
Verifiable Message-Locked Encryption

Sébastien Canard1, Fabien Laguillaumie2, and Marie Paindavoine1,2

1 Orange Labs, Applied Crypto Group, Caen, France
{sebastien.canard, marie.paindavoine}@orange.com

2 LIP (U.Lyon, CNRS, ENS Lyon, INRIA, UCBL),
Université Claude Bernard Lyon 1, Villeurbanne, France
{fabien.laguillaumie, marie.paindavoine}@ens-lyon.fr

Abstract. One of today’s main challenge related to cloud storage is to
maintain the functionalities and the efficiency of customers’ and service
providers’ usual environments, while protecting the confidentiality of sen-
sitive data. Deduplication is one of those functionalities: it enables cloud
storage providers to save a lot of memory by storing only once a file up-
loaded several times. But classical encryption blocks deduplication. One
needs to use a “message-locked encryption” (MLE), which allows the
detection of duplicates and the storage of only one encrypted file on the
server, which can be decrypted by any owner of the file. However, in most
existing scheme, a user can bypass this deduplication protocol. In this
article, we provide servers verifiability for MLE schemes: the servers can
verify that the ciphertexts are well-formed. This property that we for-
mally define forces a customer to prove that she complied to the dedupli-
cation protocol, thus preventing her to deviate from the prescribed func-
tionality of MLE. We call it deduplication consistency. To achieve this
deduplication consistency, we provide (i) a generic transformation that
applies to any MLE scheme and (ii) an ElGamal-based deduplication-
consistent MLE, which is secure in the random oracle model.

1 Introduction

Cloud computing is often promoted towards companies as a way to reduce their
costs while increasing accessibility and flexibility. It is common sense to have
one large computing infrastructure that companies would share instead of repli-
cating smaller ones. This saves money and is an eco-friendlier way to distribute
resources. But cloud platforms are neither cheap nor eco-friendly. The larger
amount of data these platforms host, the more expensive they become. Impact
on the environment grows as well. One way to address this issue is to delete iden-
tical files stored by different users. This method, called deduplication, is widely
used by cloud providers. However, some of the cloud storage users may want to
encrypt their data, distrusting honest-but-curious providers. If they use a clas-
sical encryption scheme, deduplication is not possible anymore: two encryptions
of the same plaintext under different keys yield indistinguishable ciphertexts.
A new kind of encryption is needed, under which it is possible to determine
whether two different ciphertexts are locked to the same message or not.

Previous Work. The work on the message-locked encryption model has been
initiated by Douceur et al. [8] with their convergent encryption (CE) scheme. The
main idea is very simple: everyone that encrypts the same message m will obtain
the same ciphertext c. The convergent encryption protocol CE given in [8] uses
a hash function H (which is modelled as a random oracle for the security proof)
and a deterministic symmetric encryption scheme SE: it sets the encryption and
decryption key as K = H(M), where M is the message to be encrypted, and the
ciphertext C is computed as SE.Encrypt(M,K). The ciphertext is concatenated
to a tag τ = H(C) which allows the server to easily detect duplicates. When the
server receives a new ciphertext, it discards the file if the tag equals one already in
its database. Following this protocol, several schemes have been given, focussing
mainly on improving efficiency e.g. [10,7,18].

However, in [4], the authors point out the lack of a formal security investi-
gation of this emerging model. They formally introduce the concept of message-
locked encryption (MLE) and provide a complete security analysis. In particular,
they show that a secure MLE does not need to be deterministic to achieve its
goal. It is sufficient (and more general) to provide an equality testing procedure
that publicly checks if two ciphertexts encrypt the same plaintext, as shown
in [1]. The interactive case has recently been studied in [3].

Security. As other kinds of “searchable encryption”, MLE stands at the
boundary of deterministic and probabilistic encryption worlds. As such, it cannot
provide the standard notions of semantic security. Likewise, security can only
be achieved for unpredictable data. If one can guess a possible message, one
can encrypt it and then easily test ciphertexts for equality. In previous works
the following privacy properties (PRV for short) were defined. The first one is
PRV$-CDA [4] that states that the semantic security should hold when messages
are unpredictable (having high min-entropy), even for an adversary being able
to choose the distribution where the messages are drawn (hence the notion of
CDA, for Chosen Distribution Attack). In this experiment, the adversary has
to distinguish a ciphertext according to a distribution of its choice from a ran-
dom bit sequence. The second one is PRV-CDA2 [1] that adds the parameter
dependence setting, for which the security should hold even for messages that
depend on the public parameters. They are then given to the adversary who
chooses a distribution. Abadi et al. [1] have also slightly modified the security
experiment, compared to [4], introducing a real-or-random oracle that gives to
the encryption algorithm either a set of (unpredictable) messages drawn from
the adversary’s chosen distribution, or a true randomly chosen set of (unpre-
dictable) messages. The adversary has to distinguish between both cases. Addi-
tionally to these indistinguishability-type properties, the authors in [4] introduce
the natural requirement of tag consistency, whose goal is to make it impossible
to undetectably replace a message by a fake one. It states that if two tags are
equal, then the underlying messages should be equal.

Our contributions. In this article, we investigate the converse: if two messages
are equal, does the server always perform deduplication? Strangely enough, in
almost all previous CE and MLE schemes [8,4,3], it is straightforward for a user

2

to avoid the deduplication process altogether. The main feature for which those
schemes were introduced is not achieved. In those schemes, the server does not
actually verify that the key has actually been computed as required.

In this context, we have three contributions in this paper. First, we formalize
this new security requirement, namely deduplication consistency, second we pro-
vide a generic transformation of a non-deduplication consistent MLE scheme into
a deduplication consistent one and third we give a ElGamal-based construction.

