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A new system of simple groups.

By

Leonarp Eueene Dicksox of Chicago.

Introduction.

One of the five isolated simple continuous groups not occurring in
Lie’s four systems is the group of 14 parameters studied by Killing,
Cartan, and Engel. This group is a special case of a linear group on
7 variables with coefficients in an arbitrary field or domain of rationality.
The structure of the latter has been determined®) by the writer for fields
not having modulus 2. The problem for modulus 2, which requires a
different analysis, is solved in the present paper. For g > 1, we obtain
a simple group of order 28¢ (20¢— 1) (22¢—1). For ¢ =1, the group
has a simple subgroup of index 2 and order 6048. The latter is shown
to be holoedrically isomorphic with the simple group®*) of all ternary
hyperorthogonal substitutions of determinant unity in the Galois Field of
order 32 The generational relations of the isomorphic abstract group are
determined and a transitive representation on 36 letters exhibited.

For ¢ =1, the group of order 12096 is shown to be simply isomor-
phic with a subgroup of index 120 of the senary Abelian group modu-
lus 2, of order 2°.34.5.7. The latter is known***) to be simply iso-
morphic with the group of the equation for the 28 bitangents to a
quartic curve without double points. It therefore has resolvents of de-
grees 63 = 2% — 1 and 120, the latter not hitherfo noticed.

Definition of the group G,.

Consider the linear homogeneous transformations S on 7 variables
with coefficients in the Galois Field of order 2¢ which leave invariant

1) 8+ Eymy + Eymy + &35

*) Tromsactions Amer. Math. Soc., vol. 2 (1901), pp. 383—391.
*¥) Annalen, Bd. 52, pp. 561—581.
¥ Jordan, Traité, pp. 229—242; a simpler proof by the writer, Transaciions,
vol. 3, pp. 377—382.
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We study the group G, of those of the transformations S which, when
operating cogrediently upon the two sets of variables

80> &5 M> a5 My B3y Ms3 gﬂ) gl} Ny» 5_2: Tas gs: s,
leave invariant the system of 6 equations

(2) Xl+ Ymn=0? Y; +erm=07
where 1, m, n form any cyclic permutation of 1, 2, 3, and
|
Xi=§§o—g-i2; i %?i‘; Xij= %%{a Yijzjq_?i?_"! Z {g’?:
x}gogz go"?i} ij} {’h’?,} QE%

A very simple discussion*) shows that, for modulus 2, a transfor-
mation S which leaves (1) absolutely invariant must have the form
3

g: 2( &ty m = Z: (ﬂijgj + Bijnj) (¢=1,2,3)
(3) a ”
=5 + 2 (%585 + Y0575

where
(4) “%j = “1;‘/31;' + oy Bs; + “3jﬁ3j7 ?/gj = %161]' + y2j6\2j + y3j6\3j7
3

3

(5) 2 (¢:;8:% + 2 B:) = 0, 2 (¥:;0i + Y:20;;) = O
i=1 i=1 . .

5 s () k=1,2,3; j+k).

(6) 2 (e;0: + B9 =0 2 (0,5 + Bi¥:) =1
i=1 i=1

For modulus 2, (5) and (6) are precicely the conditions that the
partial transformation (3) on £, 5, (¢ =1, 2, 3) shall leave absolutely in-
variant®) Z,, + Z,, + Z,;, so that it belongs to the senary special Abe-
lian group. Hence G, is simply isomorphic with a subgroup of the senary
special Abelian group in the GF[2%].

The conditions obtained in Zramsactions, p. 385, for the invariance
of equations (2) now simplify considerably, since we have e, = f;,, =0
(1=1,2,3), ¢gg=1. We obtain

) o, = Yo; Yor T Ons Omi | % “ok‘ Buus Bt |
' ylj ylk 6‘1@1 842 " “lj “lk? ﬂau ﬂuk
Yo; Yox Yni Y| %; %ok Cnj Cmi
ORI T e P A
alj Or Yei Ynr o 1Bi; B Cpy Gyt ’

% Dickson, Linear Groups (Leipzig, 1901), p. 200; American Journal, vol. 21,
P- 244
**) The equation Z,, + Z,, + Z,, =0 is a consequence of (2), . Transactions, p.384.
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(9 Cy=0Cp=04, Ci=0; dyy=dpy=dy, d,,=0
(r,s=1,2,3; r=+3s),
where I, m, n and i, j, k from any cyclic permutation of 1, 2, 3, and

% Yos Binr Oms %y Yoo Cor Yms
%y Y| |Bur Ous B 0y, Cur Yus

We may readily express all the coefficients in terms of the 18
Y5 0y, (4,5=1,2,38), using (7);, (8),, and (4). The expressions for
the o2, are initially very long, but simplify*) greatly. Thus
Ops 03| | %5 You | O35 Os1| |Yss Ysr 05 05| |5 Yu |
O35 O3t | |Yss 9'31} Ois 01| |Yis Yu Oys 0511 |Yas Yau 2 ’

the expressions for «f;, o2, following by cyclic permutation. To avoid

loss of symmetry, we will, however, retain all the e, B;;, ¥;;, 0

!

