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IT is known* that the most general transformations which convert the
system of linear homogeneous differential equations

(1) y!+ 2 Vpikyl+qikV,:) = 0 <* = 1, 2, ..., n),
k l

where _£>»* and q^ are functions of the independent variable x, into another
of the same form, are given by the equations

n

(2) yK = 2 aKX(x)>)K (K = 1, 2 «.),
x=i

(3) £
where aK\ and f are arbitrary functions of x, for which the determinant

|o«x| (*» A = 1, 2, ..., n)

does not vanish identically. A function of the coefficients of (1) and their
derivatives, and of the dependent variables and their derivatives, which has-
the same value for (1) as for any system derived from (]) by the trans-
formations (2), is called a semi-covariant; if the function keeps the same
value when (1) is transformed by (8) also, it is called a covariant. A
semi-covariant or a covariant is called a seminvariant or an invariant,
respectively, if the dependent variables and their derivatives do not occur
in the function.

In a preceding papert the writer has obtained a complete system of
seminvariants for the system (1). It is the object of the present paper to-
complete the problem by the calculation of complete systems of invariants,.

* Wilczynski, Protective Differential Geometry of Curves and Ruled Surfaces, Leipzig,
1906, Chap. I.

t "On Seminvariants of Linear Homogeneous Differential Equations", 1916, Proc*
London Math. Soc, Ser. 2, Vol. 15, p, 217.
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semi-covariants, and covariants. The methods used largely avoid the
solution of the complicated systems of partial differential equations which
arise by the Lie theory.

By means of the system (1) and its invariants and covariants we can
study the projective differential properties of any spread (except for special
cases) generated by oo1 flats in space of any number of dimensions. It
is thus unnecessary to employ systems of higher order. This geometry
will be discussed in papers to follow.

1. The Invariants.

As invariants are also seminvariants, the calculation of invariants
merely requires the discovery of functions of the seminvariants which
keep the same value after the system (1) is transformed in accordance
with equation (3).

In the calculation of the seminvariants, it was found convenient to
introduce auxiliary functions of the coefficients of (1) and of their deriva-
tives, denoted bv .. , , n .

uik, vik, ioik (i, fc = 1, 2, ..., n),
and defined by the equations

(4) vik = u\k+ 2

= l4+

(i, k = l, 2, ..., M).

If 7 is a seminvariant involving uik, r successive applications of the
operator n -s

D = ^

upon I are indicated by

7(r) _ T)r J _ _L 2 f • | 7

r! £=1 Vawii/

Similarly, successive applications of the operators
n n ^)

JJUV — Z, Zi V

n n ^
Dvw = 2 2 wik K—

i=i k=i dV
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are indicated by

i n * f 7) \ s
J(rs) Tx* T(r) __ J_ V V ( J i _ \ T(r)

jD!;w7(«) = J_ £ 2 L
tl i=i /,-=! \ 01)$

respectively.
For the purpose of the calculation of the invariants it is convenient to

replace the complete system of seminvariants* consisting of

(I^(?' = 0, 1, ..., ra-1 ; s = 0, 1, 2, ... ; r+s < n), l\n) (s > 2),
(5) ] .

[ T^ (s > 0), Dlj (t = 0, 1, ..., n-2),

and certain derivatives, by the system consisting of

/ 2 < * K » = jo) (r = 0, 1, . . . . w —1),

(6) ip*) = /<«) (,• = 0, 1, ..., n - 1 ; .s = 1, 2, ... ; r+s < n),

(iW (r = 0, 1, ...,n—1 ; s = l , 2, ...; > - + s < n ; *= 1, 2, 3; *.< s),

and certain derivatives.
These seminvariants are proved to be independent by methods very

similar to those by which the seminvariants (5) were proved to be inde-
pendent. In fact, it is only necessary to find a non-vanishing deter-
minant of maximum order in their functional matrix. First put

ua = 0 (i^=k).