In order to achieve verifiability in MLE, we introduce a new notion of dedu-
plication consistency. It states that an equality test run on two valid ciphertexts
with the same underlying plaintext will output 1 with overwhelming probability.
Verifiability is a classical notion to prevent denial-of-service attacks, but this can
be also useful in many scenarios. A court could oblige a cloud service provider
to delete all copies of a given file, for example a newspaper article (right-to-
be-forgotten) or a media file (for copyright infringement). If users are able to
escape the deduplication process, the cloud service provider would not be able
to prove that he complied to the court decision. A different scenario could be
a collaborative database. Some attributes need to have a unique value in each
row. If two users want to upload the same information, then the database would
want to enforce deduplication.

A natural way to provide the verifiability of a ciphertext in a scheme of e.g. [8],
is to provide a NIZK proof that the key K = H(M) is correctly computed from
the message M , and the ciphertext C = SE.Encrypt(M,K) is also consistent
w.r.t. the same message M and key K. Based on this, we propose a generic
construction to turn any MLE scheme into a deduplication consistent scheme.

To instantiate this generic scheme, we rely on an ElGamal-based construc-
tion. Indeed, another important issue in cloud storage is efficiency, as people
usually expect instant uploading and responses from the cloud storage provider.
Moreover, the ciphertexts’ expansion should be carefully controlled, as the dedu-
plication main goal is to save space storage. As such, neither generic non-
interactive zero-knowledge proof (NIZK) used in [1] nor fully homomorphic en-
cryption used in [3] could be considered as acceptable solutions. Combining an
ElGamal encryption wih an algebraic hash funcion makes possible to use efficient
NIZK over discrete logarithm relation sets [16] to prove that these computations
are all consistent one with each other. Our construction is the first one that
provably achieves deduplication consistency. As this is a strong security require-
ment, our scheme is far less efficient than convergent-like solutions, but it is still
more efficient than those of Abadi et al. [1] or those of Bellare and Keelveedhi
[3] whose goal is also to strengthen security.

Organization of the paper. The paper is now organized as follows. In the next
section, we provide some background that will be useful all along the paper.
In Section 3, we give the security model for message-locked encryption. Sec-
tion 4 introduces our new notion of deduplication consistency and the generic
construction and Section 5 describes the ElGamal-based construction. Finally,
in Section 6, we provide the security proofs and discuss efficiency.

3

2 Preliminaries

2.1 Bilinear Groups

Our construction relies on pairings, so we recall the definition of bilinear groups
that are a set of three groups G1,G2,GT of prime order p together with a bilinear
map e : G1 × G2 → GT such that (i) for all X1 ∈ G1, X2 ∈ G2 and a, b ∈ Zp,
e(Xa

1 , X
b
2) = e(X1, X2)ab, (ii) for X1 6= 1G1

and X2 6= 1G2
, e(X1, X2) 6= 1GT

,
and (iii) e is efficiently computable. We use type 3 pairings for which there are
no efficiently computable homomorphisms between G1 and G2.

2.2 Computational Assumptions

Our construction security relies on the following computational assumptions.

Assumption 1 (blinded-DDH (bl-DDH)) Given (t1, t
u
1 , g1, g

r
1, g

z
1) ∈ G5

1 and
(t2, t

u·k
2) ∈ G2

2 for random (u, r, k) ∈ (Z∗p)3, it is hard to decide whether z = r · k
or z is a random element from Z∗p. We define Advbl-DDH

A (λ) as the advantage of
a polynomial-time adversary A against bl-DDH.

In the security proof of our scheme, we use the following generalization of
the bl-DDH assumption. We stress that (1, 1)-bl-DDH is the bl-DDH assumption.

Assumption 2 ((T, `)-blinded-DDH ((T, `)-bl-DDH)) Let T and ` be two in-

tegers. Let
[
uh, {ri,h}`i=1, kh

]T
h=1

be random in (Z∗p)T (`+2). Given (t1, g1, . . . , g`)

in G`+1
1 , t2 in G2,

[
tuh
1 , {grh,i

i }`i=1, {g
zh,i

i }`i=1

]T
h=1
∈ GT (2`+1)

1 and
[
tuh·kh
2

]T
h=1
∈

GT2 , for all h = 1, . . . , T and for all i = 1, . . . , `, it is hard to decide whether

zh,i = rh,i · kh or z is a random element from Z∗p. We define Adv
(T,`)-bl-DDH
A (λ)

as the advantage of a polynomial-time adversary A against (T, `)-bl-DDH.

To assert the strength of our hypothesis, we prove the following reduction to
the tripartite decisional Diffie-Hellman assumption [5].

Theorem 1. The blinded-DDH assumption is polynomially reducible to the tri-
partite Diffie-Hellman assumption. The (T, `)-blinded-DDH assumption is poly-
nomially reducible to the blinded-DDH assumption.

2.3 Commitment Schemes

A commitment scheme aims at masking a secret while allowing a later revelation.

Generic Description. Formally, those schemes are made up with three algo-
rithms, namely the Setup which on input a security parameter λ outputs the
public parameters pp, the Commit which on input pp and a message M outputs
a commit C and a witness r, and the Open which on input a commit C, a mes-
sage M and a witness r outputs 1 if C is a commitment of M for the witness r,
and 0 otherwise. A commitment scheme Γ is considered to be cryptographically

4

secure if it verifies both the hiding and the binding properties. We focus on the
latter as it is the one that matters the most in our constructions and proofs.

