-1}}$. Then transforming by $Q_{2,3, \beta_{13}} Y_{1, \delta_{12}}$, we obtain

$$
\xi_{1}^{\prime}=\alpha \xi_{1}, \eta_{1}^{\prime}=\beta_{11}^{\prime} \xi_{1}+\alpha^{-1} \eta_{1}+\xi_{2}+\delta_{12}^{\prime} \eta_{2} .
$$

Next, if $\beta_{12}=\beta_{13}=0$, while δ_{12} and δ_{13} are not both zero, we may set $\delta_{12}=1, \delta_{13}=0$.
a) Let first $f=\beta_{11} \xi_{1}+\alpha^{-1} \eta_{1}$. If $\alpha \neq 1$, the transform S^{\prime} of S by

$$
Y_{1,2}, \beta_{11}+\lambda^{2}\left(\alpha-\alpha^{-1}\right)=0
$$

replaces ξ_{1} by $\alpha \xi_{1}, \eta_{1}$ by $\alpha^{-1} \eta_{1}$. Hence $S^{\prime}=T_{1, \alpha} T_{2, \alpha}-1 S_{1}$, where S_{1} leaves ξ_{1} and η_{1} unaltered, and hence is of the form (14). If S^{x} is not commutative with E, where E is one of the two transformations P_{23}, $Q_{2,3,1}, J$ contains $S^{\prime-1} E^{-1} S^{\prime} E$, which leaves ξ_{1} and η_{1} fixed, without reducing to the identity. If S^{\prime} is commutative with both P_{23} and $Q_{2,3,1}$, then $\delta_{33}=\alpha \delta_{22}, \quad \delta_{23}=\alpha \delta_{32}=0$. Then $\alpha \delta_{22}^{2}=1$ by (13). Hence $S^{\prime}=T_{1, \delta-2} T_{2, \delta} T_{3, \delta}, \delta \neq 1$. If $\delta^{3} \neq 1, S^{\prime-1} P_{12}^{-1} S^{\prime} P_{12}$ leaves ξ_{3} and η_{3} unaltered and replaces ξ_{1} by $\delta^{3} \xi_{1}+\xi_{1}$. If $\delta^{3}=1, S^{\prime-1} Y_{1,2}^{-1} S^{\prime} Y_{1,2}=Y_{1, \tau}$, where $\tau \equiv \lambda\left(1+\delta^{2}\right)$ may be made unity. Hence J contains every $Y_{i_{1}}$ and every $X_{i, 1}$ and therefore $\left(X_{3,1} Y_{2,1}\right)^{2}=Q_{3,2,1}$, which leaves ξ_{1} and η_{1} unaltered. If $\alpha=1$, the lemma is proved if $\beta_{11}=0$. For $\alpha=1, \beta_{11} \neq 0$, we transform by $T_{1, \tau} T_{2, \tau^{-1}}$ and make $\beta_{11}=1$. Then $S=\bar{Y}_{1,1} S_{2}$, where S_{2} is of the form (14). Now Y_{11}. is commutative with P_{23} and $Q_{2,3, r}$.

If S_{2} is not commutative with both, the lemma follows. In the contrary case, $\delta_{32}=\delta_{23}=0, \delta_{22}=\delta_{33}$, whence $\delta_{22} \delta_{33}=1$ by (13). Then

$$
S=Y_{1,1} T_{2, \delta-1} T_{3, \delta}
$$

Its transform by $T_{1, \mu^{-1}} T_{2, \mu}$ is $S^{\prime \prime}=Y_{1, \mu} T_{2, \delta-1} T_{3, \delta}$. Hence J contains $S^{\prime \prime} S^{-1}=Y_{1, \mu+1}$. It is transformed into $Y_{1, \tau(\mu+1)}$ by $T_{1, \tau^{-1}} T_{2, \tau}$. Hence J contains $Y_{1,1}$, so that the lemma follows as above.
b) Let next $f=\beta_{11} \xi_{1}+\alpha^{-1} \eta_{1}+\eta_{2}$. If $\alpha \neq 1$, we make $\beta_{11}=0$ as in a). Then $S=T_{1, \alpha} T_{3, \alpha^{-1}} Q_{2,1,1} K$, where K is of the form (14). Then $S^{-1} Q_{2,3,1}^{-1} S Q_{2,3,1}$ leaves ξ_{1} and η_{1} unaltered. If it is the identity, $\delta_{23}=0$, $\delta_{22}=\alpha \delta_{33}$. Let $\delta_{33}=\delta$. Then $\alpha=\delta^{-2}$ by (13). Hence

$$
S=T_{1, \delta^{-2}} T_{3, \delta^{2}} Q_{2,1,1} T_{2, \delta} T_{3, \delta^{-1}}=T_{1 \delta^{-2}} T_{2, \delta} T_{3, \delta} Q_{2,1, \delta}
$$

Then J contains $S^{-1}\left(T_{1, \tau^{-1}} T_{3, z}\right)^{-1} S T_{1, \tau^{-1}} T_{3, \tau}=Q_{2,1, \delta(\tau+1)}$. Its transform by P_{13} leaves ξ_{1} and η_{1} unaltered. If $\alpha=1$, we transform by $T_{1, \mu} T_{3, \mu}{ }^{-1}$ and make $\beta_{11}=1$ or 0 . Then $S=Y_{1, \beta} Q_{2,1,1} K, K$ of the form (14) and $\beta=0$ or 1 . Then $S^{-1} Q_{2,3,1}^{-1} S Q_{2,3,1}$ leaves ξ_{1} and η_{1} unaltered. If it is the identity, $\delta_{23}=0, \delta_{33}=\delta_{22}$ in K, whence $\delta_{22}=1$ by (13). Then $K=Q_{2,3, \delta}, \delta \equiv \delta_{32}$. Then $P_{29} M$ transforms S into $X_{1, \beta} Q_{1,3,1} Q_{2,3, \delta^{\delta}}$. Hence J contains $X_{1, \beta} Q_{1,3,1} Q_{2,1,1} Y_{1, \beta}$. According as $\beta=0$ or 1 , its square or cube is $Q_{2,3,1}$.
c) The third case may be treated by the same method.