It is then easy to see that there exists a determinant of maximum order
which has for one factor the cube of the non-vanishing Jacobian of the
elementary symmetric functions of un, w23, ..., «,lH. The other factor F
is a determinant in which the coefficient of the highest power of u,m is
different from zero. In fact, this coefficient is the product of the deter-
minant which corresponds to F, in the case of n — 1 variables in equations
(1), and the functional determinant of I ^ (r-f s = n, t = 0, 1, 2, 3) with
respect to all variables vik, wik for which i = n or k = n, except v,lt „.-•[,
vnn, wnn. If we arrange the rows and columns in proper order in this
latter determinant, and put win (i = 1, 2, ..., n—2) and all Va- except
y<(i_, (i = 2, 3, ..., n) equal to zero, the determinant has all elements of
the principle diagonal different from zero and all elements above the

* Stouffer, loc. cit., p. 226.

Z 2
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principle diagonal equal to zero. Thus this factor does not vanish, and
the whole functional determinant is different from zero, provided it is
non-vanishing in the case of n—1 variables in (1). But it is easily seen
to be different from zero in the case of n== 3. Hence by induction the
seminvariants are proved to be independent.

The system (6) contains 2n 2 +l seminvariants. But the system (5)
also contains 2n2-f-l independent seminvariants, and these with the
successive derivatives of the n2 seminvariants of (5) which contain ?t\.<-
form a complete system. Therefore the system (6) and the successive
derivatives of any ??2 of the seminvariants J(1<0 {t = 1, 2, 3) form a com-
plete system. We shall use the successive derivatives of the ??2 semin-
variants for which t = 1, 2.

In order to calculate the invariants we shall need to find the effect of
the transformation (3) upon the seminvariants. By this transformation"
equations (1) are converted into

li £ ( / ^ | M) = 0 (i = 1, 2, ..., w),

where

1
J ^ 2 7'•'••'

with

( 8 ) »; = ^ 7

If the transformation (3) is made infinitesimal by putting

where <f>(x) is an arbitrary function of r and St an infinitesimal, we have,,
on neglecting higher powers of St than the first,

(10) -, Spik = pik—pik = — <P'pikSt (i =£ h),
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whence, by substitution in (4),

341

(11)

Siiik = = — %<brUikSt (i =£ k),

From these values for ouik and the definition of 7(r), it follows that

c)7(r) vl{r)

or

(12) o7<r) = -

If / is an invariant, the system of partial differential equations* which
it must satisfy is obtained by equating to zero the symbols of the infini-
tesimal transformations of / . If / depends only on 7(0). 7(1), ..., 7("~1),
equations (12) show that it must satisfy

(13)
,;=0

/<•'•+'> 4 ^ =

We proceed to find all these invariants. The second equation of (13)
merely requires that absolute invariants be isobaric of weight zero, or
relative invariants be isobaric. Since there are n independent variables
and two independent equations in the system (13), there are n— 2 abso-
lute invariants or n — 1 relative invariants here. The method of unde-
termined coefficients shows that two isobaric functions which satisfy the
first equation of (18) are

. 1 \ t.n O\

* Lie, Mathematisclw. Annalen, 1S84, Vol. 24, p. 537.
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It is now easily shown by induction that the first equation of (13) is
satisfied by the isobaric functions

ea = (/o*-i)) aj? \
i=2 (a—i)\i\

a'™0"1 (n-a) ( a = 2 , 3, . . . , n ) .

These w—1 expressions are relative invariants whose respective weights
are twice the subscript of 6. They are independent since each contains
an independent seminvariant not contained in those of lower weight.
Since there are only n—1 such relative invariants, we have them all.

We next proceed to find the invariants involving I{rs) (s > 0). If
6a+j3 denotes such a relative invariant, homogeneous of degree a in uik

and of degree fi in Vik, that is, isobaric of weight 2a in /j.ik and isobaric of
weight 8$ in Viu the transformation (3) converts it into Ba+/3, where

and the infinitesimal transformation (9) gives to Oa+/s the increment

sea+p = - ( 2 a + 8 0 ) <p'ea+Pst
It follows that

s(Duvea+fi)= s s « t t ^
r = l A = l OMjfc

(14)

Now Dt«62 = 0,

whence by induction DuOa = 0 (a = 2, 8, ..., n).

