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Abstract. Attribute-based encryption (ABE) is an extension of tradi-
tional public key encryption in which the encryption and decryption
phases are based on user’s attributes. More precisely, we focus on cipher-
text-policy ABE (CP-ABE) where the secret-key is associated to a set of
attributes and the ciphertext is generated with an access policy. It then
becomes feasible to decrypt a ciphertext only if one’s attributes satisfy
the used access policy. CP-ABE scheme with constant-size ciphertext sup-
porting fine-grained access control has been investigated at AsiaCrypt’15
and then at TCC’16. The former makes use of the conversion technique
between ABE and spatial encryption, and the later studies the pair en-
codings framework.
In this paper, we give a new approach to construct such kind of CP-
ABE scheme. More precisely, we propose private CP-ABE schemes with
constant-size ciphertext, supporting CNF (Conjunctive Normal Form)
access policy, with the simple restriction that each attribute can only
appear kmax times in the access formula. Our two constructions are based
on the BGW scheme at Crypto’05. The first scheme is basic selective
secure (in the standard model) while our second one reaches the selective
CCA security (in the random oracle model).
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1 Introduction

We are currently starting a second period of development of cryptography. This
“era of modern cryptography” sees the creation and the improvement of many
advanced cryptographic schemes, permitting new and sometimes very complex
properties. As an example, in many modern applications, one needs to have
stronger and flexible capabilities to encrypt data, such that encrypting a mes-
sage according to a specific policy. In this case, only receivers with attributes
satisfying this specific policy can decrypt the encrypted message.

Attribute-Base Encryption. Addressing this problem, Sahai and Waters [29]
introduced the concept of attribute-based encryption (ABE) in which the encryp-
tion and decryption can be based on the user’s attributes. It exists two variants



of ABE: ciphertext-policy attribute-based encryption (CP-ABE) and key-policy
attribute-based encryption (KP-ABE). In CP-ABE scheme, the secret key is as-
sociated with a set of attributes and the ciphertext is associated with an access
policy (structure) over a universe of attributes: a user can then decrypt a given
ciphertext if the set of attributes related to his/her secret key satisfies the ac-
cess policy underlying the ciphertext. In contrast, in KP-ABE scheme, the access
policy is for the secret key and the set of attributes is for the ciphertext. In
this paper, we focus on CP-ABE which can for example be used in Pay-TV sys-
tems, as shown in [20], and for which the size of the ciphertext is essential. We
more precisely focus on private CP-ABE where the encryption phase is private,
meaning that it necessitates the use of some secret keys (in contrast to public
CP-ABE where anybody can encrypt a message). Again, this case is for example
very suitable in the Pay-TV context where only the content broadcaster needs
to encrypt something.

1.1 Related Work

Attribute-Base Encryption. Since their introduction in 2005, one can find
a lot of papers proposing ABE schemes [29, 16, 26, 13, 20, 18, 6, 25, 28, 9, 32]. The
authors in [6, 32] introduced KP-ABE schemes with constant-size ciphertext. The
works in [16] extended the Sahai and Waters’ work [29] to propose the first
schemes supporting finer-grained access control, specified by a Boolean formula.
Non-monotonic access structures permitting to handle the negation of attributes
has been considered in subsequent works [26, 6, 32]. Thanks to multilinear maps
and cryptographic obfuscations, ABE scheme supporting general access structure
has been constructed [14], but as shown recently [12, 19, 24], their real feasibility
is questionable. Adaptive security for ABE schemes was considered in [21, 9, 4,
31] using composite order group, and then in [25, 11] using prime order groups.
Similarly, dynamic ABE scheme (unbounded attributes) was first investigated
in [22] using composite order groups and then in [28] using prime order groups.

Among those constructions, five of them propose CP-ABE schemes with con-
stant size ciphertext supporting limited access structure. In [13, 10], the access
structure is constructed by AND-gates on multi-valued attributes. In [18, 15, 9],
the access policy is threshold, meaning that there is no distinction among at-
tributes in the access policy: anyone who possesses enough attributes (equal or
bigger than a threshold chosen by the sender) will be able to decrypt.

To the best of our knowledge, there exists only two interesting approaches to
construct CP-ABE schemes with constant size ciphertext supporting fine-grained
access control. The first one [5] makes use of the conversion technique between
ABE and spatial encryption [17]. More precisely, starting from a KP-ABE scheme
with constant-size ciphertext, such that [6, 32], one first converts it to a spatial
encryption scheme with constant-size ciphertext. Then, from this spatial encryp-
tion scheme, one continues to convert it to a CP-ABE schemes with constant size
ciphertext. The second approach [3] comes from the pair encodings technique [4,
31], in which it is proposed a new relaxed but still information theoretic security



property that is sufficient to achieve a CP-ABE schemes with constant size ci-
phertext. The weakness of these both approaches is that the key-size is relatively
large.

1.2 Our Contribution

In this work, we propose a new approach to construct CP-ABE schemes with
constant size ciphertext supporting CNF access policy. For that purpose, we
make use of the techniques given in the Junod-Karlov ABBE scheme [20] to
achieve CNF access policy and to fight against attribute collusion and the ones
from the Multi-Channel Broadcast Encryption (MCBE) scheme given in [27] in
order to achieve the constant size of the ciphertext.

More precisely, we present two private CP-ABE schemes with the following
properties.

– Both schemes achieve the constant size ciphertext. The key size is linear
in the maximal number of attributes in the system. Regarding the access
policy, both schemes support restricted CNF access policy in the sense that
they introduce a parameter kmax in which each attribute can only appear
kmax times in the access formula used during the encryption phase. The key
size is larger than a factor of kmax in exchange.

