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DISPLACEMENT FROM THE APPARENT VERTICAL IN 
FREE FALL. 

BY WILL C. BAKER. 

SYNOPSIS. 

A simple method is given of obtaining the displacement by operating in fixed 
space. It is simple and permits one to visualize the southward component. An 
appreciable difference in the result is obtained according as the trajectory is treated 
as a parabola or an ellipse, the expression found in the latter case being only two 
thirds that found for the former. 

T N looking over the various treatments of the equatorward deflection 
-*- of a freely falling body, the method herein described has not been 
found. It brings into prominence certain features that are perhaps 
worthy of record. The case dealt with is that of a body falling towards 
a homogeneous spherical earth that revolves uniformly about a fixed 
axis. These assumptions are common to most of the methods found, 
very few taking account of the earth's equatorial protuberance. 

Let the figure represent a sphere of radius Rh fixed in space; and let 
the earth be represented by a second sphere, coincident with the fixed 
sphere at time t = o, but rotating about the axis OC, with the small 
uniform angular velocity w. AF represents a material rod of height h, 
fixed in the rotating sphere at latitude X, and normal to the surface at 
the point A. FD is a plumb-line that takes the position shown due to 
the fact that it is in uniform circular motion about OC. Its direction 
gives the apparent vertical at the point A, as it is at rest with regard to 
the rotating sphere. The bob D is supposed to hang just above the 
spherical surface, and in its rotation to trace out the small circle DBK. 
Consider now a mass m released from the point F at time t = o, and being 
at the moment of release at rest with regard to F. In space this body 
has at time t = o an initial velocity 

(R + h) co cos X 

along FH, which is normal to the plane of the circle DAC, and it will 
experience in space an acceleration g directly towards O. Thus its 
trajectory will lie in the plane OFHM which is fixed in space and which 
cuts the fixed sphere in the great circle ABL. It will appear later, how­
ever, that the body under these conditions always falls on the portion BL. 
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As the plumb-bob is in uniform circular motion in the small circle 
DBK, it has the normal accelerating force rarco2, along the radius r of 
that circle. This force is due to the resultant of the two forces acting 
on the bob, viz., (1) the tension of the cord mg, along DF, where g is the 
apparent value of the acceleration due to gravity at the point D; and 

Fig. 1. 

(2) its true weight mg along DO where mg measures the force with which 
the bob is attracted towards the centre 0. The relation of these vectors 
is shown in the upper part of the diagram. From this 

mg sin 6 = mroo2 sin X 

or 

sin 6 
rco2 sin X 

R cos X w2 sin X 

And, since 6 is small, the arc z {i.e., AD) = h sin 6 = 

The angle z, subtended by the arc z at 0, is given by 

ho)2 sin X cos X 

hRco2 sin X cos X 

g 

and this has a maximum value for X = 450. 
In the spherical triangle ABC cos a = cos (b + z) = cos c cos b since 

the angle at A = w/2, 
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cos (b + z) 
cos c = 1— 

cos b 

= cos z — sin z cot X, for cot X = tan b 

z2 z4 ( z2 

= I . + —,••• - « + - , • " 
2! 4! v 3! 

Now even if we take h as 40,000 cm., which is the greatest value for 
which I can find1 any experiments, and if we consider these to have been 
made in the latitude of greatest southerly deviation (450), z is found to 
be 1.07 X io~7 radians, and the terms in z2 would appear only in the 
fourteenth place of decimals. Thus to this degree of approximation 

cos c — 1 — z cos X 

which on substituting the value of z gives 

1 — hoo2 cos2 X 
cos c — • ---

g 
but from the cosine series 

cos c — 1 -\—; 
2 ! 

to terms in c2, therefore on comparison 

and the arc c (i.e., AB) = Rvyl— cos X, showing that B is the point 

occupied by the plumb-bob at the instant that the falling body strikes 
the spherical surface (the angle ABD being small, as it always is) for 
this is the angle that D moves through in the time of fall ( ^2h/g when we 
neglect terms in w2). 

Consider next the trajectory in the fixed plane OFHM. It would 
appear at first sight that on account of the very small rotation of the 
earth during the fall no appreciable difference would result from treating 
this as a parabola or as an ellipse. If we denote the point of impact 
on the line BL from a parabolic path as N, and that from an elliptical 
path as Nf the two distances AN and AN' will differ only by a very 
small part of either line, but when we realise that it is the difference BN 
or BNf that we seek, and that AB is nearly as long as AN or as AN' it 
becomes evident that our result depends on the differences between 
quantities of the same order of magnitude, and that quantities otherwise 
insignificant become of importance.2 

1 Rundell, quoted by E. H. Hall, PHYS. REV., Vol. XVII., p. 186, 1903. 
2 Even in the case of the extreme height quoted the distances are as follows: AB = 295955 

cm., AN = 295973cm,, AN* — 295967 cm., differences of the order of 5/1000 of a per cent. 
but AN — AB = 18 cm., AN' — AB = 12 cm., and these differ by 66 per cent. 

) COt X. 
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Taking the line of action of the acceleration as constant, we have a 
constant horizontal velocity of (R + /?)<*> cos X during the fall (t) and 
the resulting value of AB will be (R + h)cd cos X and subtracting the 
value of AB = orf cos X we have 

BN = (R + h)<ai cos X - Rut cos X 

= had cos X 

= %oogid cos X since h = \gf. 

This is of course along the great circle, and we get the easterly and the 
southerly displacements by multiplying this by the cosine and the sine 
of the angle ABD. 

ABD = sin"1 -*— 
AB 

hRoo2 sin X 
= sin-1

 T T T T I T : o r v e rY nearly, 
g(R + h)<at 

, hco sin X 
= sin-1 =— . 

Turning now to the elliptical path, take axes of X and Y respectively 
as OF and OM. We have for the component acceleration parallel to X 

d2x gR2x 

also the initial velocity along FH 

( dx\ 
(R + h)ca cos X 

Writing 
fdx\ fd2x\ (d*x\ 

we get 
- / „ n - goiiz cos X 
x = (ic + A)w/ cos X — 

o 
where x and t indicate the values of these two quantities at the instant 
of impact. Now treating this value (BNr = x) as in the case of the 
parabolic path wre find for BNf 

\o)gtz cos X 
which is the Gaussian expression usually obtained by a transformation 
to rotating axes. It differs from the value obtained on the parabolic 
path simply by the factor two thirds as explained above. 
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