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A new system of simple groups. 

By 

L~.O~ARD EuGr~m DmKSO~ of Chicago. 

Introduct ion.  

One of the five isolated simple continuous groups not occur~ng in 
Lie's four systems is the group of 14 parameters studied by Ki l i ing ,  
Caftan,  and Engel .  This group is a special case of a linear group on 
7 variables with coefficients in an arbitrary field or domain of rationality. 
The structure of the latter has been determined*) by Re wrier  for fields 
not having modulus 2. The problem for modulus 2, whieh requires a 
different analysis, is solved in the present paper. For q > 1~ we obtain 
a simple group of order 2s~ (26~--1)(2 ~ -  1). For q =  1, the group 
has a simple subgroup of index 2 and order 6048. The lat2er is shown 
to be holoedrically isomorphic with the simple group**) of all ~ernary 
hyperorthogonal substitutions of determinant unity in the Galois Field of 
order 3 ~. The generational relations of the isomorphic abstract group are 
def~rmined and a transitive representation on 36 let~rs exhibited. 

For q = 1, ~he group of order 12096 is shown to be simply isomor- 
phic with a subgroup of index 120 of the senary • group modu- 
lus 2, of order 29. 3 ~- 5 . 7 .  The latf~r is known***) to be simply iso- 
morphic with the group of the equation for ~he 28 bif~ngents to a 
quar~ic curve without double points. I~ therefore has resolvents of de- 
grees 63 =-26 - -1  and 120, the latimer no~ hitherto no~iced. 

Definit ion o f  the  group Gq. 

Consider the linear homogeneous transformations S on 7 variables 
wi~h coefficients in the Galois Field of order 2~ which leave ~uvarian~ 
(:[) ~ + ~ + ~j,~;~ + ~ -  

*) / ' r a ~ r  A ~ .  Math. Sot., voL 2 (1901), pp. asa--89L 
*D ~ Bd. 53, pp. 561--581. 

*~) Jordan, Tr~i~, pp. 229--2~2; ~ simpler proof by the wri~z~ T r ~  
voh S, pp. S77--S82. 
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We study the group Gq of those of the h~nsformations S which, when 
operating cogredien~ly upon fl~e ~wo sets of variables 

~o, ~,, ~, ~, ,~, h, ,~; ~o, ~, ~, ~, ~, ~, ~, 
leave invarian~ the system of 6 equations 

(2) x , +  r . . =  o, Y, + x ~ . =  0, 
where l, m, n form any cyclic permuNfion of 1, 2, 3, and 

I 
A very simple discussion*) shows that, for modulus 2, a ~ransfor- 

marion S which haves (1) absolutely invariant must have the form 

(3) 

3 3 

~,= ~ (~,~f~ + v,~,~), , , ,=  ~x~ (a,~, + ~,,~,) (~ = ~, e, s), 
Jt=l j = l  

$ 

j = l  

where 
(~) ao~ = ~r162 + ~r + ~ / ~ ,  

i=I 

2' 

(%~i~ + u i ~ )  = O, 

(%e~ + / ~ W ~  = 0 
i=1  

For modulus 2, (5) and 
p~.ia,1 transformation (3) on 

Z 
i=1 ( j , k= l,2,3;j-+k). 

variant**) Z n + Z~ + Z~3 , so s it belongs to the senary special Abe- 
lian group. Hence G~ is simply isomorphic with a subgroup of the senary 
Slaed~ Abeliar, group in the GF[2~]. 

The conditions obka~led in Transactions, p. 385, for the invaxiance 
of equations (2) now simplify considerably, since we have ai0 = flio----0 
(i = 1, 2, 3), %o = 1. We obf~in 

(7) a .  = 

(8) ~, = 

Yoj Yo~ + m 
Y~ ~ f  e~s $ ~  ' 

~,~ ~,~+ 
*) Dickson, Li~eax Gror (Leipzig, 1901), p. 200; ~ ~  J O U r ~ ,  voL 21, 

The equation Ztt +Z~t + Zss ~ 0  is s consequence of (2), . T r a ~ s ~  p.384. 

i=1 

(6) are precicely the conditions tha~ the 
~, 7, (i = 1, 2, 3) shall leave absolutely in- 
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where l~ m, n and i, j~ k from any 

(r, s = i ,  2, 3; r + s), 

cyclic permutation of 1, 2, 3, marl 

/ ~  ~ ,  d~,~- ~0~ 
' ~ ~,1 

express all the coefficients We may readily 
y~, ~ ,  ( i , j=-1,  2, 3), using (7)~, (8)1 , and (4). 
the aosr are initially very long, bu~ simplify*) greatly. 