– Both of our schemes are naturally based on the use of an asymmetric bilinear
pairing, contrary to previous work based on the symmetric case (even if a
generic construction [1] can permit to transform them into the asymmetric
case).

– Our first scheme achieves basic selective security under a GDDHE assump-
tion [7], in the standard model.

– Our second scheme improves the first one regarding the security since it
achieves selective CCA security under again a similar GDDHE assumption.
However, we need to use the random oracle in the security proof.

When comparing to the two interesting existing approaches [5, 3], ours leads
to a scheme with better key size. However, the schemes in [5, 3] are in public
setting and are large universe CP-ABE schemes. We give in Table 1 a compari-
son among our schemes and some other existing CP-ABE schemes. We moreover
argue that our approach to construct constant-size ciphertext ABE is new and
can lead to better schemes in the future. We also notice that using the tech-
nique given in [20], we are able to turn our scheme into the first attribute-based
broadcast encryption [23] (ABBE) with a constant size ciphertext.

1.3 Organization of the Paper

The next section introduces security definitions and the used assumptions. In
Section 3, we introduce our first scheme with basic selective security, while Sec-
tion 4 describes our second scheme with selective CCA security. Finally, in Sec-
tion 5 we give the conclusion.



Access Policy Ciphertext Dec key Enc key Assumption

[13] AND-gates O(1) O(1) O(n2) DBDH

[18] Threshold O(1) O(n) O(n) GDDHE

[20] CNF O(m) O(n) O(n) GDDHE

[5] LSSS O(1) O(k4.`4) O(k2.`2) Parametrized

[3] LSSS O(1) O(n.`2) O(n.`) Parametrized

Our 1st Restricted CNF O(1) O(n.kmax) O(n.kmax) GDDHE

Our 2nd Restricted CNF O(1) O(n.kmax) O(1) GDDHE+ROM

Table 1. Comparison among our schemes and some previous schemes. n denotes the
number of attributes in the system, m denotes the number of clauses in the CNF
access policy, k denotes the maximal size of an attribute set associated with a secret
key, ` denotes the maximal number of rows of a span program matrix associated with
a ciphertext (fixed at the setup, thus should be n). Restricted CNF means that each
attribute only can appear kmax times in an access formula. We note that [5] supports
large universe and obtains adaptive security, [3] supports large universe and obtains
selective security.

2 Preliminaries

We give in this section several preliminaries regarding security model of private
CP-ABE schemes and security assumptions we will need for our construction.

2.1 Private Ciphertext-Policy Attribute-Based Encryption

Formally, we define a private CP-ABE scheme which consists of three probabilis-
tic algorithms as follows.

Setup(1λ, ϑ,B(ui)1≤i≤ϑ) : it takes as input the security parameter λ, the total
number of users in the system ϑ, and the attribute repartition B(ui)1≤i≤ϑ
for each user ui (B(ui) is the attribute set of user ui), generates the global
parameters param of the system, an encryption key EK, and ϑ decryption keys
dui . The encryption key EK is kept private from users. The set K corresponds
to the key space for session keys.

Encrypt(A,EK, param) : it takes as input an access policy A and the encryption
key EK. It outputs the session keys K ∈ K and the header Hdr which includes
the access policy A.

Decrypt(Hdr, dui ,B(ui), param) : it takes as input the header Hdr, a decryption
key dui and the attribute set B(ui) of user ui, together with the parame-
ters param. It outputs the session keys K if and only if B(ui) satisfies A.
Otherwise, it outputs ⊥.

Security Model: In this paper, we consider the same security model as in [20]
which is called semantic security with full static collusions. In fact, a private
CP-ABE scheme is said to be secure in this model if given to an adversary (i) a
challenge header, (ii) all the decryption keys of revoked users and (iii) a access



to both encryption and decryption oracles, it is impossible for the adversary to
infer any information about the session key. Formally, we now define the security
model for a private CP-ABE scheme by the following probabilistic game between
an attacker A and a challenger C.
Both A and C are given a system consisting of n attributes A1, . . . , An.
A outputs target access policy A∗ as well as a repartition B(ui)1≤i≤ϑ which he

intends to attack.
Setup(1λ, ϑ,B(ui)1≤i≤ϑ) The challenger runs the Setup(1λ, ϑ,B(ui)1≤i≤ϑ) al-

gorithm, he gives to A the decryption keys dui where B(ui) does not satisfy
the target access policy A∗ and param. Decryption lists ΛD is set to empty
list.

Query phase 1. The adversary A adaptively asks queries.
1. Decryption query on the header Hdr with ui. The challenger answers

with Decrypt(Hdr, dui ,B(ui), param). The full header Hdr is appended
to the decryption list ΛD;

2. Encryption query for the access policy A. The challenger answers with
Encrypt(A,EK, param). Remark that he/she can ask encryption query
on target access policy A∗ since the encryption algorithm uses a fresh
random coin for each time of the encryption.

Challenge. The challenger runs Encrypt(A∗,EK, param) and gets (K∗,Hdr∗).

Next, the challenger picks a random b
$← {0, 1}. If b = 0, the challenger sets

K = K∗. Else, it picks a random K
$← K. It outputs (K,Hdr∗) to A. Note

that if b = 0, K is the real key, encapsulated in Hdr∗, and if b = 1, K is
random, independent of the header.

