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THE RELATION BETWEEN THE CONVERGENCE OF

SERIES AND OF INTEGRALS

By T. J. I'A. BROMWICH.

[Bead and Eeceived April 30th, 1908.]

IT has long been known that, when f(x) is a positive function which
CO

steadily decreases as x tends to infinity, the series 2/(w) and the integral

I f(x)dx converge or diverge together: and in case of divergence, the
difference f

f(x)dx-I.f(n)

tends to a definite limit as v tends to infinity.*
But, when the series contains terms of both signs (although steadily

decreasing in numerical value), it is not easy to make a corresponding
statement with reference to the relation between the convergence of the
series and of the integral.t

It is known, of course, that, when f(x) decreases steadily to zero as
a limit, the two series and the two integrals

co r°° oo r<°

2/(w) sin net, I f(x) sin ax dx, 2 /(?i) cos na, \f(x)cosaxdx

are all convergent. 1 And these results can be easily extended to cases
in which the periodic factors are of the forms

sin ax P (sin2 ax), cos ax P (sin2 ax),

where P is a polynomial. But, if the polynomial P is replaced by

* The main part of the theorem goes back to Maclaurin : for a proof of the latter part,
see my Infinite Series, Art. 11. When the monotonic condition is removed from f(x), the
theorem is no longer true ; for examples, see p. 423 of my book.

f Of course, in a large number of interesting cases, the terms decrease fast enough to
ensure absolute convergence. This case is covered, from the practical point of view, by
Maclaurin's rule, and we shall suppose that absolute convergence is excluded from the cases
discussed here.

% See, for example, Infinite Series, Arts. 19, 20, 169.
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a general continuous function, the cosine-series is known to diverge for
certain values of a, although the integral is always convergent; however,
with the same values of a the sine-series is convergent.*

If the periodic factor in. the series is of the form

sin <j>ix) or cos 0(a;),

where <f>(x) tends to infinity more rapidly than x, it is practically certain
that the convergence of the integral gives no information with regard
to the nature of the series.

Thus, for instance, the integrals

I f{x) sin (ax^dx, \ f(x) coa(axp)dx,

where p is positive, will converge if f(x) steadily decreases to any finite
limit (not necessarily zero) t : but, on the other hand, the two series

2 / (n) sin (a?ip), 2 fin) cos {anv)

have only been considered for rational values of a/ir and integral values
of p ; they are then known to diverge [even if f(x) tends to zero] unless
a certain, condition is satisfied; and this condition is certainly broken
even in the simplest case (when p is 2) except for special values of a. I

The object of the following note is to prove that [with certain re-

strictions on the functions, stated in (a)-(8) on p. 829], when <f>{x) tends

steadily to infinity, but MORE SLOWLY THAN X, the behaviour of the integrals

f{x) sin <pix)dx, I fix) cos (j>ix)dx

entirely settles the character of the series
CO OD

2 fin) sin <p (n), 2 fin) cos 0 in).

This theorem is then applied, in § 2, to extend (and simplify the proofs
of) certain, known theorems, the simplest of which is that if

" 1
Av+iBv = 2 -T+Z (a real),

then. Ap-\-iBp—i/avat tends to a definite limit, so that both Av and Bv have
a range of oscillation 2/a as v tends to infinity.

• See Bromwich and Hardy, Quarterly Journal, Vol. xxxix., May, 1908, pp. 232, 286,
240, and also below, p. 338.

| See my Infinite Series, Art. 169 and Ex. 8, p. 468.
X See below, § 3, p. 338 ; and Genocchi, Atti di Torino, t. x., 1875, p. 991.
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1. Proof of the Theorem.

Let us write F(x) =• f(x) sin <p(x), where we suppose that

(a) f{x) tends steadily to zero * \

(/3) <p(x) tends steadily to infinity > as £-»oo.

(y) <p'(%) tends steadily to zero )

From, these conditions it follows that

(1) /'(*)< 0, *f(a:)>0.

F(x)dx—F(n)>
n

we have the equations

(2) Xn=\ + {F(x) -F(n) }dx = [ {F(n+t)-F(n) \ dt,

(3) F{n+$—F{n) = [ F'(n+v)dv.

But F' ( « ) = / ' (a?) sin <j>(x) +/(x) <pr (x) cos <j>(x);

and so \F'(n+v)\ < \f'(n+v)\ + \f(n+v)\.\<J>'(n+v)\.

Now, from conditions (a), (ft), (y) and from the inequalities (1), we see that

and |/(n+t>) |. | </>'(n+v) \ < /(n) 0'(»).