C..=

rs

+ ? drsE

+

(10) ofy = ' ’

.

Generators and order of G,.
Theorem: The group G, is generated by

M = (&) (Eae) (Bsms)s
Ti,¢ Tj,z‘l & =18, ’7:', =T~ gj,_:: 2k 59 "?j' =T,
Qz‘,j,l (8 =8+ lgj) ’?j' =19; — Ay,
Xi,). : gol = §0 — A, gi, == gz‘ — 2'2'75: "ij, = U; + lgk: "77" =M — lgj;
for i, 3, k any permutation of 1, 2, 3.
These transformations are seen to leave invariant (1) and the system
(2), modulo 2. From them we obtain

(11) Qj,i,l Qi,j,l i1 = ‘Pij = (gzgj) (ﬂi"?j);
(12) MXi,zM“‘E Yz‘,z:go";go"lgi: n, =n,— A, gj,=§j+lnk7 gk'='glc-"}'nj'
Let S be any given transformation (3) of G,. We show that there
exists a transformation K derived from the preceding, such that KS is
the identity. We may assume that e, 0. For, if ¢,;40, P, 8 has
a; +0; if ;4 0, MS has ¢;;+0. Then S, =@, ,, Y;,yuTl,a;lZ;,anS
replaces £ by a function of the form & + y,m + &.8; + Yyem,. Then
Sy = Qs 5,5 replaces & by a function of the form & + %% + %he%s-
If y,+0, Xl,yi/:Qz’l,zSz, where y,, — 2¥;; =0, leaves £ unaltered. If

Y1 =0, Y5, S, leaves & unaltered.

* To of,, given by (4),, we apply (7), and (8),. Expanding, we obtain 48
terms, including the 12 ferms of (10)." The coefficients of y,, and y,, are =0 (mod. 2),
while that of ¥,,%,s is zero by (5), for j=1, k=3, The remaining terms are

Y31 (W13 O1s + Yas Bss F Yss Oss) + Y35 ey O1x + Yax Oax + Y51 031) = Y1 ¥8s +- s ¥ =0-
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. Consider therefore a transformation S” which leaves £ unaltered.
Then 4y, =1 by (6),. Applying to S’ in succession the left-hand multipliers
Qs,1,0,0 X3,5,» ©2,1,6,,» We obtain a transformation S” which replaces §, by

£, and uy by By & + m + Bi2f;. Then
= X505, Usr g, Yo,60 87
leaves £, and %, unaltered.
Giving X the notation (3) and applying (5) and (6), we have

ey =0y=1, B =4,=0, aij::“jl:ylj::yjl=ﬂ1j=ﬂji=6lj=aj1 =0

(J = 27 3)'
Then ¢y =y, =0 by (4). By (9), for @7, 5)=2, 2, 1, 2,3,1)
(3,2,1), (3,3, 1), we get fizs =0, ;3 =20, B =0, B; = 0, respectively.
Then ap = 0p; =0 by (4),. Hence y,,=0 (1, i=1,2,3) by (7),. Then
Yoo = Yos = 0 by (4);. By (8), we get

039 = tlyg, 0p5 = ¢tgp, O35 = Oag, Opp = tt33.

Finally, by (7), for I=¢=1, we get
(13) 622633 — 523 632 = 1.
Hence X is the following transformation of determinant unity:
Ny = O32m3 + 05373, ”13' = 0337 + 0537,
22, = 3322 + 332‘33; §3' == Ugg 22 + 522 §3

If 0y =1033=0, T=1T, ;-1T; 5 Pps. If dy and 83, are not both zero, we
may fake 0,; == 0, transforming by P,; if necessary. Then

(14)

2 = @b,s,0.051 52,000 Lo,0, To051-
Corollary. The order of G, is 2%7(252— 1)(2%¢— 1).

Simplicity of the group G, for ¢ > 1.