Therefore, if we put 0 = 0 in (14), we have
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Consequently, the isobaric expressions

(15) e.,1 = 2e2Du vea-a0aDw l )e2 (a = s, 4 , . . . ,») ,

are relative invariants of weight 2a+2 in uik and 3 in t?ifc.
A more general form of (15) is obtained if we notice that, according

to (14),

(16) ©a + /3,l = 202X)tti ;Oa + /S — aOa + pD.uvQ2

is a relative invariant provided that

Duea+P = o.
Since

d7) D«(D;,e.) = Dr
uv{Duea) = o,

we have JDM 0Oi t = 0.

Therefore

e o , 2 = 2 e 2 D u y e o > 1 - ( a + i ) e a ( 1 D u t ; e 2 (a = 3 , 4 , . . . , n)

are invariants. Again, by (17),

whence 6a,3 = 2e2Duvea>2-(a+2)9a,aDwea (a = 3, 4, ..., n)

are invariants. In fact a continuation of this reasoning gives the

——: relative invariants

(a = 3, 4, ..., n; /3 = 1, 2, ..., a),

whose respective weights are 2a-f-2/3 in uik and 3/8 in vik.

The invariants 0a, 9O| p are ^ in number. Moreover they

are independent, since each contains a seminvariant not in those which
precede when they are arranged in order of ascending values of a and /3.
The system of partial differential equations which these invariants must

satisfy contains 4 equations and —^— variables I(rs). There are, there-
fore,

n*+Sn A , ., _ tt2+3tt—6
4 + 1
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independent relative invariants here. We have all but one. It is easily
found by the method of undetermined coefficients that

)2So 2 = 4O2(I<
ft-1> *>)•- - ^ r 7<»-2'2>6.,-(a2)n—1

is a relative invariant of weight 10. That it is independent of the other
invariants is seen by arranging them in the order 0a, So, 2, @Q) p, a-ad in
order of ascending values of a and /3.

We continue the process of finding the invariants by seeking those
which involve 7(rst) (t = 1, 2, 3). It may be verified easily by direct sub-
stitution that the expressions

called the quadriderivatives* of Oa, are relative invariants. The quadri-

derivatives of 62 and 03

'IX

contain /(( t-1-11)) /(»—AI.J^ a n c j j(>i-3,i, i)} ^u^ n 0 other seminvariants

/fr«>(f>0). For B3 and O3 contain only Fn-l\ 7("-2), and Jn~\ whose

second derivatives expressed in terms of seminvariants are respectively

2- J> x> 27("~3: -)-\-I<-a~s' '• ^.

It is not difficult to verify the extended form of equation (14),

=

Moreover, by induction, it is easily shown that

Dmea,p = o, DreatP =

Consequently (18) becomes

(19) d m ™ e g ' g ) = - $'(2a + 5)8+l)I>wH

* Wilczynski, loc. cit., p. 112.
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Therefore, the expressions

(20) Ba, A , = O3l, Dvv. Ott) p-pUa, p D w 0,, i

(a = 3, 4, ..., M; 0 = 1, 2, ..., a),

Are relative invariants of weights 2a+ 5/8+12. Of course O3l i, i vanishc s
identically. Moreover, since

Dvu (Dl
vw Oa, p) = 0, Dv (ZC««, p) = 0,

we have 6 ^ " ^ " ' ^ l } = - 0' (2« + 5/8+18)£>,„• fc)a, ,, x - 5/fy"Ba, ft t ,

whence it follows that

is an invariant of weight 2a+5/8 + 24. A continuation of this process
shows that

(a = 3, 4, ...,•»; /8 = 1, 2, . . . , « ; y = 1,2, . . . ,£),

are invariants of weight 2a+5/3+12y, respectively. If only the semin-
variants (6) are to be included, y must be limited, to the values 1, 2, 3.