The commitment binding experiment ExpbindingΓ,A (λ) starts by executing the
Setup to obtain pp. On input pp, the adversary A outputs a commitment C, and
two pairs (M, r) and (M ′, r′). The experiment outputs 1 iff Open(C,M, r) =
Open(C,M ′, r′) = 1. We say that the commitment scheme Γ is binding if for
all polynomial time adversaries A the following advantage is negligible for all λ:

AdvbindingΓ,A (λ) = Pr
(
ExpbindingΓ,A (λ) = 1

)
.

The Pedersen Commitment. Let G be a group of prime order p and let g
and h be generators of G. The Pedersen Commitment [13] allows a prover to
commit on a secret value m ∈ Zp. During the Commit execution, one computes
C = gmhr with r ∈ Zp picked uniformly at random to the verifier. The Open
algorithm is straightforward. This commitment scheme is perfectly hiding and
is computationally binding under the discrete logarithm assumption.

2.4 Non-interactive Zero-Knowledge (NIZK) Proofs

We use NIZK proofs of membership in NP languages to achieve the notion of
deduplication consistency that we introduced.

Generic Description. Let Π be a proof system in NP languages for a NP-
relation rel. Such a system is given by two probabilistic polynomial-time machines
P and V such that (i) for all (y, w) ∈ rel (that is rel(y, w) = true), P takes as
input (y, w) and V takes as input y and (ii) at the end of the protocol between P
and V, V outputs a bit d of acceptance (d = 1) or rejection (d = 0). We require
the following properties: (i) Completeness for all (y, w) ∈ rel, V returns 1 with
probability 1; and (ii) Soundness: for all y ∈ {0, 1}∗, if V returns 1, then it exists
w such that (y, w) ∈ rel with overwhelming probability.

We also need this proof system to be zero-knowledge. This means that a
distinguisher D cannot distinguish between the proofs produced by a real prover
or the ones produced by a simulator. We denote AdvzkΠ,D(λ) the advantage of an
adversary A in this distinguishing game, and we say that a non-interactive proof
system (P,V) is (statistically) zero-knowledge if there exists a polynomial time
simulator sim such that for any polynomial time distinguisher D, the function
AdvzkΠ,D(λ) is negligible.

Double Discrete Logarithms Proofs. For our ElGamal-based scheme, the NIZK
proofs we use are conjunctions of classical discrete logarithm relations [16]. They
are made non-interactive thanks to the Fiat-Shamir transform [9], proven to be
secure in the random oracle model [14]. The main time-consuming part is a dou-
ble logarithm NIZK proof (with a statistical zero-knowledge property, as shown
in [17]), where the statement has the form: NIZK

(
s : V1 = hx

s ∧ V2 = ys
)
, where

h, y ∈ Zp and x ∈ Z∗p are public, while s ∈ Z∗p is secret.

5

2.5 Hashing Block Sources

Message-locked encryption, like deterministic encryption, can only protect mes-
sages that are hard to guess. To model this fact, Bellare et al. propose in [2] a
definition of privacy, which states that no information about multiple dependent
messages is leaked from their encryptions. Though unpredictable, the adversary
A can choose the distribution over the messages, allowing them to be corre-
lated. In order to avoid brute force attacks, the distribution of messages should
guarantee a minimal entropy of the messages. The min-entropy of a random
variable X is defined as H∞(X) = − log(maxx(Pr [X = x])). A random variable
X such that H∞(X) ≥ µ is a µ-source. A (T, µ)-source is a random variable
X = (X1, . . . , XT) where each Xi is a µ-source. A (T, µ)-block source is a ran-
dom variable X = (X1, . . . , XT) where each Xi|X1=x1,...,Xi−1=xi−1

is a µ-source.
One of the crucial point in our construction of MLE is the hashing of such

block sources. The Leftover Hash Lemma [12] is a classic tool for extracting
random-looking strings from an uncertain source of entropy. Precise and tight
results from [6] will help us to prove the privacy of our MLE when the keys
are derived from messages produced from a block source. The following theorem
from [6] states that if H is a 2-universal hash function applied to some elements
of a block source (X1, . . . , XT), the distribution (H,H(X1), . . . ,H(XT)) is close
to the uniform distribution. Let us recall that a family H of hash functions
mapping {0, 1}n to {0, 1}` is said to be 2-universal if for all distinct x and y,
the probability that H(x) = H(y) equals 1

2`
, when H is drawn at random.

Theorem 2. [6, Theorem 3.5] Let H : {1, . . . , 2n} → {1, . . . , 2m} be a random
hash function from a 2-universal family H. Let X = (X1, . . . , XT) be a (T, µ)-
block source over {1, . . . , 2n}T . For every ε > 0 such that µ > m + log(T) +
2 log(1/ε), the hashed sequence (H,Y) = (H,H(X1), . . . ,H(XT)) is ε-close to
uniform in H× {1, . . . , 2m}T .

3 Message-Locked Encryption: Definition and Security

There are two different definitions for message-locked encryption (MLE) in the
literature. The first one is due to Bellare, Keelveedhi and Ristenpart [4] and the
second one from Abadi, Boneh, Mironov, Raghunathan and Segev [1]. Our defi-
nition, as well as the security model, is based on the ones from [1]. This definition
is more general than Bellare et al.’s, but makes the notion of tag less present.
In [4], the tag generation is performed only from the ciphertext, and the tag cor-
rectness ensures that one message encrypted by two different users will have the
same tag, so that a server will be able to remove one of the ciphertexts. Abadi et
al.’s definition of MLE (denoted MLE2) introduces a validity test to check the
validity of ciphertext, and an equality test to deduplicate redundant files. This
allows to handle randomized tags instead of deterministic. Even though there is
no tag generation anymore, the security notion of tag consistency is kept, and
we will sometimes informally call “tags” the parts of the ciphertext that are
involved in the equality test.