J 
in terms of the 18 
The expressions for 

( io)  

Thus 

the expressions for e~, a~ 
loss 

following by cyclic permutatSon. To avoid 
of symmetry, we will, however, retain all the a~, ~6~, y~, ~ .  

Generators and order of Gq. 

Theorem: The group G~ is generated by 
M = (~1~1) ( ~ )  (~ ~3), 

t P 

x ~  : ~ ' =  ~o - x~,, ~," = ~ , -  ~ , ,  ~/ = ~ + x ~ ,  ~ ' =  ~ - x ~ ,  

for i~ j, k any .permutation of 1, 2, 3. 
These transformations are seen to leave invariant (1) and the system 

(2), modulo 2. From them we obtain 

(il) ~ ,~  r ~ ,~  - P,j = (~&) (~,~), 
' ' 2 ' " .~  (i~) ~x , ,~=L,~:~o=~o- i~ , ,  ~ ,=~ , - i  ~,, ~ = ~ + i ~ ,  ~ - ~ -  ~- 

Let S be any given h~ansforma~ion (3) of G~. W~ Show tha~ there 
exists a ~ransformation K derived from the preceding, such that K S  is 
the identity. We may assume that a~l + 0 .  For, if al~=~O, P~S has 
a~ + 0; if y~ ~= O, M S  has a~, + 0. Then $1= QI,~,~, Y~,~T~,~T~,~=S 
replaces ~l by a function of the form ~i-k y~i~ 4 - a ~  + y~?~. Then 
S s -~ Q~,~,~ s~ replaces ~1 by a function of the form ~ Jr Yn~ + Y ~ -  
If y~ + 0 ,  X~,~:~Q~,~,~S~, where y ~ -  xy~ = 0 ,  leaves ~ ,n  altered. If 

Yll = 0, :Y~,~ S~ leaves ~i unaltered. 

*) To ~ ,  given by (1)1, we apply (7)i and (8)~. Ex~ndiug, we obtain 48 
~erms, including the 12 terms of (t0)." The coefficients ofyo~ and ~os are ~ 0  (moel.2), 
while that  of YolYos is zero by (5)2 for j = 1, k ~-- ~. The remaining terms a r e  
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. Consider therefore a h~ansformafion S" which leaves ~ unaltered. 
Then 8n ~ 1 by (6)~. Applying to S" in succession the lefbhand multipliers 
Qs,~,~,, X~,~, Qs, l,s,,~ we obtain a bansformation S" which replaces ~ by 
~l~ and y~ by fl~ ~ -t- ~ + fl~s~s. Then 

leaves ~1 and ~i unaltered. 
G i ~ g  ~ ~ e  no~tion (3) and ~p~lying (5) and (~), we ha~e 

( j =  ~,~). 

Then ~ol =Uo~ = 0 by (4). By 0 ) ,  ~o~ q, ~, s ) =  (e, ~, i), (~, 3, 1), 
(% ~, i), (3, 3, i), we get ~ = 0, ~ ,  = 0, ~ = 0, ~ = 0, respectively. 
Then a~ ~ a~ ~ 0 by (4)1. Hence Yu = 0 (1, i -  1, 2, 3) by (7)~. Then 
Yo~ =Y~ = 0 by (4)~. By (8)~ we get 

~ = - ~ ,  ~ = ~ ,  ~ = = + ,  ~ = ~ .  

Finally, by (7)i for l =  i =  1, we get 

(13) ~ . ~  - ~ . ~  = i .  
Hence Z is the following transformation of debrmha~.nt unity: 

(14) ~ '  = #aa~ + #n~s, ~ '  = #~s~ + ~ s .  

If d ~ = d a z = 0 ,  2 ;=  T~,~IT~,,~,.P~s. If d~ and 6aa are not both zero, we 
may take #~n + O, transforming by Pss ff necessary. Then 

25= Q~.%~.:~:~ Qa.~.~:~. T~.~ Ta.~:~. 

Coronary. The o~der of a+ is 2~(~++-- 1)('~+-- 1). 

Simplieity of the group G~, for q ~ 1. 

Suppose that G~ has a self-conjugate subgroup J which contains a 
transformation S, not the identity, of the form (3). 