Query phase 2. The adversary A continues to adaptively ask queries as in the
first phase.

Guess. The adversary A eventually outputs its guess b′ ∈ {0, 1} for b.

We say the adversary wins the game if b′ = b, but only if Hdr∗ 6∈ ΛD. We then
denote the advantage of the adversary to win the game by

Advind(1λ, ϑ,B(ui)1≤i≤ϑ,A) = |2Pr [b = b′]− 1|.

Definition 1 (Basic Selective Security). A private CP-ABE scheme is said
to be basic selective security if the advantage of the adversary in the above secu-
rity game is negligible where the adversary cannot ask the encryption query and
the decryption query.

Definition 2 (Selective−CCA Security). A private CP-ABE scheme is said to
be selective−CCA security if the advantage of the adversary in the above security
game is negligible where the adversary can ask any types of queries.

2.2 Bilinear Maps, CDH and (P,Q, f) − GDDHE Assumptions

Let G, G̃ and GT denote three finite multiplicative abelian groups of large prime
order p > 2λ where λ is the security parameter. Let g be a generator of G and
g̃ be a generator of G̃. We assume that there exists an admissible asymmetric
bilinear map e : G× G̃→ GT , meaning that for all a, b ∈ Zp



1. e(ga, g̃b) = e(g, g̃)ab,

2. e(ga, g̃b) = 1 iff a = 0 or b = 0,

3. e(ga, g̃b) is efficiently computable.

In the sequel, the set (p,G, G̃,GT , e) is called a bilinear map group system.

Definition 3 (CDH Assumption). The (t, ε)−CDH assumption says that for
any t-time adversary A that is given (g, gt, h) ∈ G, its probability to output ht

is bounded by ε:

Succcdh(A) = Pr[A(g, gt, h) = ht] ≤ ε.

Let (p,G, G̃,GT , e) be a bilinear map group system and g ∈ G (resp. g̃ ∈ G̃)

be a generator of G (resp. G̃). We set gT = e(g, g̃) ∈ GT . Let s, n be positive in-
tegers and P,Q,R ∈ Fp[X1, . . . , Xn]s be three s-tuples of n-variate polynomials
over Fp. Thus, P , Q and R are just three lists containing s multivariate polyno-
mials each. We write P = (p1, p2, . . . , ps), Q = (q1, q2, . . . , qs) R = (r1, r2, . . . , rs)
and impose that p1 = q1 = r1 = 1. For any function h : Fp → Ω and
vector (x1, . . . , xn) ∈ Fnp , h(P (x1, . . . , xn)) stands for (h(p1(x1, . . . , xn)), . . . ,
h(ps(x1, . . . , xn))) ∈ Ωs. We use a similar notation for the s-tuples Q and R.
Let f ∈ Fp[X1, . . . , Xn]. It is said that f depends on (P,Q,R), which denotes
f ∈ 〈P,Q,R〉, when there exists a linear decomposition (with an efficient iso-

morphism between G and G̃)

f =
∑

1≤i,j≤s

ai,j ·pi ·qj+
∑

1≤i,j≤s

bi,j ·pi ·pj+
∑

1≤i≤s

ci ·ri, with ai,j , bi,j , ci ∈ Zp.

We moreover have bi,j = 0 when there is no efficiently computable homomor-

phism between G and G̃.

Let P,Q,R be as above and f ∈ Fp[X1, . . . , Xn]. The (P,Q,R, f)− GDDHE
problem is defined as follows.

Definition 4. ((P,Q,R, f)− GDDHE) [7].

Given H(x1, . . . , xn) = (gP (x1,...,xn), g̃Q(x1,...,xn), g
R(x1,...,xn)
T ) ∈ Gs× G̃s×GsT as

above and T ∈ GT decide whether T = g
f(x1,...,xn)
T .

The (P,Q,R, f)−GDDHE assumption says that it is hard to solve the (P,Q,R, f)−
GDDHE problem if f is independent of (P,Q,R). In this paper, we will prove
the security of our schemes under this assumption.

3 Our First Scheme

In this section, we introduce our first scheme that is secure in the standard
model, and achieves the basic selective security.



3.1 Intuition

Our construction is based on the two main techniques. First, we make use of the
techniques given in the Junod-Karlov ABBE scheme [20] to fight against attribute
collusion. We finally integrate the techniques from the MCBE scheme in [27] to
obtain a ciphertext with a constant size. Note that both ABBE scheme [20] and
MCBE scheme in [27] are constructed from BGW scheme [8].

More precisely, in [8], each element of the header has the form(
gr, (v ·

∏
j∈βk

gn+1−j)
r
)
.

In the Junod-Karlov scheme [20], the authors manage to transform many
instances of the BGW scheme [8] to an attribute-based encryption scheme, such
that one instance of the BGW scheme corresponds to one clause in the CNF
access policy. The resulting attribute-based encryption scheme then contains m
BGW instances where m is the maximal number of clauses in the CNF access
policy. However, this leads to a ciphertext with m+ 1 parts. More precisely, for
a CNF access policy A = β1 ∧ · · · ∧ βm, each component βk, k ∈ [m], is related
to a BGW header as (

grtk , (vr
∏
j∈βk

grn+1−j)
tk
)
.

In the MCBE scheme given in [27], the authors introduce a technique to multiply
many BGW instances in one single value in order to support the new property
of multi-channel for broadcast encryption. For this purpose, they introduce new
integers xj and provide a unique header given by

(
gr,

m∏
k=1

(v ·
∏
j∈βk

gn+1−j)
r+

∑
j∈βk

xj
)
.