6

3.1 Syntactic Definition

A Message-Locked Encryption (MLE) scheme is defined by the six following
algorithms (PPGen, KD, Enc, Dec, EQ, Valid) operating over the plaintext space
M, ciphertext space C and keyspace K, with λ as a security parameter.

– The parameter generation algorithm PPGen takes as input 1λ and returns
the public parameters pp← PPGen(1λ).

– The key derivation function KD takes as input the public parameters pp, a
message M , and outputs a message-derived key kM ← KD(pp,M).

– The encryption algorithm Enc takes as input pp, a message-derived key kM ,
and a message M . It outputs a ciphertext c← Enc(pp, kM ,M).

– The decryption algorithm Dec takes as input pp, a secret key kM , a ciphertext
c and outputs either a message M or ⊥ : {M,⊥} ← Dec(pp, kM , c).

– The equality algorithm EQ takes as input public parameters pp, and two
ciphertexts c1 and c2 and outputs 1 if both ciphertexts are generated from
the same underlying message, and 0 otherwise: {0, 1} ← EQ(pp, c1, c2).

– The validity-test algorithm Valid takes as input public parameters pp and
a ciphertext c and outputs 1 if the ciphertext c is a valid ciphertext, and 0
otherwise: {0, 1} ← Valid(pp, c).

A message-locked encryption is said to be correct if for all λ ∈ N, all pp ←
PPGen(1λ), all message M ∈M and all c← Enc(pp,KD(pp,M),M),
(i) M = Dec(pp,KD(pp,M), c) and Valid(pp, c) = 1, and
(ii) EQ(pp,Enc(pp,KD(pp,M),M ;ω),Enc(pp,KD(pp,M),M ;ω′)) = 1.

This last property is equivalent to tag correctness in [4] (and we explicitely
wrote the randomness ω and ω′ to recall that encryption is probabilistic). To
avoid trivial solutions, we recall that keys kept for decryption must be shorter
than the message. As mentioned in [4], there must exist constants c, d < 1 such
that the function that on input λ ∈ N returns maxpp,M (Pr[|KD(pp,M)| > d|M |c])
is negligible, where pp ∈ PPGen(1λ) and M ∈M.

3.2 Privacy

The main security requirement for message-locked encryption is privacy of un-
predictable messages. No MLE scheme can provide indistinguishability for pre-
dictable messages (drawn for a polynomial-size space), because of the equality
testing procedure EQ. Our privacy notion is a combination of those existent. We
rely on a PRV-CDA2-like requirement [1], however, like in [4], our scheme does
not achieve the privacy property when the message distribution chosen by the
adversary depends on the public parameters. Therefore, we call our privacy prop-
erty PRV-piCDA, for Privacy under parameter independent Chosen Distribution
Attack. It captures privacy of messages that are unpredictable but independent
of the public parameters. Let us first define the real-or-random encryption oracle.

Definition 1 (Real-or-Random encryption oracle). The real-or-random
encryption oracle takes as input pairs (mode,M) with mode ∈ {real, rand}, and

7

M a polynomial size circuit representing a joint distribution over T messages
from M. If mode = real then the oracle samples (M1, . . . ,MT) ← M and if
mode = rand then the oracle samples T uniform and independent messages from
M. Then the oracle outputs a ciphertexts vector C = (c1, . . . , cT) such that, for
each i the oracle computes kMi

= KD(pp,Mi) and ci = Enc(pp, kMi
,Mi).

Following [15], we consider adversaries whose restriction on their queries is
that they are samplable by a polynomial-size circuit in the random oracle model.

Definition 2 (q-query polynomial-sampling complexity adversary). We
consider (T, µ)-block source. Let A(1λ) be a probabilistic polynomial-time al-
gorithm that is given an oracle access to RoR(mode, pp, ·) for some mode ∈
{real, rand}. Then, A is a q-query (T, µ)-source adversary if, for each of A’s
RoR-queries M, it holds that M is a (T, µ)-block source that is samplable by a
polynomial-size circuit that uses at most q queries to the random oracle.

Informally, PRV-piCDA security notion requires that encryptions of random
messages should be indistinguishable from encryptions of messages drawn from
a (T, µ)-block source.

Definition 3 (PRV-piCDA Security). An MLE scheme Π is (T, µ)-block source
PRV-piCDA secure if, for any probabilistic polynomial-time (T, µ)-block source
adversary A = (A0,A1), there exists a negligible function ν(λ) such that:

AdvPRV−piCDAΠ,A (λ) =
∣∣∣Pr

[
Expreal

Π,A = 1
]
− Pr

[
Exprand

Π,A = 1
]∣∣∣ ≤ ν(λ),

where the game Expmode
Π,A (λ) is defined Figure 1.

Experiment Expmode
Π,A(λ)

M← A0(1λ);

pp← PPGen(1λ);

b← ARoR(mode,M)
1 (1λ, pp)

Return b.

Fig. 1. PRV-piCDA Game:
Expmode

Π,A(λ)

Experiment ExpTCΠ,A(λ)

pp← PPGen(1λ);

(M0, c1)← A(1λ, pp);
If Valid(pp, c1) = 0 or M0 =⊥ return 0;
kM ← KD(pp,M0);
c0 ← Enc(pp, kM ,M0);
M1 ← Dec(pp, kM , c1);
If (EQ(pp, c0, c1) = 1) ∧ (M0 6= M1) ∧ (M1 6=⊥)
return 1;
Else return 0.

Fig. 2. Tag Consistency Game : ExpTCΠ,A(λ)

As stated in [1, Theorem 4.6], the case where A can query the RoR oracle
multiple times is equivalent to the case where A can query this oracle just once.