Lemma I: I f  q > 1, the group J contair~s a tra~formation which mul- 
tildies ~ by a co.rant and differs from the ide~tiO. 

a) Let first; Yn =~ 0. From what precedes, Gq contains a ~raasfor- 
marion R which leaves ~i fixed and replaces ~1 by 

By suitable choice of ~he flli, #t~, @e product P = Tt,~t T~,~/~ will re- 
place ~ by y~i~ and ~i by the same function as that by which S re- 
p l i e s  ~ .  He~c~ J contains B~ : - P - ~ B P ~  which replaces ~ by y ~ % .  
The-d~nonstration is comlaleted as in Tra~ctio~ p. 389. 



i new sys~m of simple groups. 141 

b) For y11~0, but e62 and ~ not both zero~ we readily make ~i~ ~ I. 
The transform of ~ by :Yl,~Q~,s,~1~ replaces ~t by e~l~ + ~2 + y ~ .  
We make g~ = 0 by trans~brming by ~r162 Transforming by X~,~, 
we obtain in J a ~ransformafion ~ which replaces ~i by ~.  Then J 
con~ins 

S~ 1. r~,lr~,~-lS~ r~,~-i Z~,~ (i + O, i), 

which replaces ~l by l~ 1. 
c) For Yn ~ r = ~13 = 0, either B replaces ~t by ~11~1 or is con- 

jugate with S' which replaces ~t by ~qt~t + ~ + Y18~3- Then Qs,~,~ X~,~ 
t:ransforms S '  into S~ which replaces ~t by ~/2. Hence J contains 

which leaves ~l unaltered and is not the identity. 
Lemma II: I f  g ~ 1, the group J contains a transformation which 

leaves ~l and *h unaltered and differs from the identity. 
By Lemma I, or contains a trrans{ormafion S + 1 which replaces ~ 

by a~t, and ~ by f =  X(fl~g~ + 6 ~ ) ,  where 6 n = ~ - - I  by (6)3. We 
may assume that f has one of the three forms 

+ t lt , + + gt + + + 
For if fll~ and fll~ are not both zero, we may take fl~ + 0, transforming 
by P~ if necessary. To make fl~ = 1, we transform by T~,lT~,l-~. Then 
transforming by ~,~,~ ~,~,,, we obtain 

Next, if fl~-~ f l i~-  0, while #i~ and al~ are not b e t  zero, we may set 
= 0 .  

a) Let first f = fl~l~ + ~-'~t- If e~ + 1~ the transform S'  of S by 

+ - - -  o ,  

replaces ~t by agt, ~ by a-l~t .  Hence B ' =  T,,~T~,~-iB1, where St 
leaves ~l and ~ unaltered, .and hence is of the form (14). If B' is not 
commutative with E, where E is one of the ~ o  ~ansformafions B~, 
Q2,~,t, J contains S � 9  which leaves ~l and N1 fixed, without 
reducing to the identity. If B" is commutative with both P~ and Q~,~,l, 
then ~ = ~ ,  ~ -~ ~5~ = 0. Then ca~ ----- 1 by (13).. Hence 
S ' =  T~,~T~,~T~,~, 6=[= 1. If $~+ 1, S ' - ~ S ' / > u  leaves ~ and ~ 
unaltered and replaces ~ by ~ + ~. If  ~ -  1, S "-~ Y~,iZ Y~,z= Y~,~, 
where v ~ l(1 + ~)  may be made unity. Hence J con~-s  every Y~,i 

unaltered. If a-~ 1, ~e  lemms is proved if &i -~ 0. For a ~ I~ ~l~ =[vO, 
we ~ransfom by T~,,T~,~-~ and make &l ~- I. Then S =  ~ , l ~ ,  ~w~ere 
S~ is of the f ~  (14). Now..~Y~r is ~co~mut~ive wi~  P ~  a~l(Q~,~. 
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If S~ is not commnfative w i ~  bof~, the lemma s In the contrary 
case, ~ s ~ - ~ s  ~ 0, ~ = ~3s, whence ~ s a - ~  1 by (13). Then 

Its ~ransform by -T~,~-i T~,~ is S'" = Y~,~, T2, x-1Ta,,~. Hence ~ contains 
S"S - I =  1~,~+ 1. It is transformed into Y~,~(~+l) by TI,~-~T~, ~. Hence 
J contains Y~,i, so that the lemma follows as above. 

b) Let next f~ -  ~11~1 -~ a-l~l -~" ~2" If a =~ 1, we make fin = 0 as 
in a). Then B =  T~,,~T~,~Q~,~,~K, where g is of the form (14). Then 

~ - - 1  - -1  Q~,mSQ~,~,~ leaves ~i and ~l unaltered. If it is the identity, d~a=0, 
d~2=ad~-  Let d ~ = &  Then a = ~ - ~  by (13). Hence 

s =  = . 