Inspired by the technique given in [27], we manage to multiply the m instances
of the BGW schemes to achieve an ABE scheme with constant-size ciphertext.
Our scheme therefore inherits the properties of the MCBE scheme, as the private
property and the basic selective security.

3.2 Construction

We now give the details of our construction by describing each procedure.

Setup(1λ, ϑ,B(ui)1≤i≤ϑ) : the algorithm takes as input the security parameter
λ, the total number of users in the system ϑ, and the attribute repartition
B(ui)1≤i≤ϑ for each user ui, generates the global parameters param of the
system, the encryption key EK, and ϑ decryption keys dui , 1 ≤ i ≤ ϑ as
follows:
Let (p,G, G̃,GT , e) be a bilinear map group system and let n be the maxi-
mal number of attributes in the system. The set of all possible attributes is



{A1, . . . , An}. All these elements are considered to be known to each partic-
ipant.
The algorithm first picks random generators g ∈ G and g̃ ∈ G̃. It then
chooses a random scalar α ∈ Zp and computes for all i ∈ [1, 2n] \ {n + 1},
the values gi = gα

i

and g̃i = g̃α
i

. It also chooses at random r ∈ Zp and
computes R = gr and then, for all i ∈ [1, 2n] \ {n + 1}, hi = gri ∈ G. Next,
it picks random scalars β, γ ∈ Zp and sets B = gβn, v = gγ and V = vr. It
also picks additional random scalars x1, x2, . . . , xn ∈ Zp and sets Xi = Rxi

for all i ∈ [1, n]. The public parameters are then

param = (g, g̃, B,R, V, gn, g̃
r
1, h1, . . . , hn, hn+2, . . . , h2n, X1, . . . , Xn)

The encryption key is EK = param ∪ {x1, . . . , xn}.
To generate a decryption key du, let B(u) = (Ai1 , . . . , AiN ) be the set of
attributes of user u (among the set of all possible attributes). The algorithm

first picks a random scalar su ∈ Zp, and computes d̃u0 = g̃
r(β+su)
1 , then d̃ui =

g̃sui for all i ∈ [1, 2n] \ {n+ 1}, and finally d̃j = g̃γ·suj for all j ∈ {i1, · · · , iN}.
The private decryption key for u is

du = (d̃u0 , d̃u1 , . . . , d̃un , d̃un+2 , . . . , d̃u2n , d̃i1 , . . . , d̃iN ).

Encrypt(A,EK, param) : assuming that the access policy is expressed in CNF
A = β1 ∧ · · · ∧ βm. The encryption phase works as follows. It first picks a
random scalar t ∈ Zp and sets the session key as

K = e(B, g̃r1)
m.t+

∑m
k=1

∑
j∈βk

xj = e(gn+1, g̃)
r.β(m.t+

∑m
k=1

∑
j∈βk

xj).

It then computes the following values:

C1 = Rt, C2 =

m∏
k=1

(V ·
∏
j∈βk

hn+1−j)
t+

∑
j∈βk

xj , C3 = g
m.t+

∑m
k=1

∑
j∈βk

xj
n .

The header is finally set to Hdr = (A, C1, C2, C3), and the pair (Hdr,K) is
the output.

Decrypt(Hdr, du,B(u), param) : this algorithm first parses Hdr = (A, C1, C2, C3).
Then, it computes a partial session key Kk for each clause βk in A, k ∈ [1,m].
For that purpose, the user u chooses an attribute Ai ∈

(
βk∩B(u)

)
, retrieves

the corresponding private decryption key d̃i and first computes

Ti = e(C1 ·
∏
j∈βk

Xj , d̃i ·
∏
j∈βk
j 6=i

d̃un+1−j+i).

The partial session key Kk is then computed as

Kk =
e(C2, d̃ui)

Ti ·
∏`=m

`=1
` 6=k

e(C1 ·
∏
j∈β` Xj , d̃i ·

∏
j∈β` d̃un+1−j+i)

.



We then remark that
∏m
k=1Kk = e(gn+1, g̃)

(m.t+
∑m
k=1

∑
j∈βk

xj)r.su . It follows
that the session key can be computed as

K =
e(d̃u0

, C3)∏m
k=1Kk

.

For the correctness: we first focus on the partial session key Kk. We
use the relations d̃i = g̃γsu.α

i

, d̃ui = g̃sui , d̃un+1−j+i = g̃sun+1−j+i, and gn+1−j+i =

gα
i

n+1−j , g̃n+1−j+i = g̃α
i

n+1−j , g
αi

n+1−i = gn+1, g̃
αi

n+1−i = g̃n+1, and V = vr, hi = gri .
It follows that

Kk =
e(
∏`=m
`=1 (vr ·

∏
j∈β` g

r
n+1−j)

t+
∑
j∈β`

xj , g̃su.α
i

)

e(g
r(t+

∑
j∈βk

xj), g̃γsu.αi · (
∏

j∈βk
j 6=i

g̃sun+1−j)
αi)
·

· 1∏`=m
`=1
` 6=k

e(g
r(t+

∑
j∈β`

xj), g̃γsu.αi · (
∏
j∈β` g̃

su
n+1−j)

αi)

=
e((gγ ·

∏
j∈βk gn+1−j)

αi , g̃
t+

∑
j∈βk

xj )r.su

e(g
t+

∑
j∈βk

xj , (g̃γ ·
∏

j∈βk
j 6=i

g̃n+1−j)α
i)r.su

·

·
`=m∏
`=1
` 6=k

e((gγ ·
∏
j∈β` gn+1−j)

αi , g̃)
r.su.(t+

∑
j∈β`

xj)

e(g, (g̃γ ·
∏
j∈β` g̃n+1−j)α

i)
r.su.(t+

∑
j∈β`

xj )
.