For $q>1$ the group J therefore contains a transformation K which alters neither ξ_{1} nor η_{1} and differs from the identity. Hence K is of the form (14). But the transformations (14) evidently form a group holoedrically isomorphic with the simple binary group in the $G F\left[2^{q}\right], q>1$. Hence J contains every transformation (14) and therefore every $Q_{i, j, \tau}$, $P_{i, j}, T_{i, \tau} T_{j, \tau^{-1}}$, and

$$
X_{i, 2}^{-1}\left(T_{i, \tau} T_{j, \tau^{-1}}\right)^{-1} X_{i, 2}\left(T_{i, \tau} T_{j, \tau^{-1}}\right) \equiv X_{i, \sigma}, \quad \sigma=\lambda(\tau-1)
$$

Since $q>1$, we may take $\tau \neq 0,1$ and choose λ to make σ assume any value in the field. Hence $J \equiv G_{q}$, which is therefore simple.

Factors of composition of G_{1}.

For $q=1$, an analysis analogous to the preceding leads to the result that a self conjugate subgroup J of G_{1} must contain the $P_{i, j}, Q_{i, j, 1}$ and the products two at a time of the transformations $X_{i, 1}, Y_{i, 1}, M$, each of period 2; also that the order of J is either equal to or one-half of the order 12096 of G_{1}. Such a troublesome alternative has presented itself elsewhere in the theory of linear groups.*) The question is here decided by means of a rectangular table of the transformations of J.
*) Compare the diseriminanting invariant, Linear Groups, \& 205, p- 206.

Independent of what precedes, we make a direct stady of the group generated by P_{12} and $M X_{11}$. It contains

$$
\begin{gathered}
P_{23}=\left(M X_{11}\right)^{8}, \quad P_{13}=P_{23} P_{12} P_{23}, \quad P_{1 i} M X_{11} P_{1 i}=M X_{i 1}=Y_{i 1} M, \\
X_{j 1} X_{i 1}=\left(M X_{j 1}\right)^{-1}\left(M X_{i 1}\right), \quad Y_{j 1} X_{j 1}, \quad Q_{3,2,1}=\left(X_{31} Y_{21}\right)^{2} .
\end{gathered}
$$

Hence it is identical with the group J jast mentioned. Since the group Γ of order 168 of all ternary linear transformations modulo 2 is generated by binary transformations, and since J contains every $P_{i j}$ and $Q_{i, j, 1}$, it follows that J contains a senary group simply isomorphic with Γ, the correspondence of operators being obtained by taking the ternary partial transformation on $\xi_{1}, \xi_{2}, \xi_{3}$.

In view of a later application, we study the abstract groups H and G simply isomorphic with J and Γ, respectively. By Linear Groups, p. 303, G is generated by two operators S and T such that

$$
\begin{equation*}
T^{2}=1, S^{7}=1,(S T)^{3}=1,\left(S^{4} T\right)^{4}=1, \tag{15}
\end{equation*}
$$

while the linear group r is obtained by setting

$$
\begin{equation*}
T=Q_{3,2,1}, \quad S=P_{12} Q_{3,2,1} P_{23} Q_{1,2,1} . \tag{16}
\end{equation*}
$$

The abstract group H is generated by P_{12} and X subject to the generational relations (19), (20), (21), in which occur our old symbols with a new meaning defined as follows:

$$
\begin{gather*}
P_{23}=X^{3}, \quad P_{13}=P_{23} P_{12} P_{23}, \quad Q_{2,1,1}=\left(X P_{12}\right)^{4}, \tag{17}\\
Q_{i, j, 1}=P_{1 j} P_{2 i} Q_{2,1,1} P_{2 i} P_{1 j} .
\end{gather*}
$$

Eliminating T and S from (15) and (16) we obtain forr relations (15'). From these must follow every true relation holding for the linear transformations $P_{i j}, Q_{i, j, 1}$, in particular (11) and

$$
\left\{\begin{array}{l}
P_{i j}^{2}=1, Q_{i, j, 1}^{2}=1, Q_{i, j, 1} Q_{i, k_{1}}=Q_{i, k_{1}, 1} Q_{i, j, 1}, Q_{j, i, 1} Q_{k_{i, i}, 1}=Q_{k, j, 1} Q_{j, i, 1} \tag{18}\\
Q_{i, j, 1} Q_{k, i, 1} Q_{i, j, 1}=Q_{k, j, 1} Q_{k, i, 1}(i, j, k \text { a permutation of } 1,2,3) .
\end{array}\right.
$$