8

3.3 Tag Consistency

Tag consistency is a major requirement of any MLE scheme. It ensures that the
server will not discard a file if it doesn’t have another file encrypting the same
plaintext. We use the game defined by Abadi et al in [1].

Definition 4 (Tag consistency). An MLE scheme Π is tag consistent if for
any probabilistic polynomial-time A, there exists a negligible function ν(λ) such
that:

AdvTCΠ,A(λ) = Pr
[
ExpTCΠ,A = 1

]
≤ ν(λ),

where the random experiment ExpTCΠ,A(λ) is described in Figure 2.

4 Deduplication Consistency

In precedent works, the main security requirement, besides privacy, was tag con-
sistency, meaning that if the equality test EQ(c1, c2) outputs 1 on two ciphertexts,
then the underlying plaintexts are the same. As sketched in the introduction,
we tackle here the converse case: if two ciphertexts c1 and c2 are meant to en-
crypt the same message, we require that EQ(c1, c2) outputs 1 with overwhelming
probability. To capture such a security issue, we introduce in the following a new
security notion for message-locked encryption, called deduplication consistency.
This notion ensures that a MLE scheme provably provides deduplication.

4.1 Overview

The main point of deduplication consistency is to make a MLE scheme verifiable.
In fact, if a server makes use of an MLE scheme for which it cannot be convinced
that deduplication is actually enforced, he will loose the benefit he has expected
from deduplication. In most existing schemes indeed (see below), only users are
responsible for a smooth deduplication process. Then these schemes can easily
be “deviate[d] from [their] prescribed functionality”3.

In addition to save space storage, verifiable deduplication is a functionality
that can have an interest of its own. Today, a really hot topic is the right-to-
be-forgotten. An important question related to this topic is how a server can
prove that he really deleted some given files. The problem is even more difficult
if the files are encrypted on the server: the right to privacy of a user cannot
prevail over the right to privacy of other users. It can happen however that a
court asks a cloud service provider to remove a defamatory newspaper article
or video from its storage space. Then the server’s manager could encrypt this
specific file with a verifiable MLE scheme and match it against the other files in
the server. If the equality test returns one, deleting the corresponding file will be
sufficient to prove that no user can now access to this file, as no user can bypass
the deduplication procedure.

3 Oded Goldreich, The Foundations of Cryptography, Preface.

9

4.2 Formal Definition

We define the deduplication experiment ExpDCΠ,A(1λ) described on Figure 3.

Definition 5 (Deduplication consistency). An MLE scheme Π is dedu-
plication consistent if for any probabilistic polynomial-time A, there exists a
negligible function ν(λ) such that:

AdvDCΠ,A(λ) = Pr
[
ExpDCΠ,A = 1

]
≤ ν(λ),

where the random experiment ExpDCΠ,A(1λ) is described in Figure 3.

Experiment ExpDCΠ,A(λ)

pp← PPGen(1λ);

(M, c0, c1)← A(1λ, pp);
If (Valid(pp, c0) = 0) ∨ (Valid(pp, c1) = 0) then return 0;
If EQ(pp, c0, c1) = 1 then return 0;
kM ← KD(pp,M);
M0 ← Dec(pp, kM , c0) ; M1 ← Dec(pp, kM , c1);
If M 6= M0 ∨M 6= M1 then return 0;
Return 1;

Fig. 3. Deduplication Security Game : ExpDCΠ,A(λ)

As for previous schemes, none of them formalizes this notion. Moreover, it
is obvious that the different solutions given by Bellare et al. [4] do not achieve
deduplication consistency. We have the intuition that the randomized scheme
proposed by Abadi et al. [1] is deduplication consistent due to the presence of
the NIZK, but a formal proof remains an open problem.

4.3 A Generic Construction

We first describe a generic construction permitting to transform any private and
tag consistent MLE scheme Λ into a MLE scheme Λ′ additionally achieving the
deduplication consistency.

Our construction. For this purpose, we need a secure commitment scheme Γ
and a NIZK proof system Π (see Section 2). Our scheme is described as follows.

– PPGen. This step executes (i) Λ.PPGen which outputs Λ.pp, (ii) Γ.Setup
which gives Γ.pp and (iii) the generation of a reference string R for the
NIZK proof. Then, Λ′.pp = (Λ.pp, Γ.pp, R).

– KD. On input Λ′.pp and a message M , this algorithm simply corresponds to
the execution of Λ.KD, which outputs kM = Λ.KD(Λ.pp,M).

10

– Enc. There are three steps during the encryption algorithm. At first, we
execute the Λ.Enc(Λ.pp, kM ,M) which outputs c. Then, we compute a com-
mitment on M , as (C, r) = Γ.Commit(Γ.pp,M). Finally, we provide the
following NIZK proof:

π = NIZK
(
M, r : c = Λ.Enc(Λ.pp, Λ.KD(Λ.pp,M),M)

∧(C, r) = Γ.Commit(Γ.pp,M)
)

and the output ciphertext is c′ = (c, C, π).
– Valid. On input c′ = (c, C, π), this algorithm executes Λ.Valid(Λ.pp, c) and

verifies that the NIZK π is correct.
– Dec. On input c′ = (c, C, π) and kM , this algorithm first executes Valid, and,

if it returned 1, it executes Λ.Dec(Λ.pp, kM , c) to obtain M .
– EQ. On input c′1 = (c1, C1, π1) and c′2 = (c2, C2, π2), this algorithm first

executes Valid on both ciphertexts, and then, if both returned 1, it executes
Λ.EQ(Λ.pp, c1, c2).