= e(gα
i

n+1−i, g̃
t+

∑
j∈βk

xj )r.su = e(gn+1, g̃
t+

∑
j∈βk

xj )r.su

= e(gn+1, g̃)
(t+

∑
j∈βk

xj)r.su

Now focusing on the session key K, we have

e(d̃u0
, C3)∏m

k=1Kk
=

e(g̃
r(β+su)
1 , g

m.t+
∑m
k=1

∑
j∈βk

xj
n )

e(gn+1, g̃)
(m.t+

∑m
k=1

∑
j∈βk

xj)r.su

= e(gn+1, g̃)
r.β(m.t+

∑m
k=1

∑
j∈βk

xj),

which exactly corresponds to the key K generated at the encryption step.

Remark 1. In the first scheme, the encryption key EK contains EK = param ∪
{x1, . . . , xn} and thus cannot be public since with the knowledge of {x1, . . . , xn}
adversary can break the semantic security of the first scheme. However, from
the encryption key one cannot generate decryption keys for users. Like the first
scheme in [27], we thus can separate the role of group manager (who generates
the decryption keys) and broadcaster (who encrypts and broadcasts the content).

Remark 2. In the above construction, the attributes cannot be reused in the
access policy since each βk is a disjoint subset (following the technique in [27]). To



deal with this drawback, as in [30], we allow each attribute to have many copies
of itself. If we assume that kmax is the maximal number of times in which each
attribute can appear in the access formula, then each attribute will have kmax
copies of itself. For example, the attribute professor can be represented by kmax
different attributes professor1, . . . , professorkmax corresponding to kmax different
secret keys di1 , . . . , dikmax . A user possessing the attribute professor will receive
kmax corresponding secret keys di1 , . . . , dikmax . Therefore, the construction above
can support CNF access policy with the cost that the key size is a factor of kmax
larger.

Remark 3. The notion of attribute-based broadcast encryption (ABBE) has then
been introduced in [23] to address the problem of user revocation in an attribute-
based encryption scheme. More precisely, in such system, the broadcaster is
capable of revoking any receiver he wants, despite that these receivers can possess
sufficient attributes to satisfy the access policy.

In fact, following the work in [20], the construction above can easily be ex-
tended to support revocation. For that purpose, we consider the identity of each
user as an additional attribute (without the need to have copies of this special
attribute). Then, to do the revocation, the encryption procedure needs to add
one more set βm+1 containing the identities of privileged (non revoked) users.
The users outside the set βm+1 (revoked users) cannot decrypt because it lacks
the partial session key corresponding to the set βm+1. It follows that the key
size in our scheme will be similar to the one in Junod-Karlov scheme [20], that
is linear in the maximal number of users in the system.

This way, we obtain the first ABBE scheme with constant size ciphertext.

3.3 Security

In this section, we first give a theorem to prove that our first scheme achieves
basic selective security under a (P,Q,R, f)−GDDHE assumption. We then show
that this assumption holds in the generic group model.

More precisely, following the security model we define in section 2.1 the adver-
sary first outputs the target access policy A∗ as well as a repartition B(ui)1≤i≤ϑ
which he intends to attack. The challenger then runs the setup algorithm and
returns the param, decryption keys of all user ui where B(ui) does not satisfy
the target access policy A∗ to the adversary, he also computes and returns the
challenge header to the adversary. The adversary finally needs to make his guess
on bit b. According to the framework of GDDHE assumption, we can describe
this fact as a (P,Q,R, f) − GDDHE assumption as follows. Let P,Q,R be the
list of polynomials consisting of all elements corresponding to the public global
parameters, the private decryption keys of corrupted users, and the challenge



header.

P = {1, r, αnβ, rγ, αn, rα, . . . , rαn, rαn+2, . . . , rα2n, x1r, . . . , xnr,

rt, αn(mt+

m∑
k=1

∑
j∈βk

xj),

m∑
k=1

(rγ +
∑
j∈βk

αn+1−jr)(t+
∑
j∈βk

xj)}

Q = {1, αr, r(β + su)α, αsu, . . . , α
nsu, α

n+2su, . . . , α
2nsu, α

i1γsu, . . . , α
iNγsu}

R = {1}, f = αn+1rβ(mt+

m∑
k=1

∑
j∈βk

xj)

For all corrupted user u, 1 ≤ N = |B(u)| ≤ n.

Theorem 1. If there exists an adversary A that solves the basic selective secu-
rity of our first scheme with advantage ε, then we can construct a simulator to
solve the (P,Q,R, f)− GDDHE assumption above with the same advantage ε in
polynomial time.

Proof. Assume that B is a simulator that solves the (P,Q,R, f) − GDDHE as-
sumption above. At the beginning, B is given an instance of the (P,Q,R, f) −
GDDHE assumption, i.e., all elements corresponding to the public global param-
eters, the private decryption keys of corrupted users, and the challenge header

(denoted gP (... ), g̃Q(... ), g
R(... )
T ), as well as an element K such that K = e(g, g̃)f

if bit b = 0, and K is a random element in GT if b = 1. B will use this instance to
simulate A and use the output of A to guess bit b. To do that, in the setup phase
B gives A the public global parameters, the private decryption keys of corrupted
users. Finally in the challenge phase, B gives A the challenge header as well as
K. We note that all of these information are in gP (... ), g̃Q(... ). When A outputs
its guess for b, B uses this guess to break the security of the (P,Q,R, f)−GDDHE
assumption. Since the simulation is perfect and A has advantage ε, B also has
the same advantage ε in solving the (P,Q,R, f)− GDDHE assumption. ut

We are now going to prove that (P,Q,R) and f are independent, so that the
(P,Q,R, f)− GDDHE assumption holds in our case.