Between the linear transformations $P_{i j}, Q_{i, j, 1}$ and $X=X_{11}$ hold the relations (17) and the following:

$$
\begin{gather*}
\left(X P_{12} X^{-1} P_{12}\right)^{2}=Q_{3,2,1} Q_{3,1,1}, \quad X Q_{2,3,1}=Q_{3,2,2} X, \tag{19}\\
X Q_{3,1,1} P_{12} X P_{12} X P_{13} X^{-1}=P_{13} Q_{2,1,1} Q_{3,1,1} \tag{20}\\
X^{-1} P_{13} X^{-1} P_{12} X^{-1} Q_{1,8,1} X=P_{23} P_{13} Q_{3,1,1} Q_{2,2,2} . \tag{21}
\end{gather*}
$$

From (17) and (19) follow readily

$$
\begin{gather*}
X Q_{1,2,1}=Q_{2,1,1} X, X Q_{1,3,1}=Q_{3,2,1} X, X Q_{3,2,1,}=Q_{2,3,1} X, \tag{22}\\
Q_{1,2,1}=\left(P_{18} X\right)^{4} .
\end{gather*}
$$

We proceed to show that the order ω of H is 6048 . We exhibit 36×168 operators (not initially known to be distinct) in a rectangular table R_{1}, \cdots, R_{36} with the operators of G_{168}.in the first row. By showing
that these rows are merely permuted upon applying P_{12} and X as righthand multipliers, and hence by applying an arbitrary operator of H as multiplier, it follows, since R_{1} contains the identity, that every operator of H lies in the table, whence $\omega \overline{<6048 \text {. From the isomorphism of } H}$ with J, it follows that $\omega \overline{>} 6048$.

We proceed to the computations. The rectangular table is

$$
\begin{aligned}
& R_{1}=G, R_{2}=G X, R_{3}=G X P_{12}, R_{4}=G X P_{13}, R_{5}=G X Q_{2,1,1}, \\
& R_{6}=G X Q_{3,1,1}, R_{7}=G X^{-1}, R_{8}=G X^{-1} P_{12}, R_{9}=G X^{-1} P_{13}, \\
& R_{10}=G X^{-1} Q_{1,2,1}, R_{11}=G X^{-1} Q_{1,3,1}, R_{12}=G X Q_{3,1,1} P_{12}, \\
& R_{13}=G X^{-1} Q_{1,3,1} P_{12}, R_{14}=G X P_{12} X, R_{15}=G X P_{33} X^{-1}, \\
& R_{16}=G X P_{13} X, R_{17}=G X P_{12} X^{-1}, R_{18}=G X^{-1} P_{12} X, \\
& R_{19}=G X^{-1} P_{13} X R_{20}=G X^{-1} P_{13} X^{-1}, R_{21}=G X^{-1} P_{12} X^{-1}, \\
& R_{22}=G X P_{13} X^{-1} P_{12}, R_{23}=G X^{-1} Q_{1,2,1} X, R_{24}=G X^{-1} Q_{1,3,1} X, \\
& R_{25}=G X^{-1} Q_{1,3,1} P_{12} X, R_{26} G X^{-1} Q_{1,2,1} P_{13} X-1, \\
& R_{25}=G X P_{13} X-1 P_{12} X, R_{25}=G X^{-1} Q_{1,3,1} P_{12} X P_{12}, \\
& R_{29}=G X^{-1} Q_{1,2,1} P_{13} X P_{13}, R_{50}=G X^{-1} Q_{1,3,1} P_{12} X P_{12} X, \\
& R_{31}=G X^{-1} Q_{1,2,1} P_{13} X P_{13} X, R_{32}=G X^{-1} Q_{1,2,1} P_{13} X P_{13} X^{-1}, \\
& R_{33}=G X^{-1} Q_{1,,, 1} P_{12} X P_{12} X^{-1}, R_{34}=G X^{-1} Q_{1,3,1} P_{12} X P_{12} X P_{12}, \\
& R_{35}=G X^{-1} Q_{1,2,1} Q_{1,3,1}, R_{36}=G X Q_{3,1,1,1} Q_{2,1,1} .
\end{aligned}
$$

Applied as a right-hand multiplier, P_{12} gives rise to the permutation

$$
\begin{gathered}
\left(R_{2} R_{3}\right)\left(R_{6} R_{14}\right)\left(R_{7} R_{8}\right)\left(R_{11} R_{13}\right)\left(R_{14} R_{21}\right)\left(R_{15} R_{29}\right)\left(R_{16} R_{23}\right) \\
\left(R_{19} R_{26}\right)\left(R_{20} R_{24}\right)\left(R_{25} R_{28}\right)\left(R_{30} R_{34}\right)\left(R_{27} R_{32}\right),
\end{gathered}
$$

$R_{1}, R_{4}, R_{5}, R_{9}, R_{10}, R_{17}, R_{18}, R_{29}, R_{31}, R_{33}, R_{35}, R_{36}$ being unaltered.
The cases not following by inspection are treated thus:
$R_{4} P_{12} \equiv G X P_{13} P_{12}=G X P_{23} P_{13}=G P_{23} X P_{13}=G X P_{13} \equiv R_{4}$.
$R_{5} P_{12} \equiv G X Q_{2,1,1} P_{12}=G X Q_{1,2,1} Q_{2,1,1}=G Q_{2,1,1} X Q_{2,1,1} \equiv R_{5}$.
$R_{10} P_{12} \equiv G X^{-1} Q_{1,2,1} P_{12}=G X^{-1} Q_{2,1,1} Q_{1,2,1}=G Q_{1,2,1} X^{-1} Q_{1,2,1} \equiv R_{10}$.
$R_{14} P_{12} \equiv G X P_{12} X P_{12}=G Q_{2,1,1}\left(X P_{12}\right)^{-2}=G X^{-1} P_{12} X^{-1} \equiv R_{21}$.
$R_{16} P_{12} \equiv G X P_{13} X P_{12}=G P_{13} Q_{2,1,1} X^{-1} P_{12} Q_{3,1,1} Q_{2,1,1} X$, by $P_{23}(20) P_{23}$.
$=G X^{-1} Q_{3,2,1} P_{12} Q_{2,1,1} X=G Q_{2,3,1} X^{-1} Q_{2,1,1} Q_{1,2,1} X$
$=G Q_{2, \mathrm{~B}, 1} Q_{1,2,1} X^{-1} Q_{1,2,1} X \equiv R_{23}$, by $(22)_{1}$.
$R_{17} P_{12} \equiv G X P_{18} X^{-1} P_{12}=G Q_{3,2,1} Q_{3,1,1} P_{12} X P_{12} X^{-1} \equiv R_{17}$, by (19) $)_{1}$.
$R_{18} P_{12} \equiv G X^{-1} P_{12} X P_{12}=G P_{12} X^{-1} Q_{3,2,1} Q_{3,1,1} P_{12} X$, by (19) $)_{1}$,