Suppose that G, has a self-conjugate subgroup J which contains a
transformation S, not the identity, of the form (3).

Lemma I: If q > 1, the group J contains a transformation which mul-
tiplies & by a constant and differs from the identity.

a) Let first y,, 3=0. From what precedes, G, contains a transfor-
mation B which leaves & fixed and replaces %, by

Bk + my + Buabs + 01275 + Pisls + O (Byss 0y; arbitrary).
By suitable choice of the 8,;, d;,, the product P=1T, 17, R will re-
place & by y;'§, and 5, by the same function as that by which S re-
places £. Hence J contains S, = P-'SP, which replaces & by y;'v,.
The demonstration is completed as in Transactions, p. 389.
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b) For y,=0, but «, and «;; not both zero, we readily make ¢, =1.
The transform of S by Y, @, , replaces & by ay& + & + 9%-
We make «;; =0 by transforming by ¢,,, . Transforming by Xg’yZa ,
we obtain in J a transformation S; which replaces & by &. Then J
contains

S;t- T, 1 L =18, 15 -1 15,2 A+0,1),

which replaces § by 1§,.

¢) For y,; = a;, = 43 = 0, either S replaces & by «,§ or is con-
jugate with S” which replaces & by ey, & + %y + %375. Then @y, , X5 .
transforms S’ into S, which replaces £, by 7,. Hence J contains

871 Q5115 @50,
which leaves §, unaltered and is not the identity.

Lemma II: If ¢ > 1, the group J contains a tramsformation which
leaves &, and 1, unallered and differs from the identity.

By Lemma I, J contains a transformation S=+1 which replaces &,
by «§, and 5 by f= 2(131,‘5,-4‘ 61;‘"];)7 where 9, = e~ by (6);,. We
may assume that f has one of the three forms

Bubi + o tny, Byl + el +m, Budi oty + & + O,

For if 8, and B,; are not both zero, we may take 8, 0, transforming
by P, if necessary. To make §,, =1, we transform by T}, ; 7, ;~;. Then
transforming by € ;.. Yi4,, We obfain

§ =l m/ =B b+ ey + &+ dn.

Next, if g, = ;5 = 0, while d;, and 0,5 are not both zero, we may set
0 =1, 8;3=0.

a) Let first f= B,,& + ¢~ 'n. If «==1, the transform 8’ of § by

Y25 B+ A (e —a ) =0,

replaces § by «&;, % by e« 'ny. Hence §8'=1, T, 15, where S
leaves £, and 7, unaltered, and hence is of the form (14:) If 8’ is not
commutative with F, where E is one of the two transformations P,,
Q31> J containg §'~'E-'S'E, which leaves £ and 7, fixed, without
reducmg to the identity. If S’ is commutative with both P,, and Q23,15
then 0y = ady, 0y = ady, = 0. Then «d, =1 by (13) Hence
8 = 1,;-2’.7’2 6T55, 01 If *+1, §'~1P;'8 P, leaves £ and 7
unaltered and replaces g by 8%, +¢&. If 6°=1, S"1Y7ISY, =1, ,,
where 7= 1(14 0%) may be made unity. Hence J contains every Y,
and every X, and therefore (X;,Y,,)* = @;,,, Which leaves & and ¢
unaltered. If a =1, the lemma is proved if B, =0. For a =1, 8,0,
we transform by T 13,1 and make f;, =1. Then §= 1’;,1&2, where
S; is of the form (14) Now Y, is commutative with Py and . Q-
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If Sz is not commutative with both, the lemma follows. In the contrary
case, 05, = 03 = 0, &y, = dy5, Whence 0305, = 1 by (13). Then

) S= Yz,xTz,a—iTs,a-
Its tra.nsform by Ty 17y, is 8" =Y, T, 51T, ;- Hence J contains
8"8 1 =1, .- It is transformed into Y, swsny bY Ty,~1T; ,. Hence
J contains Y, ,, so that the lemma follows as above.

b) Let next f= ;& + e 'y, + 7. If ¢4 1, we make B, =0 as
in a). Then S=1T, T, -19,, K, where K is of the form (14). Then
8710551805, leaves §1 and %, unaltered. If it is the identity, 8,,=0,
0y = a§33 Let 033 = 0. Then @ =0-2 by (13). Hence

S = T1,8°2 T3,62Q2,1,1 Tz,aTs,a*l = T16—2T2,6T3,6Q2,1,6-

Then J contains S~(T, ~1T5 ) 'S8Ty 1T, ,= Qo4 sir41y- It trans-
form by P, leaves £ and u, unaltered. If « =1, we transform by
7 ,%;,1 and make f, =1 or 0. Then S= Y,L[;Q?,“K K of the
form (14) and =0 or 1. Then S“IQ"&ISQHI leaves & and 7, un-
altered. If it is the identity, dy; =0, 033 = d, in K, whence d,, =1
by (13). Then K = @,5,, 0 =20;. Then P%M transforms S into
X,,3@1,3,0 a,3,4- Hence J contains Xy, 5@, @o,1,1 Y15 According as
B =0 or 1, its square or cube is @, ;-

¢) The third case may be treated by the same method.