Then J confains S-l(T,,~lr~,~)-lST~,~-lr~,~=Q~a,a(~§ Its trans- 
form by 21a leaves ~ and ~l unaltered. If a = 1, we transform by 
T~,~ T~,~-i and make &l = 1 or 0. Then $ = l(,,fl Q~,i,1/~, K of the 
form (14) and f l = 0  or 1. Then S-~.~,~,tSQ~,,,t leaves ~ and ~h un- 
altered. If it is the identity, 6~ ~-0 ,  6~-~  d~ in K ,  whence ~ = 1 
by (13). Then K ~  Q~,~,~, ~ ~r~a~. Then / ~ M  transforms S into 

 ence J According as 
fl ~ - 0  or 1, its square or cube is Q~,~,l- 

c) The third case may be treated by the same method. 
For q ) 1 the group J therefore contains a transformation K which 

alters neither ~l nor ~ and differs from the identity. Hence K is of 
the form (14). But the transformations (14) evidently form a group hol- 
oedrically isomorphic with the simple binary group in the GF[2q], q ) 1 .  
Hence J contains every transformation (14) and therefore every Q/,~,~, 

X~.,z(Tr ) ~ X~,~, a -~ t(~ - -  1). 

Since q ~> 1, we may take v =~ 0, 1 and choose t to make a assume any 
value in the field. Hence J ~  Gq, which is therefore simple. 

Factors of composition of G~. 

For q ~- 1, an analysis analogous to the preceding leads to the re- 
sult f~at a serf conjugate subgroup J of G 1 must contain the P~,~, Q~,~,I 
and the products two at a time of the transformations Xi,1, Yi,1, M, 
each of period 2; also fJ~at me order of J is either equal to or one-half 
of file order ~ 12096 of G 1. Such a troublesome alternative has presented 
iCseIf dtsewhe~e in the  fJaeory of linear groups.*) The question is here de- 
cided by me~ans of" a r e c f a ~ J a r  fable of the ~r~nsfo~-ma~ions of Jr. 
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Independent of what precedes~ we make a direct study of~fl~e group 
gener-~ed by Pls and M X  n.  It confains 

r .  = ( M X l l )  ~, ~ .  = e , ~ P I ~ ,  ~ l , ~ f X ~ ,  = M X .  = Y,~M, 

x~, x .  = ( M X s l ) - ' ( ~ X . ) ,  ~ , X ~ .  0~,,,~ = (X~, 5 ,Y- 
Hence it is identical with the group J just mentioned. Since the group 
F of order 168 of all ternary linear transformations modulo 2 is generated 
by binary transformations, and since J contains every /?u and Q,,~,I, it 
follows that J confains a senary group simply isomorphic with F, the 
correspondence of operators being obtained by taking the ternary partial 
transformation on ~1, ~,  ~s- 

In view of a later application, we study the abstract groupg ~ H and G 
simply isomorphic with J and F, respectively. By Linear Groups, p. 303, 
G is generated by two operators S and T such that 
(15) r ~ =  1, ~---- 1, ( S r ) ~ =  1, ( ~ r ) , =  1, 
while the linear group F is obtained by setting 
(16) r =  Q~,~,I, s = P~ r r 
The abstract group H is generated by /)~ and X subject to the genera- 
tional relations (19), (20), (21), in which o ~ l r  our old symbols with a 
new meaning defined as follows: 

(17) P "  = x~' ~ = ~ P " P ~ '  Q~'~'~ = ( X P . ) ;  

Eliminating T and S from (15) and (16) we obtain four relations (15'). 
From these must follow every hue relation holding for the linear trans- 
formations Pu,  Qi, j,1, in particular (11) and 

(18)~ /~ j=1 ,  Q~/z,x=l, Q~,j, l Q~,~l -= q,,~, Qi, j,x, Qs.i, l Q~,~,, = Q~i,~ Qr 
q,,~,x q~,,,~ O,,r = q~.~,~ Q~,~, (i, j, k a permutation of 1, 2, 3). 

Between the linear transformations Pu, Q~,~,~ and X = X n hold ~he re- 
lations (17) and the following: 

(19) ( x ~ x - ~ ) ~ =  ~,~,~ ~,,i,~, x~,~,~  = ~,~,~x,  
(20) x o~,~,~ ~ x ~ x ~ x  - ~ = ~' .  q~,,,~ q~,~, 

~ o m  (~7) ~ d  (~9)~ ~onow ~ ,  
(22) XQ,,~,, = O~,,,~X, XQ~,s,~ = Os,, , ,X, XQ~,~,I,-~Q~,~,~X, 

We proceed to show that the order t~ of H is 6048. We e ~ h ~  
36 X 168 opera~ors (not initially known ~o be d ~ )  in a re~zangular 
table R ~ , . . . ,  t ~  with the operators of G~s~.in the first ~o~ B y . ~ m ~ g  
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fll_~ r rows are merely permuted upon applying P~ and X as right- 
hand multipliers, and hence by applying an arbih~ry operator of H as 
multiplier, it follows, since /~1 contains the identity, that every operator 
of H lies in the table, whence to ~ 6048. From the isomorphism of H 
with J ,  it follows that co ~ 6048. 