$$
=G P_{12} Q_{2,3,1} X^{-1} Q_{8,1,1} P_{19} X=G Q_{1,8,1} X^{-1} P_{12} X \equiv R_{18}
$$

The condition for $R_{19} P_{12}=R_{26}$ is that G shall contain
$X{ }^{-1} P_{13} X \cdot P_{12} \cdot X P_{13} Q_{1,2,1} X=P_{23} X^{-1} P_{13} P_{12} X P_{12} X P_{13} Q_{1,2,1} X$
$=P_{23} X^{-1} P_{13} \cdot Q_{1,2,1} X^{-1} P_{12} X^{-1} P_{12} \cdot P_{13} Q_{1,2,1} X$, by (22) ${ }_{4}$.
$=P_{23} Q_{2,3,1} \cdot X^{-1} P_{13} X^{-1} P_{12} X^{-1} \cdot P_{13} P_{23} Q_{1,2,1} X$
$=P_{23} Q_{2,3,1} \cdot P_{23} P_{13} Q_{3,1,1} Q_{1,2,1} X^{-1} Q_{1,3,1} \cdot P_{13} Q_{1,3,1} X P_{23}$, by (21),
$=Q_{3,2,1} P_{13} Q_{3,1,1,} Q_{1,2,1} X^{-1} Q_{3,1,1} X P_{23}$, by (11),
$=Q_{3,2,1} P_{13} Q_{3,1,1} Q_{1,2,1} Q_{1,3,1} P_{23}$, by (22) ${ }_{2}$,
$=Q_{3,2,1} Q_{3,1,1} Q_{1,2,1} P_{23}$.
From (21), $R_{20} P_{12}=R_{24}$. Next, $R_{27} P_{12}=R_{32}$ if G contains

$$
\begin{aligned}
& X P_{13} X^{-1} P_{12} X \cdot P_{12} \cdot X P_{13} X^{-1} P_{13} Q_{1,2,1} X \\
= & X P_{13} X^{-1} \cdot X^{-1} P_{12} X^{-1} P_{12} Q_{1,2,1} \cdot P_{13} X^{-1} Q_{3,2,1} P_{13} X, \text { by }(22)_{4}, \\
= & X P_{13} P_{23} X P_{12} X^{-1} Q_{2,1,1} P_{12} P_{13} Q_{2,3,1} X^{-1} P_{13} X \\
= & X P_{13} X P_{13} \cdot X^{-1} Q_{3,1,1} P_{12} Q_{2,3,1} X^{-1} P_{13} X \\
= & Q_{3,1,1} P_{13} X^{-1} P_{13} X^{-1} \cdot X^{-1} Q_{3,1,1} Q_{1,3,1} P_{12} X^{-1} P_{13} X \\
= & Q_{3,1,1} P_{13} X^{-1} P_{13} X P_{23} \cdot Q_{1,3,1} P_{13} P_{12} X^{-1} P_{13} X \\
= & Q_{3,1,1} P_{13} X^{-1} \cdot P_{13} X Q_{1,2,1} \cdot P_{13} X^{-1} P_{13} X \\
= & Q_{3,1,1} P_{13} X^{-1} \cdot Q_{2,3,1} P_{13} X \cdot P_{13} X^{-1} P_{13} X \\
= & Q_{3,1,1} P_{13} Q_{3,2,1} \cdot X^{-1} P_{13} X P_{13} X^{-1} P_{13} \cdot X \\
= & Q_{3,1,1} P_{13} Q_{3,2,1} \cdot P_{13} X^{-1} Q_{2,3,1} Q_{2,1,1} \cdot X, \text { by } P_{23}(19) P_{23} . \\
= & Q_{3,1,1} Q_{1,2,1} Q_{3,2,1} Q_{1,2,1}, \text { by }(22)_{3} \text { and }(22)_{1} . \\
= & R_{10} P_{12} P_{13} X P_{13}=R_{10} P_{13} X P_{13} \equiv R_{29} .
\end{aligned}
$$