Lemma 1. In the (P,Q,R, f)−GDDHE assumption above, (P,Q,R) and f are
linearly independent.

Proof. We prove for the general case where we allow all polynomials in P,Q to
multiply with each other, which is exactly the symmetric pairing when P,Q are
in the same group. For notational simplicity, we denote P = P ∪Q.

Suppose that f is not independent to (P,Q,R), i.e., one can find ai,j , ci such
that the following equation holds

f =
∑

{pi,pj}⊂P

ai,j · pi · pj + ci



Assume that ΛC is the list of corrupted users. We will use β to analyze f ,
set qu = αr(β + su), u ∈ ΛC , P ′ = P \ {qu}u∈ΛC . We rewrite f as follows:

f =
∑

{u,v}⊂ΛC

au,vquqv+
∑

u∈ΛC ,pi∈P ′
au,ipiqu+

∑
{pi,pj}⊂P ′

ai,jpipj+ci = f1+f2+f3

Consider f1, we rewrite it as follows:

f1 =
∑

{u,v}⊂ΛC

au,vquqv =
∑

{u,v}⊂ΛC

au,vα
2r2(β2 + βsu + βsv + susv)

Since su, sv are random elements thus the value au,vα
2r2susv is unique. On the

other hand, this value doesn’t appear in f = αn+1rβ(mt+
∑m
k=1

∑
j∈βk xj), this

leads to the fact that au,v = 0 for any {u, v} ⊂ ΛC , or we have f1 = 0.
Consider f2 =

∑
u∈ΛC ,pi∈P ′ au,ipiqu, to let it appear the needed term αn+1rβ

we divide the polynomials pi ∈ P ′ into two subsets, one containing the term αn

denoted P ′1, and one doesn’t denoted P ′2. We now rewrite f2 as follows:

f2 =
∑

u∈ΛC ,pi∈P ′1

au,ipiqu +
∑

u∈ΛC ,pi∈P ′2

au,ipiqu

=
∑

u∈ΛC ,pi∈P ′1

au,ipiαr(β + su) +
∑

u∈ΛC ,pi∈P ′2

au,ipiqu.

We therefore obtain the equation

f = αn+1rβ(mt+

m∑
k=1

∑
j∈βk

xj)

=
∑

u∈ΛC ,pi∈P ′1

au,ipiαr(β + su) +
∑

u∈ΛC ,pi∈P ′2

au,ipiqu + f3(1)

Since the term αn+1rβ only appear in
∑
u∈ΛC ,pi∈P ′1

au,ipiαr(β + su), to

make the equation (1) hold one needs to remove the term related to su in∑
u∈ΛC ,pi∈P ′1

au,ipiαr(β + su), and the only way to do that is to produce the

term
∑
u∈ΛC ,pi∈P ′1

au,ipiαrsu for each u ∈ ΛC .

On the other hand, to make the term

f = αn+1rβ(mt+

m∑
k=1

∑
j∈βk

xj)

appear, the polynomial pi, pi ∈ P ′1, cannot have the form containing αnβ or
αnr, or αnsu (if not, it will make the redundancy when multiplying with qu =
αr(β + su)). The only one such pi comes from pi = αn(mt +

∑m
k=1

∑
j∈βk xj).

This leads to the fact that one only can produce the term∑
u∈ΛC

au,iα
n+1r(β + su)(mt+

m∑
k=1

∑
j∈βk

xj)



That means one needs to produce the term related to su:

f ′ =
∑
u∈ΛC

au,iα
n+1rsu(mt+

m∑
k=1

∑
j∈βk

xj)

Since each user u ∈ ΛC lacks at least one term αn+1rsu(t+
∑
j∈βk xj) for some

βk and no one can help because of the unique value su, therefore one cannot
reach to f ′. That means the equation (1) cannot hold or f is independent to
(P,Q,R). ut

4 Our Second Scheme

We now give the details of our second scheme, which aims at improving the first
scheme regarding the security. More precisely, it achieves selective CCA security
under again a similar GDDHE assumption, in the random oracle model.

4.1 Construction

In this construction, instead of generating the terms Xi, we use a random oracle
to generate them at the time of encryption. In addition, we add a dummy clause
containing only one attribute An to any access formula, and allow all users in
the system to possess this attribute. This way, we are able to reach the selective
CCA security.

Setup(1λ, ϑ,B(ui)1≤i≤ϑ) : similar to the one in the first construction, except
that the algorithm here uses an additional random oracle H on to G and
h̃ = g̃r. The public parameters1 are then

param = (g, g̃, h, h̃, V, gn, h1, . . . , hn, hn+2, . . . , h2n,H)

The encryption key is EK = (r, β, γ, α) ∪ param.

To generate the decryption key for user u, similar to the one in the first
construction, let B(u) = (Ai1 , . . . , AiN , An) be the set of attributes of user
u. The private decryption key for u is

du = (d̃u0 , d̃u1 , . . . , d̃un , d̃un+2
, . . . , d̃u2n

, d̃i1 , . . . , d̃iN , d̃n).