We proceed to the computations. The rectangular table is 

R, = ~, ~ = G x ,  ~ = ~ z P ~ ,  ~ =  e x ~ ,  R~= ~XQ~,,,~, 

~o = ~ x -  ~ Q~,~,~ , ~ .  = G x -  ~ Q,,~,~ , ~ = G x Q~,~,~ P ~ ,  

~ -  vx-~q,,~,~P~, ~ .  e x P ~ x ,  ~ = ~ x P ~ x  -~ 

~ ,  ~ x - , P ~ x ,  R,o= o x - ~ P . x - ~ ,  ~,~ o x - ~ P ~ , x  -~ 

2%~ = a X -  , Q~,~,, ~ , ,  x ,  ~ = G x -  ~ Q,,~,, ~ x - ', 

n ~  = ~ x - ~ q ~ , ~ , ~ e ~ z e ~ x ,  ~ = e X - ~ Q , , ~ , , ~ x ~ , ~ x - ~ ,  

n ~  = v x -  ~ Q~,~,~ e ~  x ~ x  - x, n , ,  = v x -  ' q~,~,~ ~ x e ~  X e ~ . ,  

2 ~  = G X - ~ Q~,~,~ Q~,~,~ , ~ = V X Q~,~,~ Q~,~,~ . 

A~l~lied as a right-hand multiplier, t)t2 gives rise to the ~ermutation 

The cases not following by inspection are treated thus: 

~ . v , ,  - G X ~ ' , , X ~ .  = G Q , , , , , ( X ~ , , ) - ' =  ~ X - ' ~ ' , , x - '  _ ~ , .  

1~6T,, - -  G X P , , X P , ,  ~ -  GP,,  Q,,,,tX P,, Q,,,,t Q,,,,,X, by P,,(20)P,,. 
= e X - ~ Q , , , , ~ ,  O,,,~,~x= VQ,,,,,x-~q,,,,~ O,,,,~x 
= ~ q , , , , , q , , , , , x - ' o , , , , , x -  ~ , ,  ~y ( ~ ) , .  

r~P,~ ~ o x - ~ P ~ , x ~  = ~ '~x-~ ,~ ,~ ,~ ,~e~ ,x ,  by 09) .  
X-x  

con~tion fox ' . / ~ P ~  = ~ is that G shall contain 
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x -  11,1~x. 1,1~. x1, .O1,3,1x= 1,33x- 11,13 1,I~xJe13x1,~ 0,,~.I x 
= 1,38X-11,13. Ql,~,1X-11,13X-LP~..P13Q~,~,lX, by (22),. 
= 1,33 03,3,1. x -11 ,13x-11 ,13  x - 1 . 1 , 1 3  1,3~ Q1,~,1 x 
= 1'23 Q2,%1" 1,~3.P13 Q3,,,1Q1,3,1 X-1Ql,3,1 "1,x3 Ql,%lX1,~3, by (21), 
= Q3,,,11,13Qs, l,l, Q1,3,1X-1Q3,wtX1,33, by (11), 

= Q3,2,1/913 q3,1,1 Q1,2,1 Q1,3,1 "P28, by (22)2 , 

~h'om (21),/~OPl~----/~,. Next, /~71,1, = / ~  if G conb.lns 

x 1 , .  z - 1 1 , ,  x . 1 , .  . z1,13 x-11,13 q~.~,l z 
= X 1 , ~ X  -1.  X-1Pl~,X-I1,13Qw,,1.1,13X-lQ3,.,,,11,1sZ, by (22),, 
= x 1 , 1 3 G ~ x 1 , ~ x  -103,~,1 1,1~1,~$ q~,3,1 x -11,~3X 
= z1,13x1,i3, x-1Q~,~,~ P,~ Q~,3,xz-11,13x 
= Q3,1,11,13x-11,1~x-~. x-1Q3,1,~ Q1,3,11,1,x-~1,13x 
= 03,1,1 1,13x-~1,13xG~. q1,~,1 ~ P I ~ x  -11,,~X 
= q~,1,~1,.x-1.1,i3xq,,,,, .1,1,x-11,13x 
= G,1,1 1,13 x -  1. G,3,1 G3 x .  G ,  x-11,13 x 
= q3,1,1 P13 Q3,,,1. x - 1 1 , . x v ~ 3 x - ' 1 , , 3  . x 
= Q3,~,1Pla Q3,2,1 �9 P~ z - 1  Q,,s,1 Q~,1,1 "X, by /'33 (19) P~3- 
= Q3,1,1 Q1,,,1 Q3,m Q,,,,1, by (22)3 and (22)1. 