The condition for $R_{31} P_{12}=R_{31}$ is that G shall contain

$$
\begin{aligned}
& X^{-1} Q_{1,2,1} P_{13} X P_{13} X \cdot P_{12} \cdot X^{-1} P_{13} X^{-1} P_{13} Q_{1,2,1} X \\
= & X^{-1} Q_{1,2,1} \cdot Q_{2,1,1} X^{-1} P_{12} Q_{3,1,1} Q_{2,1,1} \cdot P_{13} X^{-1} P_{13} Q_{1,2,1} X, \text { by } P_{23}(20) P_{23}, \\
= & X^{-1} Q_{2,1,1} P_{12} X^{-1} P_{23} P_{12} Q_{1,3,1} Q_{2,3,1} X^{-1} Q_{3,2,1} P_{13} X \\
= & Q_{1,2,1} X^{-1} P_{12} X^{-1} P_{23} P_{12} Q_{1,3,1} X^{-1} P_{13} X \\
= & Q_{1,2,1} P_{23} \cdot X^{-1} P_{13} X^{-1} P_{12} X^{-1} \cdot Q_{3,1,1} P_{13} X \\
= & Q_{1,2,1} P_{23} \cdot P_{23} P_{13} Q_{3,1,1} Q_{1,2,1} X^{-1} Q_{1,3,1} \cdot Q_{3,1,1} P_{13} X, \text { by }(21), \\
= & Q_{1,2,1} P_{13} Q_{3,1,1} Q_{1,2,1} X^{-1} Q_{3,1,1}=Q_{1,2,1} Q_{3,1,1} Q_{1,2,1}, \text { by }(22)_{2} .
\end{aligned}
$$

The condition for $R_{33} P_{12}=R_{33}$ is that G shall contain

$$
\begin{aligned}
& X^{-1} Q_{1,3,1} P_{12} X P_{12} X^{-1} \cdot P_{12} \cdot X P_{12} X^{-1} P_{12} Q_{1,3,1} X \\
= & X^{-1} Q_{1,3,1} P_{12} Q_{3,2,1} \cdot Q_{3,1,1} Q_{1,3,1} X, \text { by }(19) \\
= & X^{-1} Q_{1,3,1} Q_{3,1,1} P_{12} \cdot P_{13} Q_{3,1,1} X=X^{-1} Q_{3,1,1} P_{13} \cdot P_{12} P_{13} X Q_{1,3,1} \\
= & Q_{1,3,1} X^{-1} P_{23} X Q_{1,3,1}=Q_{1,3,1} P_{23} Q_{1,3,1} .
\end{aligned}
$$

The condition for $R_{35} P_{12}=R_{35}$ is that G shall contain

$$
\begin{aligned}
& X^{-1} Q_{1,3,1} Q_{1,2,1} \cdot P_{12} \cdot Q_{1,2,1} Q_{1,3,1} X=X^{-1} Q_{1,3,1} Q_{2,1,1} Q_{1,3,1} X \\
= & X^{-1} Q_{2,3,1} Q_{2,1,1} X=Q_{3,2,1} Q_{1,2,1}, \text { by }(18)_{4},(22)_{2},(22)_{1} .
\end{aligned}
$$

The condition for $R_{36} P_{12}=R_{36}$ is that G shall contain

$$
\begin{aligned}
& X Q_{3,1,1} Q_{2,1,1} P_{12} Q_{2,1,1} Q_{3,1,1} X^{-1}=X Q_{3,1,1} Q_{1,2,1} Q_{3,1,1} X^{-1} \\
= & X Q_{1,2,1} Q_{3,2,1} X^{-1}=Q_{2,1,1} Q_{2,3,1} .
\end{aligned}
$$

Theorem: Applied as a right-hand multiplier, X gives rise to the permutation

$$
\begin{aligned}
& \left(R_{1} R_{2} R_{7}\right)\left(R_{19} R_{22} R_{27}\right)\left(R_{13} R_{25} R_{26}\right)\left(R_{34} R_{36} R_{35}\right)\left(R_{3} R_{14} R_{15} R_{4} R_{16} R_{17}\right) \\
& \quad\left(R_{5} R_{10} R_{23} R_{6} R_{11} R_{24}\right)\left(R_{9} R_{19} R_{21} R_{8} R_{18} R_{20}\right)\left(R_{28} R_{30} R_{32} R_{29} R_{31} R_{33}\right)
\end{aligned}
$$

That $R_{12} X=R_{22}$ follows from (20), $R_{36} X=R_{35}$ from (22) ${ }_{1}$ and (22) .

$$
\begin{aligned}
R_{34} X & =G X^{-1} Q_{1,3,1}\left(P_{12} X\right)^{3}=G X^{-1} Q_{1,3,1} X^{-1} P_{12} Q_{1,2,1} \\
& =G X^{-1} X^{-1} Q_{3,1,1} P_{12} Q_{1,2,1}=G X Q_{3,1,1} Q_{2,1,1} P_{12} \equiv R_{36} P_{12}=R_{36} \\
R_{14} X & =G X P_{12} X^{2}=G X P_{12} P_{23} X^{-1}=G P_{23} X P_{13} X^{-1}=R_{15} \\
R_{5} X & \equiv G X Q_{2,1,1} X=G X^{2} Q_{1,2,1}=G P_{23} X^{-1} Q_{1,2,1}=R_{10} . \\
R_{23} X & \equiv G X^{-1} Q_{1,2,1} X^{2}=G X^{-1} Q_{1,3,1} X^{-1}=G X^{-1} X^{-1} Q_{3,1,1} \\
& =G P_{23} X Q_{3,1,1}=R_{6} .
\end{aligned}
$$

The remaining cases follow by inspection. We may now state the
Theorem: The group G_{1} of order 12096 contains a subgroup J of index 2, generated by P_{12} and $M X_{11}$, simply isomorphic with the abstract group H generated by P_{12} and X subject to (19), (20), (21), with the amplification (17), together with (15'), namely (15) for the values (16). Moreover, J may be represented as a transitive substitution-group on 36 letters.