For ¢ > 1 the group J therefore contains a transformation X which
alters neither & mnor 7, and differs from the identity. Hence K is of
the form (14). But the transformations (14) evidently form a group hol-
oedrically isomorphic with the simple binary group in the G F[2¢], ¢ > 1.
Hence J contains every transformation (14) and therefore every ¢,
P T .T ~1, a.nd

4,52 Tt
X’— Tz,sz z"l) IXu,Z( izt j, 1‘“1) = Xi,m 6= 1’(“ - 1)
Since g > 1, we may take v 40,1 and choose 1 to make & assume any
value in the field. Henece J= G, which is therefore simple.

45,77

Factors of composition of G,.

For ¢ =1, an analysis analogous to the preceding leads to the re-
sult that a self conjugate subgroup J of G, must contain the P, iy Qi1
and the products two at a time of the transformations X;,, Y,,, M,
each of period 2; also that the order of J is either equal to or one-half

of the order 12096 of G,. Such a troublesome alternative has presented
itself elsewhere in the theory of linear groups*) The question is here de-

cided by means of a rectangular table of the transformations of J.
* ow&m the: diseriminanting invariant, Linear Groups, § 205, p-2086.
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Independent of what precedes, we make a direet study of the group

generated by P,, and MX,,. It contains .
Py = (M X,,)%, Py = Py Py Py, P,MXP;=MX, = Y. M,
Xy Xy =MX; )y "(MX,), Y, X, G501 = (Xsy Yo )™

Hence it is identical with the group J just mentioned. Since the group
I of order 168 of all ternary linear transformations modulo 2 is generated
by binary transformations, and sinee J contains every P;; and @, ,,, it
follows that J contains a senary group simply isomorphic with I, the
correspondence of operators being obtained by taking the ternary partial
transformation on &, &,, &,.

In view of a later application, we study the abstract groups” H and G
simply isomorphic with J and I, respectively. By Linear Groups, p. 303,
G is generated by two operators § and T’ such that

(15) I"=1, =1, (8T¥=1, ($:TY =1,
while the linear group I is obtained by setting
(16) 7= Q3,2,1: S=2P 12 Qa,z,:x P, 23 Q1,2,1 .

The abstract group H is generated by P,, and X subject to the genera-
tional relations (19), (20), (21), in which occur our old symbols with a
new meaning defined as follows:

(17) P23 = Xs: P13 = stmezm Q2,1,1 = (XP12)4:

‘ Qi,j,l = P;jPziQ2,1,1P2iP1j'

Eliminating 7 and S from (15) and (16) we obtain four relations (15").
From these must follow every true relation holding for the lmear trans-
formations P;;, ¢, ;,, in particular (11) and

19)

P?i =1, Q?,j,l = 17 Qi, MY T Qi,k,l Qi,j,n Qj,i,I Q]:,i,l = Qk,e,i Qj,i,l)
Qi, i1 Qk,i,1 Qi,j,l = Qk,j,l Qk,i,l (% 4, k a permutation of 1, 2, 3).
Between the linear transformations P;;, @;;, and X = X, hold the re-
lations (17) and the following:

(19) (X Py X-1P,)* = @21 @s,1,10 XQost=szs X,
(20) X Q1P X P XP X~ 1=Pi Q1 @,1,1
(21) X 1Py X~ 1P X719, 5, X = Pos PrgQs 11 Q13,1-

From (17) and (19); follow readily
XQI,2,1 = 02,1,1 X, XQ1,3,1 = Qs,er XQ3,2,1, ““"“‘Qz,s,l X,
Q1,2,1 = (P 12 X)i-
We proceed to show that the order @ of H is 6048. We exhibit
86 >< 168 operators (not initially known to be distinet) in a rectangular
table R,, - - -, Ry, with the operators of G4 in the first row. By showing

(22)
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that these rows are merely permuted upon applying P,, and X as right-
hand multipliers, and hence by applying an arbitrary operator of H as
multiplier, it follows, since B, contains the identity, that every operator
of H lies in the table, whence o Z 6048. From the isomorphism of H
with J, it follows that o = 60438.