i~gBi3 = G X-1Ql,~,l PlsXB~aB,3 -.~ G X-1Q,,~,I PnBlaXPxa 

=/GP.1,~3xG3 =/G1,~3x1,~3 - / G -  
The condition for /3zl P22 = / ~ i  is that G shaJl contain 

x -  I Ql,,,11,13 x1,1~ x .  1,~ . x -  ~1,. x-11,1~ Q~,$,2 x 
- 1  - 2  - 1  = X Q2,3,~.Q~,l, l X  Pl~Q3,,,1 Q~,1,2"1,23 X 1,23Q2,3,IX, byP3s(20)l:'~s, 
--1 --2 --1 X B X  P P  X ---- Q~,1,1 Is ~ I~ Q2,a,1 Q~,%1 Qa,3,11,1sx 

= Q2,3,1x-11,~x-21,~1,I3 Q2,3,1 x-11,23x  

= Q1,3,1P~3. x-11,13x-u'lsx-2. Q~.I, ,1, .x 
= Q2,3,11,~.1,~1,.Q3,,,1Ql,~,lx-lQl,,,1.Q~,,,,1,.x, by (21), 
= Q1,2,11,18 Q3,1,1 Q1,3,1 X-1Q~,1,1 --~- Q1,2,1 Q~,I,! Q1,2,11 by (22)~. 

The eonditdon for/?mP~3 = / ~  is ~a t  G shall eontain 

x -  l ql,~,21,~x1,, x -1.1,23 . x1,13 x -  ~1,2~ r x 
= x-1Q1,3,~1,=Q3,~.Q$,I, IQ1,3,2x, by 095 
= x-lol,~,l q~,1,11,t~- v~O3,~,2x= x-~o~,~,i1,1~ �9 1, .v~,xo~$,~ 
= 01,3,2 x - 1 1 , ~  x qI,~,i = ql,~,11,33Q,,~,~. 
Ma,thoma~sehe A-~a,]en. LX. 10 
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The condition for BssP12 = . ~  is that G shall contain 

x - I  Q1,~,1 QI,~,~- ~1~- QI,~,~ Q1,~,1 x = x -1 Q,,~,I Q~,l, lQl,~,~ x 
= X-~Q~,3,1Q~,~,~ X =  Q3,~,lQ~,~,l, by (18)~, (22)3 , (22)1. 

The condition for ~6P1~ =-R~ is that G shall contain 

xQ~,~,l Q.~,~,I P~  Q~,I,, Q~,~,I x - I  = xQ~,~,I QI,~,~ Q~,~,lx -1 

Theorem: A ~ l i e d  as a right-hand multiplier, X gives rise to the 
t~ermutation 

(~ ~1o ~ ~ ~11~) (~ ~1~ ~ ~ ~ ~o) ( ~  ~o ~ ~.~ ~ ~) .  
That Rz~X = / ~  follows from (20), /~ssX-~ Rs5 from (22), and (22)2. 

= a z -~ x - ~  ~,~,~,~ q~,~,~ = ~ zq~,~,~ ~,~,1 ~ - ~ ' 1 ~  = ~o. 

~ x = ~ x ~,~,1 x = ~ x ~ Q,,~,I = v ~  x -1  ~,~,~ = r~o.  

I~z X -= G X -  ~ QI,~,I X~ = G X -  ~ QI,~,I X - ~ =- G X - 1 X -  ~ Q~,~,I 

= GP~XQ~, I ,~  = 1~.  

The remaining cases follow by inspection. We may now state the 
Theorem: The group G 1 of order 12096 contains a subgroup J of 

index 2, generated by PI~ and M X z I ,  simloly isomorThic with the abstract 
group H generated by t)~ a~zd X subject to (19), (20), (21), with the am- 
21ification (17), together with (15'), namely (15) for the values (16). ~ore- 
over, J may be represented as a transitive substitution-grou2 on 36 letters. 

The simplicity of J may be established by a direct but long ana- 
lysis, as stated above. However, an indirect proof follows from the iso- 
morphism next established. 