It follows that |.F'(n-H>)| < / (n ) <p'(n)-f (n+v).

Thus, making use of the last inequality in the equation (3), we find that

(3') | F(n+t)-F(n) | < tf(n) <p'

provided that t belongs to the interval (0, 1). Hence, combining (8') and
(2), we see that

(4) | Xn\ < f(n) </>>(n) + / ( n ) - / ( n + 1 ) .

We now introduce the condition that

r
(8) the integral \ f(x) <f>'(x)dx is convergent.

• As remarked above (foot-note, p. 327), we suppose absolute convergence excluded, so

that j/(a;)da; is divergent. When this integral is convergent, the discussion given here is

quite superfluous.
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Consequently, by Maclaurin's theorem, quoted in. the introduction to this
paper (p. 327), we see that the series

(5)

is also convergent because fix) <p' (x) tends steadily to zero, in virtue of
conditions (a), (y). Further,

and this tends to the limit/(a) as v tends to infinity; thus the series

(6)

is also convergent.
It follows from. (4), (5), and (6) that the series S|Zft| converges : and

consequently the series 2Xn is absolutely convergent. But

v rv „ rv+l

2 Xn = F{x) dx—*L Fin) -f Fix) dx
* JfL * Jv

I rv+l rv+l

and F(x)dx <\ f{x)dx<f{v),
I Jv Jv

rv+l
so that lim Fix)dx = 0.

Thus

(7) lim j f" Fix)dx—ZFin)\ =

and accordingly, since the series on the right has been proved to converge,
the limit on the left is also definite.

It follows at once that, if fix) and <pix) are subject to the conditions
(a), (/3), (y), and (<S), the series

2 fin) sin

and the integral \ fix) sin cf>ix)dx

converge, diverge, or oscillate together.
Further, the equation (7) shews that, in case both oscillate, the

amplitude of oscillation is the same for the series as for the integral;
and, in case of divergence, the limit on the left of (7) is still finite.

Under the same conditions (a)-(<5), the same results apply to the series

cos
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r
and the integral \ f(x) cos <f> (x) dx ;

and, consequently, the same conclusions apply also to the series

and the integrals \ f(x) exp { +i<f>(x)\ dx.

We note as a special case that the conditions (a)-(<S) are certainly
satisfied by the function

\M(x)\- (K = 0 + t y , 0 > 0),

provided that M(x) tends steadily to infinity in such a way that W{x)jM{x)
tends steadily to zero. For we have then to take

/Oc)e***« = \M(x)}-*, or /(a?) = {M(x)\-^ and </>{x) = | y | log {M(x)\,

from which it is evident that the first three conditions are satisfied; as to
the fourth condition, we must examine the integral

which is clearly convergent, so that all the four conditions are satisfied.
Again, if the two functions

F(x) =f(x) <***•<*>, G (x) = g{x) e***^

satisfy the prescribed conditions, their product F(x) G(x) will also satisfy
the conditions, provided that*

(J31) <j>{x)—\Js(x) tends steadily to infinity,

(y') ^>'(x)—yfr'(x) tends steadily to zero.

For then the product f{x) g (x) will obviously tend steadily to zero, and
each of the integrals

J°7(z) 9 (x) $ (x) dx, J" /(a;) g (x) yf/ (a?) dx

is convergent, because Hm/(aO = 0, lim^(a;) = 0.

* These additional conditions are superfluous when the signs in the two exponential
functions are the same.
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2. Examination of certain Special Series.

1. Consider first the simple case*

Here we can take M (x) = x, /3 = 1, in the result at the end of § 1; then
M(x) tends steadily to infinity, while M'{x)fM(x) tends steadily to zero.

Consequently, the behaviour of the series is determined by that of

the integral P J*L - i . fi — L
)ixl+ai~ ai \ vai\

Now, as J/->QO, this integral oscillates, the amplitude (both for real and
for imaginary parts) being 2/a; and so the same is true of the series.
The theorem of § 1 can also be applied to cases such as

M(x) = log x, log (log x), ...,

but the range of oscillation for the corresponding integrals and series is
infinite.

2. Secondly, let us consider the type of series which is obtained by
introducing a complex index in the general logarithmic series: that is,
we consider the series

1

w h e r e t ZfciC = | log (Zfc_i x) |, lx x = log x .

Here we can take <f>(x) = alk+ix, f(x) = </>'(x)ja

or I fix) = \l\x.lix.ltx ... lkx\.