The simplicity of J may be established by a direct but long analysis, as stated above. However, an indirect proof follows from the isomorphism next established.

Holoedric isomorphism of H and the simple ternary hyperorthogonal group O in the $G \mathbb{F}\left[3^{2}\right]$.

Knowing that the two groups are simple, of the same order 6048, representable as transitive substitution-groups on 28 letters*), and that the periods of the operators of each are $1,2,3,4,6,7,8,12$, those of

[^1]period 7 falling into 2 sets each of $2^{5} \cdot 3^{3}$ conjugates*) the presumption was in favor of their isomorphism.

We proceed to determine a set of substitutions of 0 which satisfy all the generational relations for the group H.

Since all the substitutions of period 6 in 0 are conjugate (Annalen, Bd. 55, p. 572), we assume that

$$
\begin{align*}
X & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -i-1 & -i+1 \\
0 & -i-1 & i-1
\end{array}\right) \equiv[1,-i-1,-i+1] \\
P_{23} & =X^{3}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \tag{23}
\end{align*}
$$

where $i^{2} \equiv-1(\bmod .3)$. Since $Q_{3,2,1}=P_{23}^{-1} Q_{2,3,1} P_{23}$, we set

$$
Q_{2,3,1}=\left(\begin{array}{ccc}
\beta_{11} & \beta_{12} & \beta_{13} \\
\beta_{21} & \beta_{22} & \beta_{23} \\
\beta_{31} & \beta_{32} & \beta_{33}
\end{array}\right), \quad Q_{3,2,1}=\left(\begin{array}{rrr}
\beta_{11} & -\beta_{12} & -\beta_{13} \\
-\beta_{21} & \beta_{22} & \beta_{23} \\
-\beta_{31} & \beta_{32} & \beta_{33}
\end{array}\right) .
$$

Then (19) $)_{2}: X Q_{2,3,1}=Q_{3,2,1} X$ holds if and only if

$$
\beta_{13}=(i+1) \beta_{12}, \beta_{31}=(1-i) \beta_{21}, \beta_{32}=-i \beta_{23}, \beta_{33}=\beta_{22}+(i-1) \beta_{23}
$$

Now a hyperorthogonal substitution $\left(\beta_{i j}\right)$ is of period 2 if and only if

$$
\beta_{i j}^{3}=\beta_{j i} \quad(i, j=1,2,3)
$$

From $\beta_{32}=\beta_{23}^{3}, \beta_{32}=-i \beta_{23}$, follows $\beta_{23}=0$ or $\pm(1+i)$. Hence $Q_{2,3,1}=\left(\begin{array}{ccc}\beta_{11} & \beta_{12} & (1+i) \beta_{12} \\ \beta_{21} & \beta_{22} & 0 \\ (1-i) \beta_{21} & 0 & \beta_{22}\end{array}\right)$ or $\left(\begin{array}{ccc}\beta_{11} & \beta_{12} & (1+i) \beta_{12} \\ \beta_{21} & \beta_{22} & \pm(1+i) \\ (1-i) \beta_{21} & \pm(1-i) & \beta_{22} \pm 1\end{array}\right)$.
In the first case a hyperorthogonal condition gives $\beta_{21}=0$, whence $\beta_{12}=0$. Also $\beta_{22}^{4}=1, \beta_{22}=\beta_{22}^{3}$, whence $\beta_{22}^{2}=1$. The determinant being $1, \beta_{11}=1$. Then $Q_{2,3,1}$ of period 2 must coincide with P_{23}. Hence the first case is excluded. For the second, the hyperorthogonal conditions reduce to

$$
\begin{aligned}
& \beta_{11}^{2}=1, \beta_{11} \beta_{21}+\beta_{21} \beta_{22} \mp \beta_{21}=0, \beta_{21}^{4} \mp \beta_{22}+1=0, \beta_{21}^{4}+\beta_{22}^{2}=-1 \\
& \beta_{21}^{4}-\beta_{22}^{2} \pm \beta_{22}=-1, \beta_{21}^{s}=\beta_{12}, \beta_{22}^{3}=\beta_{22}
\end{aligned}
$$

Hence $\beta_{22}^{2}=\mp \beta_{22}$. For $\beta_{22}=0$, the determinant equals ± 1; for $\beta_{22}=\mp 1$, the determinant equals ∓ 1. Hence the substitution $Q_{2,3,1}$ is

[^2]\[

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & \beta_{12} & (i+1) \beta_{12} \\
\beta_{12}^{3} & 0 & i+1 \\
(1-i) \beta_{12}^{3} & 1-i & 1
\end{array}\right), \beta_{12}^{4}=-1 \\
& \operatorname{or}\left(\begin{array}{ccc}
1 & \beta_{12} & (1+i) \beta_{12} \\
\beta_{12}^{3} & 1 & -1-i \\
(1-i) \beta_{12}^{3} & i-1 & 0
\end{array}\right), \beta_{12}^{4}=1 .
\end{aligned}
$$
\]

Now the hyperorthogonal substitution $\xi_{2}{ }^{\prime}=\xi_{3}, \xi_{3}{ }^{\prime}=-\xi_{2}$ transforms the second into W, where \bar{W} (obtained from W by replacing i by $-i$) is of the first form, and transforms X into \bar{X}. Hence we may assume that $Q_{2,3,1}$ is of the second form, say $S_{\beta_{12}}$. Now the hyperorthogonal substitation

$$
\xi_{1}^{\prime}=\mu^{-2} \xi_{1}, \quad \xi_{2}^{\prime}=\mu \xi_{2}, \quad \xi_{3}^{\prime}=\mu \xi_{3}, \quad \mu^{4}=1
$$

is commutative with X and transforms S_{β} into $S_{\mu \beta}$. Hence we may take $\beta=1$. Hence we have
(24) $Q_{2,3,1}=\left(\begin{array}{ccc}1 & 1 & 1+i \\ 1 & 1 & -1-i \\ 1-i & i-1 & 0\end{array}\right), \quad Q_{3,2,1}=\left(\begin{array}{ccc}1 & -1 & -1-i \\ -1 & 1 & -1-i \\ i-1 & i-1 & 0\end{array}\right)$.