We proceed to the computations. The rectangular table is

B, =G, By=GX, By=GXPy;, R, = GXPy, By=GX,,,
Bi=GXQyy,, Bi=GX !, By=GX 'P,, By=GX ' Py,
Riy=GX " 'Q5, By=GX"'Q;,, By=GX0@;, Py,
Bis=GX"'Q 5, P;, By=GXPpX, By = GXPy X1,
R=GXPyX, Ry=GXP, X!, Ry=GX " 'P, X,
Roy=GX 'P,X, Byy=GX 1P, X', R,y = GX P, X1,
By = GXP;3 X" Py, By =GX71Q 5, X, Bpy = GX1Q 5, X
By =GX1Q 3, Py X, By =GX71Qy 5, P XY,

By =GXPy X 'P, X, Bpg= GX ¢, 5, P, X Py,

Ry = GX"1Q1,2,1P13XP137 By = GX—1Q1,3,1P12 XP, X,

B, = GX*1Q1,2,1P13XP13X7 By, = GX’IQ1,2,1P13XP13X~1;
Ry = GX—1Q1,3,1P12XP12X”1> R, = GX—1Q1,3,1P12XP12XP12;
By = GX”1Q1,2,1 Ql,s,n By = GXQS,1,1 Q2,1,1-

Applied as a right-hand multiplier, P,, gives rise to the permutation

(B, Bs) (Bo Ryg) (By o) (Byy Byg) (Byy Byy) (Byg Big) (Big Bos)
(‘R 19 ‘R26) ('R20 ‘R24) (‘R25 ‘R28) (‘R30 ‘R34) (‘R27 'R32> 2

R,, R,, B;, Ry, Ry, Ry, Bys, By, By, By, Rys, Ry being unaltered.
The cases not following by inspection are treated thus:

R, P,=GXP;Py=GXPyP,~=GP,;XP3=GXP,;=R,.
R, P, = GXQ2,1,1P12 == GXQ1,2,1 Q2,1,1 = GQ2,1,1XQ2,1,1 = R;.
R, P, = GX—1Q1,2,1P12 = GX—1Q2,1,1 Qz,z, = GQ: 01 X 1@ = R,.
R, P,=GXPyXP,=G@,, (XPyp)°=GX 'P,X"'=R,.
R Py=GXP;XP, =GPy, Qz,mX_ Py, @s,1,1 92,11 X, by Py (20) Py.
= GX'1Q3,2,1 P, 0221,1 X = GQz,s,l. Xﬂ@z,x,z Qz,z,1X
= G Qs 31031 X—lQl,z 1 X = By, by (22),.
By Piy=GXP X 'Py = GQs5,0,:1 P XPy X~ = R, by (19),.
By Py =GX Py XP, =GP, X! @s,2,1 Q3,1, P X, by (19),,
= GPsz‘agXﬂQs,J,thX = GQi,s,LX_IPmX = Ry;.
The eondition for R, P,, = By is that G shall contain
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X-1P X Py XPpyQ 5, X= Py X~ 1Py Py X Py XPyu @0, X
=Py X 1Py Q0 X Py X71Ppy- P13 @, 5, X, by (22),.
= Py Qosy- X-1P X 1Py X1 Py Py @ 5, X
= Pps Qa3 Pos Pys D511 Q1,01 X Q5,1 - Pr1s Q1,31 X Pas, by (21),
= Qs,2,1P13 Q3,1,1, Q1,2,1 X-1Q3,1,1 X Py, by (11),
= Qs,2,1P13 Q3,1,1 Q1,2,1 Q1,3,1 P,;, by (22),,
= Qs,m Q3,1,1 Q1,2,1 P 28"
From (21), R,y P,, = R,,. Next, R,, P, = R,, if G contains
XPyX Py X Py XPy X~1P3 0y ., X
= XP X" 1-X-'P, X_1P1201,2,1 : P13X—1Q3,2,1P13X7 by (22),,
= X Py Pos X P, X~1Qy 4 y Py P @ g1 X ' P X
= XP; XP,,- X_1Q3,1,1 Py @y X P X
= Q51,1 Pis X Py X1 X1y, ;@151 P X 1P X
= Q11 Py X ' Pi3 X Py Q5 Py Py X~ P X
= Qs 11 Py X~ P XQ, 5, - Py X~*P X
= Qs,1,1P13X°1 - Qo34 P1s X- P, X 1P, X
= Q51,1 P13 @501 X 1Py XP 3 X-1P,- X
= Q3,1,1P13 @s9,1° P X1 Q?,S,i Q2,1,1 - X, by Py (19) Py,.
= Qs,1,1 Q1,2,1 Q3,2,1 Q1,2,17 by (22); and (22),.
Ry Py = GX~'Q 5, Pis X Py Py = GX—1Q1,2,1P12P13XP13
= By Py P;s X Py = R, P;; X Py = Ry,.
The condition for R, P, = R;, is that G shall contain
X 1Q 04 Py XPy X-Ppy- X'Py X~ 1P @y 5, X
= X'IQ1,2,1‘Q2,1,1X—1P 12¥5,1,1 €2,1,1" P13 X~ 1P 1591,2,1 X, by Py (20) Py,
= X1 Q21,1 L1 X Py Py Q54 Q31 X 1050, Py X
= Q01 X " Pp X 1Py Py Q5 X~ 1Py X
= Qo1 Py X~ 1P X~ 1P X~ 1. @s,1,1 P1s X
= Q1,2,1 Py - Py Py Qs,1,1 Q1,2,1 X- 1@1,3,1 . 93,1,11) s X, by (21),
= Q1,21 P15 €51, @1,20 X7 D511 = Q0,1 ¥s,1,1 918,10 PY (22),.
The condition for Ry P,, = B, is that G shall contain
X71Qu 5,1 Py XPy X~ Py - XPy X1 Py, Q31 X
= X'IQ1,3,1 Py, Qs,s,x . Q3,1,1 Q1,s,1X: by (19),
= X‘IQ1,3,1 Qs1,1 P2 Py @1, X =X"Qs 1Py Py Ps XQy 5,
= Q1351 X-1PyX Qs = Q1,3,1-P s P1,8.1-