Then we can find a constant K, so that

f(x)<{>'(x)<Klx\

and so condition (<5) of § 1 is satisfied and the other conditions are

* This series can be discussed by Weierstrass's rule depending on the quotient of two
consecutive terms in the series (see my Infinite Series, p. 204). The particular case of the
rule which is needed here is, however, rather troublesome to establish ; and it would be almost
impossible to use a similar method in the other cases given below.

| Of course, after a certain stage, the logarithms are all positive, and the sign of the
modulus may then be omitted ; it is often simpler to suppose that the earlier terms are left
out from the series so as to avoid this complication.

X Because, using accents for differential coefficients, we have

7 ' _ ** 7 ' Zjfe_ 1 , ' 1
tjt + i = 7- 1 Ik = , — , . . . , h = — .
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evidently satisfied. Thus we have to consider the integral

which again oscillates (as v-*oo) with an amplitude 2/a; and so the
series has the same range of oscillation.

8. It follows without further proof that, if \js(x) is any function tend-
ing steadily to zero (as x-+ao) the series

are both convergent, in virtue of Dirichlet's test of convergence* and the
results obtained in (1), (2) above.

Thus, as a simple example, we may note that the series

2 1

is convergent if /3 is positive.
We can generalise these results still further by supposing that \[s(x)

is complex, but tends to zero as x tends to infinity in such a way that

r f' (x) I dx

is convergent. For then we have the inequality t

<HV (X,:

where F = [ \\f,'(x)\dx,

and H is the upper limit to the integral
rxir F(x)dx

* See my Infinite Series, Art. 20.
f See Proc. London Math. Soc, Vol. 6, 1907, p. 65 ; it is perhaps worth while to remark

that there the integral is proved to be less than HV, where

- f <J/(x)dx;But

»ndso |«K2*)| < ( |

Thus V < (" | f (x) | dx,
Jx,

and so the value of V given in the text is larger than V.
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Thus, since H < 2/a [see (1), (2) above], we can choose Z2 so that

< e (if Xs > Xt),

because, by proper choice of Xlt the integral Fcan be made as small as
we please. Consequently the integral

j F(x)\fr(x)dx

is convergent: and so the same is true of the series

provided that the conditions of § 1 are satisfied by the function F(x) yfs(x).
As an illustration of the last result, we may take.

F(x) = ar<1+ai>, yf,(p) = (loga?)- (K = /3+iy, /3 > 0).

For then \

and so fl^'feOlrt f Uldx= f
which converges when /3 is positive, because the indefinite integral is

Further, as was pointed out in (1) above, the conditions of § 1 are
satisfied by the functions F(x), \fs(x); and so the conditions are satisfied
also by their product, since the function in the exponential is here

a logz-f-y log (log x).

Thus we see that the series

is convergent; and the same method can be easily extended to more
complicated cases. In this way it can be proved that the series *

is convergent, whatever the indices «-2>
 K3> •••> Kk m a v ^ e (rea^ o r complex).

* These examples were suggested to me by Mr. Hardy.



1908.] RELATION BETWEEN THE CONVERGENCE OF SERIES AND OF INTEGRALS. 385

4. As a last example, we shall find an asymptotic formula for the series

S <
l "<>

which has been discussed in the special case K — 1, by Mertens.*

Here we have to put

f(x) = S2£^!f t(x) = a logz-y log (log a:),
xx

and so we find f(x) = - ^ ^ ( l -x2 V logo;/

r re V logav

Thus the first three conditions of § 1 will be satisfied, as soon as log x is
greater than both ft and y/a ; further, the integral (S) of § 1 will converge,
provided that r90 n .-

f dog ^ dx

J « 2

is convergent; but this reduces to the known integral
(if £ =

and so all the conditions of § 1 are satisfied here.
Thus the asymptotic formulae for the series

is given by the asymptotic formula for the integral

Thus, on integrating by parts, we get the formula

r Quag.* = - l I ^ + « " ? r ' +«fr-D (lof %"+
Ji x1+at i/aiL a* (a*)2 (a*)3

J tf

*'

provided that ft—m is positive.

* Oottingen Nachrichten, 1887, p. 266 ; the method adopted by Mortens is to differentiate
the first series of p. 332 with respect to o.
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When )8 is an integer, the formula just obtained is only true if
m = j8—1; to extend it to m = /3, we divide the remainder integral into
two, from 0 to 1 and from 1 to log v. The second of these integrals may
be again integrated by parts, and so we obtain the term given by m = /3
together with a constant; the new remainder integral is then proportional
fco nog,

which is easily seen to converge to a definite value as v tends to infinity.*
Consequently, if we write m = ft in the expression in square brackets at
the foot of p. 335, the difference between this formula and the sum of the
series will tend to a definite limit as v tends to infinity.