Holoedrie isomorphism of H and the simple ternary 
hyperorthogonal group O in the G F[3~]. 

Knowing f;hat the two g'roups are simple, of the same order 6048, 
represen~ble as transitive substdtution-groups on 28 letters*), and that 
the periods of the operators of each are 1, 2 ,  3, 4, 6, 7, 8, 12, those of 

~) For O this is shown in A~Je,~, Bd. 55, p. 532. For H it follows since G ! 
is simply isomorphic with a subgroup of/~he senary Abelian group A (as shown 
above), ~-hich is simply isomorphic with the gToup of the equation for the 28 bi- 
~ngen~  ~ a qua~'~c. 
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period 7 falling into 2 sets each of 2 ~- 3 ~ conjugates*) the presumption 
was in favor of their isomorphism. 

We proceed to determine a set of substitutions of 0 which satisfy 
all the generational relations for the group K 

Since all the substitutions of period 6 in 0 are conjugate (Annalen, 
Bd. 55, p. 572), we assume that 

Ii o o) x =  - i - 1  - ~ +  ~ [ 1 , - i - 1 ,  - / + 1 ] ,  
. - - i - - 1  i - -  

(23) (i o 
P ~ =  X ~ =  . -  1 , 

0 --  

where ~ ~ - -  1 (rood. a). Since Qs.~., = P~*Q~,saP~, we set 

Then (19)x: XQ~,s, 1 = Q~,~,tX holds if and only if 

&~ = ff + 1)t~,, s = (I - 0~,. A~ =- %. & = &~ + (~- 1)f.. 

Now a hyperorthogonal substitution (f,j) is of period 2 if and only if 

~,~ = & (~, j = ~, ~, a). 

From &~ = ~a ,  &~ = - -  i f ~ ,  follows f~  -~ 0 or • (1 + i). Hence 

In the first case a hyperorthogonal condition gives fl~l = O, whence fll~---O. 
A ] ~  fl~ = 1, f ~  ~ Bib, whence ~ = 1. The determinant being 1, fix1 = 1. 
Then Q~,~,I of period 2 must coincide with P~8- Hence the firs~ case is 
excluded. For the second, ~ e  hyperorthogonal conditions reduce to 

& - -  1, A~&~ + & &  -7- & ~ o, & -T &~ + ~ = o, & + & = -  ~, 

Hence ~ - ~  ~ .  For f l~-~0,  the determinant equals • 1; for ~ = - T - 1 ,  
the determinant equals -T 1. Hence the subs~i~ntion Q~,s,~ is 

*) Shown for 0 in Annalen, Bd. 55, p. 572; and for/~r by means of r 
on A recently presen~d to the A ~ a ~  J ~ l .  

10" 
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I &, ( / +  1)&.)  

( 1 - - 0 ~  ~ 1--i +1 

(I - 0~[, ~- i 

~ = - -  1;  

, a h = l .  

Now the hyperor~hogonal subst~itu~ion ~ ' =  ~,  ~ a ' = -  ~, hansforms the 
second into W, where W (obtained from W by replacing i by - - i )  is 
of the first form, and transforms X into X. Hence we may assume that 
Q~,.~,l is of the second form, say S~. Now the hyperorthogonal sub- 
s~i~ion 

is commutative with X and transforms Sa into Ss, ~. Hence we may take 
fl = 1. Hence we have 

1 1 
(24) Q,,,,t = 1 1 

1-i i-1 
l+i~ (11 -1 -1- i )  

---- 1 - - 1 - -  - 
- - 1 s  ' Qa'''x /----1 i - - 1  0 

The conditions that Q1,s,:-~ (~r shall be commutative with Q~,3,1 reduce to 

(25) t ~ , i = ~ + ( I - 0 ~ - ( 1  +~)~:, ~ , = ~ + ~ 0 - ~ ,  
t ~ = ~ 1 ~ + ( i - 1 ) ~ , ~ - ( 1  + 0 ~ 1 ,  ~ = ~ , 1 - ~ + ( 1 - 0 ~ + ( 1 - i ) ~ .  