Mathematische Annalen. LX. 10
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The condition for R, P, = Ry, is that & shall contain

X1 31@u2,1 Pro- 21151 X=X"1¢;3,@11 Q5. X
= X1 02,3,1 Q2,1,1 X = Q3,2,1 Q1,2,1: by (18),, (22),, (22),.
The condition for R, P,, = R, is that G shall contain

XQ51,192,1,1 P12 92,11 Q3,1,1 X-1=X ©5,1,191,2,1 ¥5,1,1 X1
= X Q31521 X "= a1, ¥os1-

Theorem: Applied as a right-hand wmultiplier, X gives rise 1o the
permutation
(‘Rl 'R2 ‘R7) <R12 R22 R27) <'R13 R25 ‘R26> (‘R34 R36 R35) <R3 R14 ‘R15 R4‘R16 ‘R17)
(‘R5 RIO R23 RG Rll ‘R24> (RQ 'Rlﬁ) R21 ‘RS RIS R?O) (‘R28 'R30 R32 'R29 R31 R33)'
That R, X = R,, follows from (20), R;; X = By, from (22), and (22),.

By X =GX71Q 5, (P X)=GX"1¢, 3, X 'Py, Q1,21
=GX ' X1y, Py Qu o1 =G X1 40s1,1P 1 = Ry Py = By,.
B, X=GXP,X?=GXP, Py X '=GP,XP,X'=R,;.
R, X=GX Qz,1,1X = G'X2Q1,2,1 = GstX_1Q1,2,1 = Ry,.
Ry X = GX—1Q1,2,1X2 = GX"1Q1,3,1 X-t= GX—1X—1Q3,1,1
= GstXQ3,1,1 = B;.
The remaining cases follow by inspection. We may now state the
Theorem: The group G, of order 12096 contains a subgroup J of
index 2, generated by P, and MX,,, simply isomorphic with the abstract
group H generated by P,, and X subject to (19), (20), (21), with the am-
plification (17), together with (15"), namely (15) for the values (16). More-
over, J may be represented as a transitive substitution-group on 36 letters.
The simplicity of J may be established by a direct but long ana-
lysis, as stated above. However, an indirect proof follows from the iso-
morphism next established.

Holoedric isomorphism of H and the simple ternary
hyperorthogonal group O in the G F[3%].
Knowing that the two groups are simple, of the same order 6048,

representable as transitive substitution-groups on 28 letters*), and that
the periods of the operators of each are 1, 2, 3, 4, 6, 7, 8 12, those of

*) For O this is shown in Annalen, Bd. 55, p. 532. For H it follows since G,
is simply isomorphic with a subgroup of the senary Abelian group 4 (as shown
above), which is simply isomorphic with the group of the equation for the 28 bi-
tangents to a quartic.
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period 7 falling into 2 sets each of 2°.3% conjugates®) the presumption
was in favor of their isomorphism.