Again, <HA^50>a) =

which shows that

%, s = 2H2.Dr,r 5o. i—50o So, 2 >

are relative invariants.
If the invariants

(21) 0 a , So, 2J 0a , 3» Sfi' 7̂> $0, 3> So, 4j "a, 3. y

(a = 2,8,4, . . . ,n ; /8 = 1, 2, ..., a; y = 1, 2, 8; y < 0)

are arranged in this order and in order of ascending values of a, /3, y,
they are seen to be independent since each contains a seminvariant 7(r<0

not in those which precede.
In each invariant the weight is twice the first subscript plus five times

the second, if it occurs, plus twelve times the third, if it occurs.
The system of partial differential equations which the invariants
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depending on the seminvariants (6) must satisfy contains five independent
equations and 2« 2 +l variables, and has, therefore, 2n2—4 solutions.
Thus there are 2?i2—3 such relative invariants. The set (21) contains
the required number of independent relative invariants.

The complete system of seminvariants involves, in addition to the
seminvariants (6), the successive derivatives of n2 of the seminvariants
Prst\ say those for which t = 1, 2. The first derivative thus introduces
n2 new seminvariants, and the system of partial differential equations for
the invariants has one more equation than before. Thus there are n2—1
new relative invariants.

To obtain these let us notice that, from two relative invariants OH, Br

of weights ix and v, respectively, we can obtain a relative invariant

the so called Jacobian* of 9^ and 9V. Thus the combination by the
Jacobian process of some invariant, say 92, with the n2— 1 invariants
%, %, So,3, %,4, &a,fi,it ©«,/J,2 gives ?i2—1 new relative invariants in-
volving first derivatives of J(rsl) and I(rs2). Moreover they must be inde-
pendent of each other and of the invariants (21). For, inasmuch as these
new invariants are merely combinations of the invariants (21) and their
derivatives, a relation involving them would imply a relation between the
invariants (21).

The n2—1 invariants involving the next higher derivatives of
2<''8t> (t = 1, 2) can be obtained by combining 92 by the Jacobian pro-
csss with the n2—1 just obtained. A continuation of this process gives
the relative invariants involving derivatives to as high an order as
desired.

We thus have proved that:

The invariants (21) and those obtained from them by the Jacobian
process form a system of invariants, complete in the sense that all in-
variants can be expressed in terms of them.

2. Semi-Covariants.

It is not necessary to seek semi-covariants which involve higher
derivatives of ?/» than the first, for such higher derivatives may be
removed by means of equation (1). Since seminvariants are also
semi-covariants, the systems of partial differential equations which
semi-covariants must satisfy are the same as the systems which the

Wilczynski, loc. dt., p. 112.
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seminvariants must satisfy, with the addition of the terms which arise
from the-infinitesimal transformation of yt and y\. Thus to the system*
which determines the seminvariants involving pik, pik, p"k, quc, q\k is added
the 2>n variables iji and y\ but no new equations. However, the one rela-
tion between those equations ceases to hold, so that there are only 2?̂ —1
more solutions, that is, there are 2?i—1 absolute semi-covariants, or In
relative semi-covariants, which are not seminvariants. Moreover, the
systems which determine the semi-covariants involving higher derivatives
of pik and qik show that there are no more independent semi-covariants.
We proceed now to find 2w independent semi-covariants.

The transformation (2) may be made infinitesimal by putting

= l+</>idx) St, aik (x) = (pik(x) St = 1, 2, . . . , n),

where St is an infinitesimal and the fa's are arbitrary functions of x.
The infinitesimal transformations of iji, pik, uuc, vik are then found by
direct substitution to be

(*, k= 1, 2, ..., n).
VU>ik y
St /=:1

Svu __ v
St ~ j=i

The expressions uu- and vik are therefore cogredient.

The quantities r\x> = 2 w ,̂yj (* = 1, 2 n)

are cogredient with yt. For

-=7- = 2 MV 2 (—<l>j\y\)+yj 2 (^AJWU—^.AWAJ)
Ot j = l L A = l A = l J

/i. n

. >f '•

* StoufEer, loc. cit., pp. 221, 222.
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It follows that each of the n—2 sets of quantities

r('-
)) _ y „.,.(!)

(3) V (?)