Encrypt(A,EK, param): assume that the access policy is expressed in CNF A =
β1 ∧ β2 ∧ · · · ∧ βm, where βm is a dummy clause that only contains the
attribute An. The encryption phase works as follows: it first picks a random

1 We make the choice of putting all these values into param, so that the encryptor
doesn’t need to re-compute these values when encrypting. Another possibility is to
set param = {g, g̃, h, h̃,H} and re-compute all others values when encrypting.



scalar t
$← Zp, and then computes Yi = H(i, ht) = hyi for i = 1, . . . ,m with

unknown scalars yi. The session key is then computed as:

K = e(gn+1, g̃)r.β.m.t
m∏
k=1

e(Yk, g̃
β
n+1) = e(gn+1, g̃)r.β(m.t+

∑m
k=1 yk).

Next, one computes:
C1 = ht, C̃1 = h̃t,

C2 =

k=m∏
k=1

Y γk V
t
∏
j∈βk

Y α
n+1−j

k htn+1−j =

k=m∏
k=1

(V ·
∏
j∈βk

hn+1−j)
t+yk ,

C3 = gm.tn ·
m∏
k=1

((Yk)r
−1

)α
n

= g
m.t+

∑m
k=1 yk

n , C4 = H(C1, C2, C3)t

The broadcaster can easily compute K and Hdr because it knows the values
r, β, α, γ, g, g̃ from EK. The header is set to Hdr = (A, C1, C̃1, C2, C3, C4),
and the pair (Hdr,K) is the output.

Decrypt(Hdr, du,B(u), param): the user u first parses the header Hdr as above:
(A, C1, C̃1, C2, C3, C4). It then checks whether the equations

e(C1, h̃) = e(h, C̃1) and e(H(C1, C2, C3), C̃1) = e(h̃, C4)

hold. It then computes Yi = H(i, C1) for i = 1, . . . ,m. For each clause βk in
A, the user u chooses an attribute Ai ∈

(
βk ∩B(u)

)
and computes, as in the

previous scheme, for each k ∈ [1,m]:

Kk =
e(C2, d̃ui)

e(C1 · Yk, d̃i ·
∏

j∈βk
j 6=i

d̃un+1−j+i) ·
∏`=m

`=1
` 6=k

e(C1 · Y`, d̃i ·
∏
j∈β` d̃un+1−j+i)

= e(gn+1, g̃)(t+yk)r.su .

We remark that
∏m
k=1Kk = e(gn+1, g̃)(m.t+

∑m
k=1 yk)r.su . The session key is

then computed as:

K =
e(C3, d̃u0

)∏m
k=1Kk

=
e(g

m.t+
∑m
k=1 yk

n , g̃
r(β+su)
1 )

e(gn+1, g̃)(m.t+
∑m
k=1 yk)r.su

= e(gn+1, g̃)r.β(m.t+
∑m
k=1 yk).

4.2 Security.

In this section, we first give a theorem to prove that our second scheme is selective
CCA secure under a (P,Q,R, f)− GDDHE assumption. We then show that this
assumption holds in the generic group model.

The (P,Q,R, f)−GDDHE assumption that we need is, in fact, similar to the
one given in Section 3.3, except that the terms rx1, . . . , rxn are now replaced by



the terms ry1, . . . , rym, z, zt. More precisely, let P,Q,R be the list of polynomials
consisting of all elements corresponding to the public global parameters, the
private decryption keys of revoked users, and the challenge header.

P =
{

1, r, rγ, αn, rα, . . . , rαn, rαn+2, . . . , rα2n, ry1, . . . , rym, z, zt, rt,

αn(mt+

m∑
k=1

yk),

m∑
k=1

(rγ +
∑
j∈βk

αn+1−jr)(t+ yk)
}

Q =
{

1, rt, r(β + su)α, αsu, . . . , α
nsu, α

n+2su, . . . , α
2nsu,

αi1γsu, . . . , α
iNγsu, α

nγsu
}
,

R = {1}, and f = αn+1rβ(mt+

m∑
k=1

yk).

For each user u belonging to the set of corrupted users, we have 1 ≤ N =
|B(u)| < n. This assumption can now be re-written as follows. Given

g, g̃, g̃
r(β+su)
1 , g̃su1 , . . . , g̃sun , g̃

su
n+2, . . . , g̃

su
2n, g̃

γsu
i1

, . . . , g̃γsuiN
, g̃γsun

h, V, gn, h1, . . . , hn, hn+2, . . . , h2n, h
y1 , . . . , hym , gz, gzt

ht, h̃t,

k=m∏
k=1

(V ·
∏
j∈βk

hn+1−j)
t+yk , g

m.t+
∑m
k=1 yk

n .

for all corrupted user u, distinguish between the value e(gn+1, g̃)r.β(m.t+
∑m
k=1 yk)

and a random T ∈ GT .

Theorem 2. Our second scheme is selective−CCA secure under CDH assump-
tion and the (P,Q,R, f)− GDDHE assumption above.

Proof. Let Hdr = (A, C1, C̃1, C2, C3, C4) be the challenge header. Similar to the
proof of MCBE2 scheme, we will prove the security of CP-ABBE2 scheme in
two steps. First, we prove that the adversary cannot produce any decryption
query of the form Hdr′ = (A, C1, C̃ ′1, C

′
2, C

′
3, C

′
4) under the CDH assumption.