Security. Regarding the security of the above construction, it verifies the
privacy and the tag consistency properties. This is mainly due to the fact that
the addition of the commitment and the NIZK proof does not affect the security
proofs related to both privacy and tag consistency, for obvious reasons.

More precisely, regarding the privacy property, the NIZK proof can be sim-
ulated during the experiment (by the real-or-random oracle), using the zero-
knowledge property. We have a slight loss in security, corresponding to the ad-
vantage of the adversary against the hiding property of the used commitment
scheme Γ . Regarding the tag consistency property, this is similarly obvious.

The deduplication consistency is given by the following theorem.

Theorem 3. The scheme Λ′ given above is deduplication-consistent, assuming
that Λ is tag consistent, Γ is binding, and π is a sound zero-knowledge proof.

Proof. Our aim in this proof is to reduce the deduplication consistency of our
construction to the binding property of the commitment scheme. We consider
the commitment binding experiment given in Section 2 and play the role of
an adversary A against it. A has the parameters Γ.pp of the scheme Γ . His
aim is to output a commitment C and two pairs (M, r) and (M ′, r′) such that
Open(C,M, r) = Open(C,M ′, r′) = 1. We assume that A has access to an ad-
versary B which has a non-negligible advantage against the deduplication con-
sistency experiment of our scheme.

Parameter generation. We first generate the parameter of the MLE sys-
tem, executing Λ.PPGen, generating a reference string R for the NIZK proof,
and adding the commitment parameter Γ.pp obtained above. We then give
(Λ.pp, Γ.pp, R) to the adversary B.

Adversary’s answer. At any time of the experiment, using its advantage
against deduplication consistency, B outputs (M, c′0, c

′
1), with c′0 = (c0, C0, π0)

and c′1 = (c1, C1, π1), such that all the conditions related to the deduplication

11

consistency experiment are verified. In particular, we have Λ′.Valid(pp, c′0) = 1,
Λ′.Valid(pp, c′1) = 1 and Λ.EQ(pp, c0, c1) = 0.

Answer to the commitment challenge. Using the soundness property of the
NIZK, A is then able to extract, from π0 and π1, the underlying secret messages
M ′0 and M ′1, related to c0 and c1 respectively. As we have Λ.EQ(pp, c0, c1) = 0,
and since Λ is tag consistent, we necessarily have M ′0 6= M ′1.

As B is successful in the DC experiment, and using c0 and c1 respectively,
A computes kM = Λ.KD(pp,M), and then M0 = Λ.Dec(pp, kM , c0) and M1 =
Λ.Dec(pp, kM , c1), with M = M0 = M1.

It means that it exists i ∈ {0, 1} such that Mi 6= M ′i . As both ciphertexts
are valid, for both Mi and M ′i , there is a sound zero-knowledge proof provided
by B from which A is able to extract the corresponding witnesses ri and r′i. A
sends Ci, (Mi, ri), (M

′
i , r
′
i) to the binding challenger. It is a winning output for

the binding experiment of Γ , with an advantage at least equal to the one of B
against deduplication consistency, which concludes the proof.

5 A Concrete Message Locked Encryption with
Deduplication Consistency

In this section, we describe our construction of a deduplication consistent MLE.
Compared to the fully randomized message-locked encryption from [1], the main
difference is that the secret key is derived from the message using a hash func-
tion which has algebraic properties. Thus, we avoid generic NIZK [11], gaining
efficiency. More precisely, the message M is cut into small blocks (m1‖ . . . ‖m`)

of ρ bits, and the key is computed as kM =
∏`
i=1 a

mi
i mod p for publicly known

ai’s. By using Theorem 2, we prove that if the messages come from a source with
high enough min-entropy, the key kM is indistinguishable from a uniform key.

These blocks mi are chosen small enough to be efficiently decrypted, as we
encrypt them using the ElGamal encryption with messages in the exponent, and
the key kM : T1,i = grii and T2,i = hmi · gri·kMi . In order to achieve DC, those
equations should be included in the NIZK proof.

It remains to create a suitable tag, which is done by using the same technique
as in [1]. More precisely, we provide a pair (τ1 = tu1 , τ2 = tu·kM2), which will make
it possible to detect a duplication using a pairing computation. We add the
following relations to the NIZK proof: τ1 = tu1 and e(τ1, t2)kM = e(t1, τ2).

We finally provide a Pedersen commitment C of the mi’s using a generator
x of Zp and a random s: C =

∏`
i=1 a

mi
i · xs = kM · xs mod p.

The main point regarding our NIZK is that we need to prove that the secret
kM (as an exponent for the groups G1 and GT) involved in the tag, the com-
mitment and the ciphertexts is the same secret kM as the one (as an element
of the group Z∗p of order p) computed from the message. Regarding the tag and
the ElGamal ciphertext equations, the key kM is seen as an exponent, and we
can thus use standard and efficient ZK proofs à la Schnorr [16], making them
non-interactive using the Fiat-Shamir heuristic [9].

12

The correctness of the commitment is easily proven. It remains to make
the link between the message and the key. Equation e(τ1, t2)kM = e(t1, τ2) can
be rewritten as: e(τ1, t2)C = e(t1, τ2)x

s

. Proving that this last equation is true
involves the use of a double discrete logarithm. We use the techniques from [17]
described in Section 2, which alter the efficiency of our construction.

Description

In this section, we formally describe our verifiable message-locked encryption Λ.

– PPGen. Let λ be the security parameter, and `, ρ be integers. The parameter
generation consists in generating a bilinear environment (p,G1,G2,GT , e)
where p is a λ-bit prime, G1, G2 and GT are three multiplicative groups of
same order p and e : G1 ×G2 −→ GT is a bilinear asymmetric pairing. Let
t1, {gi}i=1,...,`, h be generators of G1 and t2 be a generator of G2. We finally
need `+ 1 public elements x, a1, . . . , a` that generates Z∗p.
pp = {p,G1,G2,GT , e, t1, {gi}i=1,...,`, h, t2, x, {ai}i=1,...,`}.