When /3 is not an integer, we take m as the integer next lesB than /3,
and the remainder integral can then be proved to converge (as v -» oo) by
a method similar to that used in the last case.

Summing up, we have now the result that

where m is the integral part of 8. Thus in particular we have Mertens's
result „ , -, , i -IN

y lQg" ^ 1 log" I 1
f ?i1+ai vai \ ai ^ (ai)2)'

These asymptotic equations imply that the difference between the ex-
pressions on the two sides of the symbol ~ has a finite limit as v tends
to infinity.

It would be easy to multiply examples of this type by introducing
more logarithms, but enough has been said to indicate the scope of the
method.

8. A Different Test for Series which contain Periodic Factors.

Suppose that we wish to discuss the series

In fact, the real part of the integral can be written in the form

Const. • p " |^o--|-)cOS(a{—ylogO [ -^— (aC

to which we can apply Dirichlet's test for convergence (Infinite Series, Art. 169). Similarly
the imaginary part of the integral can be proved to converge.
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where f(x) has the same properties as in § 1, but v(n) has the period w,
so that / i \ / \

v(n-j-w) = v{n).
Then the necessary and sufficient condition for convergence is that

2 v{n) = 0.

b

For, suppose that Q = 2 v (n),
I

then «((») = Q-»(l)-»(2)- . . . -»(f t )- l ) .

Then, since v(r<a-\-s) = v(s), we find that

£/(n) t>(w) = ft 2 / (r«)+ "f »(s) S,
1 r=l s=l

where S = / ( « ) - /

Now, in virtue of the decreasing character of /(x), the sum S has a
definite limit 0(s) less than/(s), as X tends to infinity, and so

lim "i v(s)S = "i v(s)<f>(s).
A—>co s = l s-l

But 2 f(rw)
lr = l

and so this sum tends to infinity with X, since I f(x) dx is divergent.
A<i>

It follows that the sum 2/(w) v(n)
1

also tends to infinity with X unless O is zero ; in the latter case, the sum
has the finite limit w_i

2 v(s)<p(s).

Now, if 0 < fi <C co, we have

— . p-

2 f(n)v(n) <

where F denotes the largest of the values | v(1) | , | v (2 ) | , . . . , | v(w) | .
Consequently A(O+^

lim 2 f(n)v(n) = 0,
\—>(» Au + l

and so the behaviour of the general series

SEE. 2. VOL. 6. NO. 996.
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Au .

is the same as that of lim 2f(n)v(n).
A—•» 1

Thus the series diverges unless ft is zero, and converges if ft is zero.
As a simple example, we can infer the convergence of the series

(n) sin nh 0 (sina nh),

where h = pTr/q (p, q being positive integers), and 0 is any continuous
function ; because here w = 2q if p is odd, or co = q if p is even, and in
either case ft = 0.

But the series 2/(n) cos nh 0 (sin2 nh)

can be made to diverge by adjustment of 0 if p is even and q is odd.*

Similarly the series 2 ( - l ) ^ / ( n ) ,

where [£] denotes the integral part of £ will diverge if h = 2?/?, where
p is even and q is odd.t because again w = q and so ft = 1.

The applications to series of the type

2/(?i) sin (nsh), 2/(w) cos (nsh),

where s is a positive integer, are equally obvious. Thus, for example, the
S6116S / O \ / 0 \

If{n) sin In2 —J, 2/(w) cos ^ 2 — j
can converge only if

21 sin (na ^ ) = 0, *2 cos (n" ^ ) = 0,
o \ qi o V q I

respectively.
Thus, when q is of the form 4&-}-l the sine-series converges, but the

cosine-series diverges; but if q is of the form 4&+8, the cosine-series
converges, while the sine-series is divergent; if q is of the form 4&, both
series diverge, but if q is of the form 4&+2, both converge. These results
follow from the values found by Gauss for 2 exp (27rm2/?) iQ h*8 investi-
gations on quadratic residues.!

* For instance, if we take p = 2, g = 3, the value of fl is easily seen to be
0(0)-0(1),

which, of course, may have any value.
t Bromwich and Hardy, I.e., p. 240.
X Werke, Bd. n., p. 9 (§19).