The conditions that $Q_{1,3,1} \equiv\left(\delta_{i j}\right)$ shall be commutative with $Q_{2,3,1}$ reduce to

$$
\left\{\begin{array}{ll}
\delta_{21}=\delta_{12}+(1-i) \delta_{13}-(1+i) \delta_{31}, & \delta_{32}=\delta_{31}+i \delta_{13}-i \delta_{23} \tag{25}\\
\delta_{22}=\delta_{11}+(i-1) \delta_{23}-(1+i) \delta_{31}, & \delta_{33}=\delta_{11}-\delta_{12}+(1-i) \delta_{13}+(1-i) \delta_{23}
\end{array} .\right.
$$

Since $Q_{1,3,1}^{2}=1, \delta_{j i}=\bar{\delta}_{i j}$. Expressing the $\delta_{i j}$ in the form $a+b i$, we get*)

$$
Q_{1,3,1}=\left(\begin{array}{ccc}
d_{11} & d_{12}+i D_{12} & d_{13}+i D_{13} \\
d_{12}-i D_{12} & d_{22} & d_{23}+i D_{23} \\
d_{13}-i D_{13} & d_{23}-i D_{23} & d_{33}
\end{array}\right)
$$

The conditions (25) reduce to

$$
\begin{array}{ll}
a_{12}=d_{13}-D_{13} ; & d_{33}=d_{11}-d_{12}+d_{13}+d_{23}+D_{13}+D_{23} \\
d_{23}=d_{13}-D_{13}+D_{23}, & d_{22}=d_{11}-d_{13}-d_{23}-D_{13}-D_{23}
\end{array}
$$

Then
(26) $Q_{1,3,1}=\left(\begin{array}{ccc}d_{11} & d_{12}+i\left(d_{13}-D_{13}\right) & d_{13}+i D_{13} \\ d_{12}-i\left(d_{13}-D_{13}\right) & d_{11}+d_{13}+D_{23} & d_{13}-D_{13}+D_{23}-i D_{23} \\ d_{13}-i D_{13} & d_{13}-D_{13}+D_{23}-i D_{23} & d_{11}-d_{12}-d_{13}-D_{23}\end{array}\right)$.

The six hyperorthogonal conditions are

$$
\begin{equation*}
-d_{11}^{2}+d_{12}^{z}+\left(d_{13}-D_{13}\right)^{2}+d_{13}^{2}+D_{13}^{2}=1 \tag{27}
\end{equation*}
$$

(28) $d_{12}^{2}+\left(d_{13}-D_{13}\right)^{2}+\left(d_{11}+d_{13}+D_{23}\right)^{2}+\left(d_{13}-D_{13}+D_{23}\right)^{2}+D_{23}^{2}=1$,
*) Concerning determinants of such matrices, see Amer. Math. Monthly, Dec. 1903.
$(29) d_{13}^{2}+D_{13}^{2}+D_{23}^{2}+\left(d_{13}-D_{13}+D_{23}\right)^{2}+\left(d_{11}-d_{12}-d_{13}-D_{23}\right)^{2}=1$, together with three conditions involving i which give

$$
\begin{gather*}
\left(d_{13}-D_{13}\right)\left(d_{13}+D_{13}-d_{11}\right)=0 \tag{30}\\
d_{13}^{2}+d_{13} D_{23}-d_{13} D_{13}+D_{13} D_{23}-d_{11} d_{12}+d_{12} d_{13}+d_{12} D_{23}=0 \tag{31}\\
-d_{13}^{2}+d_{13} D_{23}+D_{13} D_{23}+d_{12} D_{23}-d_{12} D_{13}-d_{11} d_{13}=0 \\
d_{13}^{2}+D_{13}^{2}+d_{12} D_{23}-d_{11} D_{13}+d_{13} D_{23}+D_{13} D_{23}-d_{12} D_{13}=0 \tag{33}\\
d_{11}\left(D_{13}-D_{23}-d_{13}\right)+d_{12} D_{13}-d_{12} D_{23}+d_{13} D_{13}-D_{13}^{2}=0 \\
\quad-d_{13}^{2}+d_{13} D_{13}+d_{12} D_{13}-d_{11} D_{23}-d_{12} D_{23}=0
\end{gather*}
$$

For $d_{13}=D_{13},(31),(32)$ or (33), (34) or (35) give respectively

$$
\begin{equation*}
d_{12} D_{23}-d_{13} D_{23}-d_{11} d_{12}+d_{12} d_{13}=0 \tag{36}
\end{equation*}
$$

(37) $d_{13}^{2}+d_{13} D_{23}-d_{12} D_{23}+d_{12} d_{13}+d_{11} d_{13}=0, d_{12} d_{13}-d_{11} D_{23}-d_{12} D_{23}=0$.