– KD. On input public parameters pp and a message M = (m1‖ . . . ‖m`) di-

vided into ` blocks of ρ bits, it computes the key kM =
∏`
i=1 a

mi
i mod p.

– Enc. On input public parameters pp, a message M = (m1‖ . . . ‖m`) and a
key kM , the ciphertext is computed as follows:

1. uniformly pick u ∈ Z∗p, compute τ = (τ1, τ2) = (tu1 , t
u·kM
2);

2. uniformly pick s ∈ Z∗p and compute a Pedersen commitment over the

mi’s: C = kM · xs =
∏`
i=1 a

mi
i · xs mod p;

3. for all 1 ≤ i ≤ `, pick uniform and independent ri ∈ Z∗p and compute

T1,i = grii and T2,i = hmi · gri·kMi ;
4. compute the following non-interactive zero knowledge proof

π = NIZK
(
u, {ri}i=1,...,`,M, kM , s : τ1 = tu1 ∧ e(τ1, t2)kM = e(t1, τ2)

∧ T1,1 = gr1 ∧ · · · ∧ T1,` = gr` ∧ T2,1 = T kM1,1 g
m1 ∧ · · · ∧ T2,` = T kM1,l g

m`

∧ C =
∏̀
i=1

ami
i · x

s ∧ e(τ1, t2)C = e(t1, τ2)x
s
)
.

Finally output c = (τ, {T1,i, T2,i}i=1,...,`, C, π).
– Valid. On input a ciphertext c = (τ, {T1,i, T2,i}i, C, π), this algorithm outputs

1 iff π is correct.
– Dec. On input pp, a key kM and a valid ciphertext c, the procedure is:

1. for all i ∈ {1, . . . , `} compute hmi = T2,i/T
kM
1,i as in a standard ElGamal

decryption procedure;
2. for all i ∈ {1, . . . , `}, retrieve the mi with a discrete logarithm computa-

tion (this step is made possible by the choice of a small ρ);
3. output M = (m1‖ . . . ‖m`).

13

– EQ. On input pp and two valid ciphertexts c = (τ, {T1,i, T2,i}i, C, π) and

c̃ = (τ̃ , {T̃1,i, T̃2,i}, C̃, π̃), parse τ as τ1 = tu1 and τ2 = tu·k2 and τ̃ as τ̃1 = tũ1
and τ̃2 = tũ·k2 . This algorithm outputs 1 iff e(τ1, τ̃2) = e(τ̃1, τ2).

Correctness. Correctness is directly derived from the correctness of the El-
Gamal encryption scheme and properties of bilinear maps.

6 Security and Efficiency Arguments

6.1 Privacy

Theorem 4. Let ε and µ be two non-zero positive reals, p a prime number and
T ,` be integers such that µ > log p+ log(T) + 2 log(1/ε). Our scheme Λ is PRV-
piCDA secure for (T, µ)-block sources under the (T, `)-bl-DDH assumption in the
random oracle model.

Sketch of Proof. As the inner product 〈·, ·〉 :
(
Z`p
)T → Zp is a 2-universal hash

function, we can apply Theorem 2: the keys extracted from the adversarially
chosen (T, µ)-block source random variable M = (M1, . . . ,MT), will be indistin-
guishable from uniform. More precisely, if µ ≥ log(p) + log(T) + 2 log(1/ε), the
distribution of the keys is at distance ε from the uniform distribution in Z`p×ZTp .

We construct a simulator S of the real-or-random encryption oracle against
which qH -query (T, µ)-block source polynomial-sampling complexity adversary
A for the PRV-piCDA game has advantage exactly 1

2 , using a sequence of games.

Game G0. This is the original game. We consider an adversary A able to
break the PRV-piCDA security. In this game, A chooses a distribution M of the
messages. She then queries the real-or-random oracle. Only after the query to
this oracle, the public parameters of the scheme are generated.

The adversary A has access to a vector of T ciphertexts and she must return
the value b′ (real or random), matching how the plaintexts were generated by
the real-or-random oracle. Let Si be the event that b = b′ in game Gi. We have:

AdvPRV−piCDAΛ,A (λ) =
∣∣∣Pr
[
Expreal

Λ,A = 1
]
− Pr

[
Exprand

Λ,A = 1
]∣∣∣ = 2

∣∣∣∣Pr(S0)− 1

2

∣∣∣∣ .
Game G1. In this game, S simulates the T non-interactive zero-knowledge

proofs, using the random oracle, rather than computing them. The advantage
of A against the zero-knowledge property of the NIZK proof is bounded by
AdvzkΠ,A(λ) . Moreover, this simulation is computationally indistinguishable for
A if there is no collision in the requests of the hash oracle. Let qH the number
of queries A makes to the random hash oracle.

|Pr(S0)− Pr(S1)| ≤ qH
2ρ`T pT (2+`)

+ AdvzkΠ,A(λ).

Game G2. We address the key generation. Instead of computing the keys
with the KD procedure, S draws keys uniformly from Zp. From now on, the en-
cryption key does not depend on the messages. From Theorem 2, (kM1

, . . . , kMT
)

14

is at distance ε from the uniform distribution in ZTp , independently on how the
messages were generated: |Pr(S1)− Pr(S2)| ≤ ε.

Game G3. With those simulated keys, the view of the adversary is exactly
a (T, `)-bl-DDH instance. Let B be an adversary against (T, `)-bl-DDH, then for

all B, we have: |Pr(S2)− Pr(S3)| ≤ Adv
(T,`)-bl-DDH
B (λ).