Since Q~,~,~ = 1, ~ , =  ~ .  Expressing the ~o in the form a + bi, we get*) 

The conditions (25) reduce to 

T h e n  

48 - iD~ 

d.  = d~ -- d~ + 4~ + d~ + b,~ + ~)~, 

a~l + a~s + D~ 
4s + iD~ 

$ 

T h e  six hyperor*~hogonal conditions are 
(~) 
(~8) 

~ I  + ~ ,  + (d~ - 2)1~), + ~ ,  + ~ =  1, 
- 13) + (4~ + 4 ~ .  z ~ ) ,  + (a~ - z ~  + D~)~ + z ~  = 1, 

*) Concerning debelaninmafa of such matriee~ see Amex. Mat~ M,a~dy, Dec. 19o~, 
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(~9) d~ + Dh + ~ + (4s - 9 ~  + 9 ~ ) ,  + (4~ - ~ --  4 ~ - -  9,8) ~ =  1, 
together with three conditions involving i which give 

(ao) (48 - 9 . )  (4~ + ~)~8 - 4~) = o, 

(al) x,~ + d.Z),~ -- 4sZ)~ + 9 . 9 , 8  -- 4 ,4~  + 4 ,4~ + 4 J ) ~  = 0, 

(32) ---, ~ + 48D,~ + DtaD= + dl, D,a -,- 4 , D ~  - 4143 = o, 

(34) d n ( D ~  - -  D~8 - -  d~)  + d~l)13 - -  d ~ D , s  + duD13 --1~t3 = O , 

06)  d l , 9 , ~  - -  4 ~ 9 , ~  - -  ~ 4 . , .  + 4 , 4 s  = 0, 

(37) ~ 8 + 4 ~ 9 , ~ - - ~ : ~ ) , ~ + 4 ~ 4 ~ + d ~ 4 8 = 0 ,  4 ,  4~ -- 41~ ) .  -- 4 ,  9 .  = 0 .  

Combining the third with the preceding {wo we get 

(4~ + 48) (a ,  + 9,8) = o, (41 + 4s)  (48 + 9,8) = o. 
If d u + dxn={=O, ~hen d , :=d~a=- - .D , ,  mid (37), gives/)~n(dn + D , , ) - - 0 .  
If also D~a = 0, (26), of de~rminant 1, reduces to the idenfi~y since 
~ t  = 1 by (27). Bu~ ff D~a =~ 0, (26) reduces to (24)1 , when each ele- 
~ n t  i~ ~lt~pn~a by d,,. Then d~, = 1 by (27), d1~-= 1 in view of the 
determinant. Hence (26) reduces to Q~,~,t, so tha~ also this case is ex- 
clude& Hence d~t+d~a-=0. Then ~ = 1  by (27). Set d , , = •  
Then (37)~ gives 

(41_+1) (D,8 •  ~ 1 ,  4 t •  (rood. a). 
Hence dl~ = D,s , d n = 0 or _--4- 1. In either case, the determinant of (26) 
equals • 1, so that the upper sig-as hold. Hence 

( i  1 i ) ( i !  1 : 1 (38) Q~,8,t = 0 or 1 1 i , 
O - -  1 1 - - i  

the second being Q,,8,I r where V denotes the first. 
For d~s + Dis , (30) gives d n = d~ + Dt3. Hence 

D ~ 8 = ~ s + _  1, d l l = - & ~ •  
Then (~7) or (~8) gives ~ = 1, wh~le (~ ) ,  (~l)--(aS) ~ h  r ~  ~o 

4 , 9 , s  - d~ 9,8 - d,, 4s  r 48 _+ z),8 �9 4 ,  -- o. 
S& D2a = - - d ~  + t. Completing t~he sqoa~ in d~8 , we ge~ 

{ 4 , -  (a,, • 1 - 0 1 ' -  r  ~ (moa. 3). 
Hene~ t + 0 ,  t ~ l ,  ~ = d u  :t: 1--t.  
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Dea,i~g Ql, s,x by (38)1 , we get 

(-i i) 0 --  

Qs,~,l = X ql,s,1 X -  1 
0 - - i - - 1  1 

= i - - 1  1 i 

l + i  i 1 

~'1~ = q~,3,~ q~,~,~ q~,~,~ = 1 0 ~ -  I 

- - i - - 1  1 

i 1 1 - - i  ~1~ = ~ ' ~ 1 3 P ~  = 1 + i  o 

i - - i - - 1  
i l  I " 

Then S and T defined by (16) are seen to satisfy (15) since 

S = - -  S ~ =  - -  + i  1 - -1  i - - 1 - - i  

i - - i  1 1 - - i  
i 

- - 1 - - i  

- - 1 - - i  0 1 + i  
1 - - i  i , S e =  - 1 + i  

- - 1 - - i  i 0 

T S =  0 , S~T = -- i 1 + i  0 - 

0 - - i  1 - -  

Far,her, (17)s or iks equivalent Q1,~,1 =(~Pl~X)~ is seen to hold. Likewise, 
(19)1 , (20) and (21). The isomorphism is therefore proved. 

Chicago ,  November 1903. 