Combining the third with the preceding two we get

$$
\left(d_{11}+d_{13}\right)\left(d_{12}+D_{23}\right)=0, \quad\left(d_{11}+d_{13}\right)\left(d_{13}+D_{23}\right)=0
$$

If $d_{11}+d_{13} \neq 0$, then $d_{12}=d_{13}=-D_{23}$, and (37) gives $D_{23}\left(d_{11}+D_{23}\right)=0$. If also $D_{23}=0$, (26), of determinant 1 , reduces to the identity since $d_{11}^{2}=1$ by (27). But if $D_{23} \neq 0$, (26) reduces to (24), when each element is multiplied by d_{11}. Then $d_{11}^{2}=1$ by (27), $d_{11}^{3}=1$ in view of the determinant. Hence (26) reduces to $Q_{2,3,1}$, so that also this case is excluded. Hence $d_{11}+d_{13}=0$. Then $d_{12}^{2}=1$ by (27). Set $d_{12}= \pm 1$. Then (37) ${ }_{2}$ gives

$$
\left(d_{11} \pm 1\right)\left(D_{23} \pm 1\right) \equiv 1, \quad d_{11} \pm 1 \equiv D_{23} \pm 1 \quad(\bmod .3)
$$

Hence $d_{11}=D_{23}, d_{11}=0$ or ± 1. In either case, the determinant of (26) equals ± 1, so that the upper signs hold. Hence

$$
Q_{1,3,1}=\left(\begin{array}{rrr}
0 & 1 & 0 \tag{38}\\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) \text { or }\left(\begin{array}{ccc}
1 & 1 & -1-i \\
1 & 1 & 1+i \\
i-1 & 1-i & 0
\end{array}\right)
$$

the second being $Q_{2,3,1} V$ where V denotes the first.
For $d_{13} \neq D_{13},(30)$ gives $d_{11}=d_{13}+D_{13}$. Hence

$$
D_{13}=d_{13} \pm 1, \quad d_{11}=-d_{13} \pm 1
$$

Then (27) or (28) gives $a_{12}^{2}=1$, while (29), (31)-(35) each reduces to

$$
d_{12} D_{23}-d_{13} D_{23}-d_{12} d_{13} \mp d_{13} \pm D_{23} \mp d_{12}=0
$$

Set $D_{23}=-d_{13}+t$. Completing the square in d_{13}, we get

$$
\left\{d_{13}-\left(d_{12} \pm 1-t\right)\right\}^{2} \equiv t^{2}-1(\bmod 3)
$$

Hence $t \neq 0, t^{2} \equiv 1, d_{13}=d_{12} \pm 1-t$.

Defining $Q_{1,3,1}$ by (38) $)_{1}$, we get

$$
\begin{gathered}
Q_{1,2,1}=P_{23}^{-1} Q_{1,3,1} P_{23}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right), \\
Q_{3,1,1}=X Q_{1,3,1} X^{-1}=\left(\begin{array}{ccc}
0 & -i-1 & 1-i \\
i-1 & 1 & -i \\
1+i & i & 1
\end{array}\right), \\
P_{13}=Q_{1,3,1} Q_{3,1,1} Q_{1,3,1}=\left(\begin{array}{ccc}
1 & i-1 & i \\
-i-1 & 0 & i-1 \\
-i & -i-1 & 1
\end{array}\right), \\
P_{12}=P_{23}^{-1} P_{13} P_{23}=\left(\begin{array}{ccc}
1 & 1-i & -i \\
1+i & 0 & i-1 \\
i & -i-1 & 1
\end{array}\right),
\end{gathered}
$$

Then S and T defined by (16) are seen to satisfy (15) since

$$
\begin{gathered}
S=\left(\begin{array}{ccc}
1 & -1 & 1+i \\
-1-i & -1-i & 0 \\
i & -i & 1-i
\end{array}\right), \quad S^{2}=\left(\begin{array}{ccc}
1-i & 1 & i \\
-1+i & 1 & i \\
0 & 1-i & -1-i
\end{array}\right) \\
S^{4}=\left(\begin{array}{ccc}
-1-i & 0 & i-1 \\
-1 & 1-i & -i \\
-i & -1-i & 1
\end{array}\right), \quad S^{6}=\left(\begin{array}{ccc}
1 & -1+i & -i \\
-1 & -1+i & i \\
1-i & 0 & 1+i
\end{array}\right) \\
T S=\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & i \\
i & 0 & 0
\end{array}\right), \quad S^{4} T=\left(\begin{array}{ccc}
-1 & -1 & 1+i \\
-1-i & 1+i & 0 \\
-i & -i & 1-i
\end{array}\right)
\end{gathered}
$$

Further, (17) ${ }_{3}$ or its equivalent $Q_{1,2,1}=\left(P_{12} X\right)^{4}$ is seen to hold. Likewise, $(19)_{1},(20)$ and (21). The isomorphism is therefore proved.

Chicago, November 1903.

[^0]: *) Dickson, Linear Groups (Leipzig, 1901), p. 200; American Journal, vol. 21, p. 244.
 *) The equation $Z_{11}+Z_{22}+Z_{33}=0$ is a consequence of (2), Transuctions, p. 384.

[^1]: *) For O this is shown in Annalen, Bd. 55, p. 532. For H it follows since G_{1} is simply isomorphic with a subgroup of the senary Abelian group A (as shown above), which is simply isomorphic with the group of the equation for the 28 bitangents to a quartic.

[^2]: *) Shown for O in Annalen, Bd. 55, p. 572; and for H by means of theorems on A recently presented to the American Journat.