In the second step, we prove that our second scheme is selective−CCA secure
under (P,Q,R, f)−GDDHE assumption with the requirement that the adversary
doesn’t ask any query Hdr′ = (A, C1, C̃ ′1, C

′
2, C

′
3, C

′
4).

First step. This step is similar to the first step in the proof of MCBE2 scheme,
we thus refer the reader to the one in the proof of MCBE2 scheme.

Second step. First, the simulator is given the instance of aforementioned
(P,Q,R, f)−GDDHE assumption. Let A be an adversary against the security of
our second scheme. The simulator will use the guess of A to break the instance
of (P,Q,R, f) − GDDHE assumption. For that purpose, the simulator first re-
ceives the target access policy A from the adversary A as well as the repartition
of attributes for each user, from the instance of (P,Q,R, f)− GDDHE assump-
tion the simulator gives A the public parameters, and the decryption keys of



all corrupted users. The simulator also needs to answer the following types of
queries.

1. Hash query : There are two types of hash queries, (j, h∗) ∈ Zp × G or
(h∗1, h

∗
2, h
∗
3) ∈ G3. For any query q, if it has been asked before, the same an-

swer is sent back. Otherwise, for the (j, h∗) queries the simulator randomly
chooses y ∈ Zp and sets H(q) = hy, and appends the tuple (q, hy, y) to the
hash list. If the value y is unknown, it is replaced by ⊥. For the (h∗1, h

∗
2, h
∗
3)

query, the simulator randomly chooses z∗ ∈ Zp and set H(q) = gz
∗
, and

appends the tuple (q, gz
∗
, z∗) to the hash list. If the value z∗ is unknown, it

is replaced by ⊥.
2. Encryption query : A sends an access policy A = β′1∧β′2∧· · ·∧β′` to simulator

where β′` = An. The simulator first randomly chooses t′, z′, y′1, . . . , y
′
` ∈ Zp

and appends to the hash list the tuple (q′z′ , g
z′ , z′) and for all i = 1, . . . , `,

the tuples (q′i, h
y′i , y′i). It takes the private decryption key of a user u and

then computes:

K = (
e(g̃

r(β+su)
1 , gn)

e(g̃sun , gr1)
)t
′`+

∑`
k=1 y

′
k = e(gn+1, g̃)r.β(t

′`+
∑`
k=1 y

′
k)

C1 = ht
′
, C̃1 = h̃t

′
, C2 =

k=∏̀
k=1

(V ·
∏
j∈βk

hn+1−j)
t′+y′k ,

C3 = g
t′`+

∑`
k=1 y

′
k

n , C4 = gz
′t′ .

3. Decryption query : we assume that A sends the following ciphertext to the
simulator (note that t′ 6= t since one cannot reuse the C1 in the challenge
header):

C1 = ht
′
, C̃1 = h̃t

′
, C2 =

k=m′∏
k=1

(V ·
∏
j∈βk

hn+1−j)
t′+y′k ,

C3 = g
m′.t′+

∑m′
k=1 y

′
k

n , C4 = H(C1, C2, C3)t
′

The simulator first checks whether the equations e(C1, h̃) = e(h, C̃1) and
e(H(C1, C2, C3), C̃1) = e(h̃, C4) hold, takes the private decryption key of a
corrupted user u and then uses the secret key d̃n corresponding to attribute
An in the clause βm′ to compute the value e(gn+1, g̃)(t

′+y′
m′ )r.su . It extracts

the value y′m′ from the hash list (since t′ 6= t) and compute e(g̃sun , g
r
1)y
′
m′ .

This permits to obtain the value

e(gn+1, g̃)(t
′+y′

m′ )r.su

e(g̃sun , gr1)y
′
m′

= e(gn+1, g̃)t
′.r.su .

Next, it extracts all the values from y′1 to y′m′−1 from the hash list (since
t′ 6= t) and computes the partial session keys related to each clause βi, i =
1, . . . ,m′ − 1

Ki = e(gn+1, g̃)t
′.r.su · e(g̃sun , gr1)y

′
i = e(gn+1, g̃)(t

′+y′i)r.su .



The simulator can finally recover the following session key and forwards the
result to A.

K = e(gn+1, g̃)r.β(t
′m′+

∑m′
k=1 y

′
k).

Next, during the challenge phase, the simulator first appends to the hash list the
values H(i, ht) = (qi, h

yi ,⊥), for all i = 1, . . . ,m and the values H(C1, C2, C3) =
(qz, g

z,⊥). It then sends the following challenge ciphertext to A:

C1 = ht, C̃1 = h̃t, C2 =

k=m∏
k=1

(V ·
∏
j∈βk

hn+1−j)
t+yk , C3 = g

m.t+
∑m
k=1 yk

n , C4 = gzt.

If A make new requests to the different oracles, the simulator can use again
the above strategy. Finally, when A outputs its guess for b, the simulator uses
this guess to break the security of the (P,Q,R, f)− GDDHE assumption. ut

The following lemma finally shows that in the aforementioned (P,Q,R, f)−
GDDHE assumption, (P,Q,R) and f are linearly independent. The proof of this
lemma is similar to the one given for Lemma 1 and, therefore, we do not repeat
it again.

Lemma 2. In the (P,Q,R, f)−GDDHE assumption above, (P,Q,R) and f are
linearly independent.

5 Conclusion

In this paper, we proposed two private CP-ABE schemes with constant size of the
ciphertext. Our schemes support a restricted form of CNF access policy, and can
naturally be extended to allow the revocation. We leave the challenging problem
of how to improve the efficiency of our schemes for the future work.
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