We proceed to determine a set of substifutions of O which satisfy
all the generational relations for the group H.

Since all the substitutions of period 6 in O are conjugate (Annalen,
Bd. 55, p. 572), we assume that

10 0
X=(O —i—1 —i+1)5[1,-z’-~1,-i+1],
0 —i—1 i—1

1 0 0
P23==X3==(0 ~1 o),
0 0 —1

where ¢ =—1 (mod. 3). Bince @y, , = P5' ¢y, P, We set

11 512 1313 ﬁu "512 ‘"’513
Qz,a,l = 1521 ﬁez 523 2 Q3,2,1 = ““ﬂm 1322 1323 :
By B B — Bsy Bss Bss
Then (19)y: Xy 4 = @59, X bolds if and only if
Bis = (‘ + ~1)ﬂw: Bs1 = (1 - i)ﬁzu By =— 7:&8237 Bss = Bz + (7: - 1)523-
Now a hyperorthogonal substitution (8;;) is of period 2 if and only if
ﬂ?j = Pje (64=1,2,3)
From B, = B2, B33 = — @y, follows B3 = 0 or + (1 4 4). Hence

Bu Be (1+79)Bys By s (L4}
Qs,s,1 == ( Bz Ba 0 ) or( Ba1 Bas +(1+79) )
(1 - i)ﬁm 0 Bos (1 ”i)ﬁm * (1"“”') Bes 1
In the first case a hyperorthogonal condition gives B, =0, whence §,, =0.
Also 4, =1, By = fi3;, whence 83, = 1. The determinant being 1, §,, = 1.

Then @, ,, of period 2 must coincide with P,;. Hence the first case is
excluded. For the second, the hyperorthogonal conditions reduce to

ﬁ%:l: ﬁilﬂz1+52lﬂ22$ﬁ21='0? 42‘1:‘:ﬂ22+1=0: 531"{”5%2"‘""‘1;
éx'“ﬁg‘zi'ﬁ?%“‘“l: B} = Bie» ,33253522'

Hence g2, =F f;;,. For f,; =0, the determinant equals +1; for B, =F1,
the determinant equals 4+ 1. Hence the substitution @,,, is

(23)

# Shown for O in Annalen, Bd. 55, p. 572; and for H by means of theorems

on A recently presented to the American Journdal. 10
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1 By G+HDAs
i’z 0 t+1 y Bla=—1;
A—-9p, 1—¢ 1

1 Be (149 512\

or 3o 1 —-1—3 |, pf,=1.

(1—igs, i—1 0 )

Now the hyperorthogonal substitution £’ = §,, &' = — &, transforms the
second into W, where W (obtained from W by replacing ¢ by — 1) is
of the first form, and transforms X into X. Hence we may assume that

@s,3,1 is of the second form, say S, . Now the hyperorthogonal sub-
stitution

E =u %, & =uk, & =pk, ut=1

is commutative with X and transforms S, into S, ;. Hence we may take
f=1. Hence we have

1 1 149 1 -1 —1—4
(24) 02,3,1:( 1 1 ""1""5); Qg’g’lz(""l 1 ——*1—-’&.)~
1—i i—1 0 i—1 i—1 0

The conditions that @, ; , =(0;;) shall be commutative with @, ,, reduce to
(25) { =0+ (1—0)0,3—(1+3) 8y, Ogy=0y-+88)3—10y,

Og9 =01y + (1 —1) 005 —(14+0) 05, O33=0y;— 03+ (1—0) 05+ (1 —17)dys5.
Since @ ,,=1, 8,,=4,;. Expressing the 4, in the form a + b4, we get*)

dn d12 + iDm d13 + iDis
Q:,s,l = dxz - lis d22 d23 + 7:-D23 :

dxs - '51)13 dzs - 7;-D23 dzs
The conditions (25) reduce to

Dm dxs 13: dss = du - d12 + d13 + dzs + D13 + D23,
dzs 13 D13 +D23: d22==d11”‘d13'"d23“”D13"’D23-