7=1

,.(•'"-)

. /= '

are also cogredient with iji. Therefore the determinant

= !h

;.(2)
>*•

[Nov. 1,

( i = 1, 2, ..., n)

is. a semi-covariant.
Again, since it* and vu- are cogredient, the quantities

.9,= I vuyj {1= 1,2, .. . ,n)

are cogredient with i/,-. Therefore the n— 1 determinants

n 7)7?
rr yi O Jt . . TO 1 \

are relative semi-covariants.
In order to prove that B and Si are independent of each other and of

the seminvariants, we need only show that the functional determinant

(22)

does not vanish identically. If we put ?<,/. = 0 (* ^= /c), the highest
power of unn in R and in all Si except Sn-\ occurs in each semi-covariant
in the form n'ji^y,,, multiplied by the corresponding semi-covariant for
the case of n—1 variables in equations (1). Moreover, ?/"~1 does not occur
in 5>,,_i. Hence in the functional determinant above the highest power
of unn occurs in the form (w^1//,,)'1"1, multiplied by the partial deri-
vative of »S'(,_i with respect to //„, and by the functional determinant
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corresponding to (22), with uit = 0 (i =fc k), in the case of n—\ variables
in (1). If the latter determinant is different from zero, (22) cannot
vanish identically. But (22), with uik = 0 (i zfc k), does not vanish
identically for n = 2, as is easily verified, and it follows by induction
that (22) does not vanish identically.

\i

Again the quanti t ies t, = JJ\-\- 2 pijtjj {i = 1, 2, . . . , n)
j — '

are cogredient with iji. For

fit-
It =~

PU 2 (-0,A^) + ?/j 2 (txjPiK — tiKPxji + itjtij

" r » " ~i
j=l L K=[ J

Hence the n determinants

are semi-covariants.
To prove that TH and T, are independent of each other and of B, S;

and the seminvariants it is only necessary to show that the determinant

f ' ( ,yi> y ' i , y'h • • • » y ' J

does not vanish identically. If we put w^ = 0 (i ^= k), this determinant
becomes the product of (y\y.zyi...y-,T~* and the reciprocal of the
Yanderrnonde determinant

1 1 1 ... 1

Un U.™ % 3 . . . U.ni,

-.'2 W33
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It does not vanish identically, therefore, and the semi-covariants thus far
found are independent.

We thus have just the required 2n independent relative semi-
covariants and need seek no further.

3. The Covariants.

The covariants are those functions of the semi-covariants (including
serninvariants) which are unchanged in value after (1) is transformed hy
(3). Since there are just 2;&—1 absolute semi-covariants, there can be
only 2?i—1 more absolute covariants than absolute invariants, and Zn
more relative covariants than relative invariants.

If the transformation (3) is assumed to be in the form (9), equations
<11) show that the infinitesimal transformations of ?f\ /f\ ... are

st
( * = 1, 2, ..., w);

6Vf>

whence , by induct ion,

~oT
(i = 1, 2, ..., n; 1= 1, 2, ..., w —1),

where we have put rf0) = ?/i. Also, from (11),

(24) ^ = - 3^-20'^+^W^,- (* = l, 2, ..., n).

Finally, from (10), and the fact that

(25) f = -*•*'•
we have

(26) jf = -<t>'ti+W>yi (- = ^ 2 nh

The results given by equations (23), (24), (25), and (26) make it
possible to calculate the infinitesimal transformations of the eovariants
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easily. Thus

= — n{n—l)<f>'R,

and R is therefore a relative covariant. Again,

2J {—3<pSk—2id>rk-\-^d>wyk)^-^ (i = 1, 2, ...,n— 1 ) ;
J k = l O S A

whence

( i = 2, 3, ..., n - 1 ) ,
where S» = 0.

Therefore Sn-i is a relative covariant. Also

and — = — fn(?i— D — 2v,

(i = 1, 2, ..., n—1),
where Tn = 0.

Thus Tn-i is another relative covariant.
In forming the relative covariants we shall need before us the infini-

tesimal transformation of J(r) given by equation (12), viz.

St

We can now write down the following series of relative covariants :

i
'ft

T1
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whence, by induction,

. (W_o) iw! ^

(a = 1, 2,
Likewise

(a = 1, 2, .... n -1 ) .

2 ( - iy + 1 O'4-D! (n—j)\Also x 3 1 + ( y
«— 1 it •

j=i w.

If these 2w relative covariants are arranged in the order

they are seen to be independent, since each contains a semi-covariant not
in those which precede. We therefore have all the independent co-
variants.