Game G4. In this game, S behaves as the real-or-random oracle, computing
a Pedersen commitment over the mi’s. Thus we have Pr(S3) = Pr(S4).

Moreover, A’s advantage for breaking the indistinguishability of the Pedersen
commitment is exactly 1

2 , as it is perfectly hiding. Then we have:∣∣∣∣Pr(S0)− 1

2

∣∣∣∣ ≤ AdvzkΠ,A(λ) +
qH

2ρ`T pT (2+`)
+ ε+ Adv

(T,`)-bl-DDH
B (λ),

and the probability for A to win the PRV-piCDA game is negligible. ut

6.2 Tag Consistency and Deduplication Consistency.

Theorem 5. Our scheme Λ is tag consistent as that the key derivation function
is collision-free (the inner product is a 2-universal hash-function).

The proof derives from the EQ procedure : the bilinearity property of the
pairing implies that if two ciphertexts are considered duplicate, then the keys
used to genrate them must be equal. Which means thatA is able to find collisions
for the key-derivation function with non-negligible probability.

Theorem 6. As a Pedersen commitment is computationally binding, our scheme
Λ is deduplication-consistent in the random oracle model.

As our construction is an instantiation of the generic construction given Sec-
tion 4, the proof of this theorem directly follows from the proof of Theorem 3.

6.3 Efficiency

As [1] and [3], we improve upon security of convergent encryption, resulting in
a loss in efficiency. We are however obviously more efficient than [1] as it uses
generic NIZK (for a hash function represented as a circuit) and than [3] as it
uses several times a fully homomorphic encryption. But a complete comparison
is difficult as the three schemes achieve completely different security properties.

The most time and space consuming steps of our construction are the NIZK
proof computation (especially the double logarithm), and the decryption which
requires ` small discrete logarithm computation.

Acknowledgment

This work is supported by the European Union SUPERCLOUD Project (H2020
Research and Innovation Program grant 643964 and Swiss Secretariat for Edu-
cation

’
Research and Innovation contract 15.0091) and by ERC Starting Grant

ERC-2013-StG-335086-LATTAC. The authors want to thank Benoit Libert,
Olivier Sanders, Jacques Traoré and Damien Vergnaud for helpful discussions.

15

References

1. M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev. Message-locked
encryption for lock-dependent messages. In Advances in Cryptology - CRYPTO
2013. LNCS, vol. 8042 pp. 374–391, 2013.

2. M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable
encryption. In Advances in Cryptology - CRYPTO 2007. LNCS, vol.4622, pp.
535–552, 2007.

3. M. Bellare and S. Keelveedhi. Interactive message-locked encryption and secure
deduplication. In Public-Key Cryptography - PKC 2015. LNCS, vol.9020, pp. 516–
538, 2015.

4. M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-locked encryption and
secure deduplication. In Advances in Cryptology - EUROCRYPT 2013. LNCS,
vol.7881, pp. 296–312, 2013.

5. D. Boneh, A. Sahai, and B. Waters. Fully Collusion Resistant Traitor Tracing with
Short Ciphertexts and Private Keys. In Advances in Cryptology - EUROCRYPT
2006. LNCS vol. 4004, pp. 573–592, 2006.

6. K. Chung and S. P. Vadhan. Tight bounds for hashing block sources. In APPROX
2008 RANDOM 2008. LNCS, vol.5171, pp. 357–370, 2008.

7. L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: Making backup cheap and
easy. In Proceedings of the 5th Symposium on Operating Systems Design and im-
plementation, OSDI ’02. ACM, pp. 285–298, 2002

8. J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer. Reclaiming
space from duplicate files in a serverless distributed file system. In ICDCS, pp.
617–624, 2002.

9. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Advances in Cryptology – CRYPTO’86. LNCS, vol.263,
pp. 186–194, 1986.

10. The Flud backup system. http://flud.org.
11. J. Groth. Short non-interactive zero-knowledge proofs. In Advances in Cryptology

– ASIACRYPT 2010. LNCS, vol.6477, pp. 341–358, 2010.
12. R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-

way functions. In Proceedings of the Twenty-first Annual ACM Symposium on
Theory of Computing, STOC ’89. ACM, pp. 12–24, 1989.

13. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Advances in Cryptology - CRYPTO ’91. LNCS, vol.576, pp. 129–140,
1991.

14. David Pointcheval, Jacques Stern. Security Arguments for Digital Signatures and
Blind Signatures. In J. Cryptology 13(3), pages 361-396, 2000.

15. A. Raghunathan, G. Segev, and S. P. Vadhan. Deterministic public-key encryp-
tion for adaptively chosen plaintext distributions. In Advances in Cryptology -
EUROCRYPT 2013. LNCS, vol.7881, pp. 93–110, 2013.

16. C.-P. Schnorr. Efficient identification and signatures for smart cards. In Advances
in Cryptology – CRYPTO’89. LNCS, vol.435, pp. 239–252, 1989.

17. M. Stadler. Publicly verifiable secret sharing. In Advances in Cryptology – EU-
ROCRYPT’96. LNCS, vol.1070, pp. 190–199, 1996 .

18. Z. Wilcox-O’Hearn and B. Warner. Tahoe: The least-authority filesystem. In 4th
ACM Workshop StorageSS ’08. ACM, pp. 21–26, 2008

19. G. Yang, C. H. Tan, Q. Huang, and D. S. Wong. Probabilistic public key encryption
with equality test. In Topics in Cryptology – CT-RSA 2010. LNCS, vol.5985, pp.
119–131, 2010.

16