Then
du dxz + i(dls - D1s) d13 + 7:1)13
(26) Q1,s,1=(d12 —1 ‘?13 - DIS) dn + d13 + -Dzs d13 - Dis + Dzs - '”'Dzs) )
dis—2Dy, Ay~ Dis+ Dyg—iDyy  dyy~ ths — dyz — Dyg
The six hyperorthogonal conditions are
(27) ﬁz + d%z + (dis — Dy)* + dis + D:%s =1,
(28) ‘F;ﬁ + ( 187 13)2 + (dn + dis + Dy )* + (dxs - st + Dys)* + -Dgs =1,
*) Concerning determinants of such matrices, see Amer. Math. Monihly, Dec. 1903,
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(29) dis + Dis + D35 + (dig — Dys + Dys)* + (dyy — dhy — dyg — Dy’ = 1,

together with three conditions involving ¢ which give

(30) (dxs - Dzs) (dw + D13 - dn) =0,

(31) & + dyyDyy — dys Dyg + Dys Dyg — dyy 8y + dipdyg + diy Doy = 0,
(32) = dfs + d13D23 + -D13D23 + iy Doy — dlszz — dydig = O:
(83) &y + D + dyyDyy — 64, Dy + diy Dyy + Dy3 Dyy — dyy Dyy = 0,
(34)  dy(Dyy — Dy — dys) + @13 D5 — dy3 Dy + dys Dy — Dy = 0,

(35) - dfs + d13D13 + d12D13 - dul)zs - du-Dzs = 0.
For d; = Dy, (31), (32) or (33), (384) or (35) give respectively
(36) dl2 Dzs _ dezs - dn drz + d:z d13 = O;

(37) dfff’ Oys -D23""d12 D23 +dl2 dm +dy d13=0, dyy dls —dy Dzs — dys -Dzs =0.
Combining the third with the preceding two we get
(dyy + dig) (diz + Dps) = 0, (dyy + dys) (dys + Dyg) = 0.

If dy +dys+0, then dy =dg=— Dy, and (37), gives Dyy(dy; + Dyg) =0.
If also D,; =0, (26), of determinant 1, reduces to the identity since
@, =1 by (27). But if Dy, =0, (26) reduces to (24),, when each ele-
ment is multiplied by d;;,. Then d%, =1 by (27), di, =1 in view of the
determinant. Hence (26) reduces to @,,,, so that also this case is ex-
cluded. Hence dy; +dy=0. Then a2, =1 by (27). Set dj; =+ 1.
Then (37), gives
£ D) Dyt 1)=1, dyt1=Dy+1 (mod 3)

Hence dy; = Dy3, dy; =0 or + 1. In either case, the determinant of (26)
equals + 1, so that the upper signs hold. Hence

01 0 1 1 —1—
(38) Q1,3,1=(1 0 0) or ( 1 1 144 |,
00 —1 i—1 1—i 0

the second being @, ,, ¥ where V denotes the first.
For dys 4+ Dy, (30) gives dy, = d;5 + D,3. Hence
Dy=dy+1, dy=—dg+1
Then (27) or (28) gives 2, = 1, while (29), (81)—(35) each reduces to
thy Dyg — dyg Dyg — dyydyy F dyg + Dy F dyy = 0.
Set D,y =—dy3 + ¢ Completing the square in dj;, we get
Hence t+0, #=1, dy—dy, + 1 —4.
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Defining @, 5, by (38),, we get

0 —1 0
Q1,2,1 = P£§,1Q1,3,1 Py = (“’ 1 0 O) ’

0O 0 -1
0 —2—1 1—2¢
Q5,11 = XQ1,3,1X*1 =|i—1 1 —1 |,

1+ ) 1
1 1—1 )
P 13 = Q1,3,1 Q3,1,1 Q1,3,1 = (“'i’-“ 1 0 11— 1) ’
—1 —i—1 1
1 1—¢ —2
P12=P2;1P13P23=(1+z’ 0 i——l)-
t —i—1 1

Then S and T defined by (16) are seen to satisfy (15) since

1 —1 144 1—i 1 i
S=(—-1——i —1—i 0 ) 32_——.(—1+@' 1 ; )
i —i 1—i 0 1—i —1—3
—1—¢ 0 4i—1 1 —144¢ —i
S4=( —~1  1—i -——i), Sﬁ=(—1 —144 i )
-5 —1—i 1 1—i 0 143
0 —1 0 —1 =1 14
TS==(O 0 z) ST = (—1-—75 1+i 0 )
i 0 0 —i  —i 1—3

Further, (17); or its equivalent @, ; , =(P1; X)* is seen to hold. Likewise,
(19),, (20) and (21). The isomorphism is therefore proved.

Chicago, November 1903.




