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ON FUNCTIONS GENERATED BY LINEAR DIFFERENCE
EQUATIONS OF THE FIRST ORDER

By E. W. Barngs.

[Received March 23rd, 1904.—Read April 14th, 1904.—Revised July 7th, 1904.]

1. The most simple solution of the linear difference equation of the
first order whose coefficients are meromorphic functions is, in general,
a one-valued function with sets of simple sequences of poles tending to
infinity. When the coefficients are one-valued functions with essential
singularities in the finite part of the plane the solution has, in general,
sequences of such singularities.* It is proposed in this paper to show,
in connection with the difference equation

Pz+1)—P(x) = x(z),

where x (z) is a one-valued analytic function, that, in general, its solution
cannot be a solution of any differential equation of finite order and dimen-
sions unless either (1) the coefficients of the latter are obtained by differ-
entiation from the solution itself, or (2) from these coefficients and the
function x(z) and its differentials we can, by the fundamental process
of forming finite differences coupled with a finite number of elementary
algebraical operations, derive the solution itself.

In these cases we shall say that some of the coefficients of the
differential equation belong to a type which embraces the function which
is the solution of the difference equation.

The cases of exception to the previous general theorem will be
considered. It will also be shown that for the more general equation

P@+1)— (2) Pz) = x (@),

where -(z) and x(z) are one-valued analytic functions, a similar result
holds good.
The theorem includes as a special case one proved by Holdert for

* In connection with these statements reference may be made to Guichard, dnn. de I’ Ecole
Noymale Supérieure, 5 Sér., T. 1v. ; Mellin, Acta Mathematica, T. xv., pp. 317-384 ; Hurwitz,
Acta Mathematica, T. XX., pp. 285-312, and T. xx1., p. 243. I hope to develop the theory in a
future paper.

+ Holder, Mathematische Annalen, Bd. xxvm., pp. 1-13; see also Moore, Mathematische
Annalen, Bd. XLVIIL., pp. 49 et seg. Hiolder's theorem affirms that the gamma function cannot
be a solution of a linear differential equation with algebraic coefficients. He states (loc. cit.) that
the proposition was communicated to him verbally by Weierstrass.
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the gamma function and extended by the author* to G and double gamma
functions. It is important as showing that the linear difference equation
of the first order gives rise to new classes of transcendants which cannot
be generated, as are so many functions, by differential equations.

2. If we have a differential equation of finite order and dimensions, we
may write it Flovy, o . ™) =o, A)

where f is integral in y, ¥, ..., y™. If the equation be of order n and
dimensions m, the terms of class s are defined to be terms of the type

ym, (y(l))m, . (y(n))"‘un’
where my+2mg+...+n4 )M = s.

Terms of zero class will be independent of y and functions solely
of the independent variable z. We assume that the differential equation
has for its coefficients one-valued analytic functions of x. The variable
z is assumed to be real or complex without restriction.

8. TerorEM.—If the solution of the previous differential equation (A)
be also a solution of the linear difference equation

P@E+4+1)— P(x) = x(2), B)

where x(z) is a uniform function of z, the equation (A) can be so
reduced that terms of the highest class are of the form

fa ($) %s?’k (SB) st;

where the ¢'s are simply-periodic functions of z of period unity and
s@ denotes symbolically some product

ym| (y(l))mq . (y('ll))'"‘tnl
of class s.
Let the terms of highest class s in the original equation (A) be (r,+1)
in number. They can be written symbolically

Ro (z) aQo+R1 (x) 0Q1+ et Rr), (x) SQW;

where the R’s are one-valued functions of z.

Divide the equation throughout by R,(z), and subtract this equa-
tion from the one formed by changing z into (x+1). Then, since a
solution f (z) satisfies the difference equation (B), the original differential

* Quarterly Jowrnal of Mathematics, Vol. XXX1., pp. 310-314: Phil. DTruns. Hoy. Soe.. (A).
Vol. cxovi., pp. 384-387.
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equation must be reducible to
% [Bilz+1) Ry (2)
2 Rers @ et~ E8 Q@) ]
+.:Qo {f@+1)! —Q, {f(@)} + terms of lower class = 0,

provided this latter equation be not a mere identity.
Now

Qe {f @+ = Q { f@+x@)] = @k {f (@} + terms of lower class.

Hence f(z) satisfies a differential equation of which terms of highest
class are

< [Bi(z+1)  RBi(x) |
2 [Ro(z+1) R, @) Qs 1S @)}

Wae can now repeat the previous process and reduce the equation to one
with fewer terms of class s, unless all the coefficients

Riz+1) _ Bi(2)
Ry(z+1) R,

k=1,2,..,7)

vanish identically.
By (z)
Ry (2)

In the latter case the ratios

are simply-periodic functions of

period unity.
In the former case we either arrive at another alternative of this
nature, or obtain a differential equation with a single term of class s.
Finally, therefore, we reduce the differential equation to one in which
the terms of the highest class s can be written in the form

filz) %[a¢k () Q@ )],

the ¢’s being one-valued simply-periodic functions of x of period unity,
and f,(z) being a one-valued function of z.

4. Suppose now that the reduced differential equation is

f (@) TE {sr (@) Q@) } + rlg -1y (@) s-1Qx (¥)]+ terms of lower class = 0,

where the Y’s are one-valued functions of z.
Since y = f(z) satisfies the difference equation (B), we have

@ f+1] = y™+x"(2).

Hence, when z is changed into z+-1,

SQk(y) = 'y'”ll(y')'mz cee (.y(n))lmntl
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becomes

11 [ {y?+x@)} "]

— . O | e (e —1) (xO@)?
= Q) ,1+ EO Mrs1 xy(r) + ,Eos = 2!+l _lem [

) (p) (72)

' X&) x"()

% 23”7"’!*1 a’mfrgi»l y(")'y("-’) vee e
(ry=13)

Divide the reduced differential equation by f;(z), change .« into
(z+1), and subtract the reduced equation divided by f;(z). We obtain

L s (@+1) oy a=1Yr(@) .
k§1[ fo@+1) -1Qr @) f.@) s—le(y)]

+ er My 5@ () X%S‘P’»‘ (r)+ terms of class (s—2)
k=1

+terms of lower classes = 0.

5. The terms of class (s—1) in this equation will persist unless we
have a series of equations of the type

s-l\bk(x'*' 1) _ a—l\kk(z) I
FatD | g@ o x@eda: By

Corresponding to some values of % the terms on the right-hand side
will vanish. This cannot, however, happen for all the 7, values of A
unless there is no factor y:"™ in any of the terms of class s of the original
reduced equation.

. by
Hence, either some of the coefticients ,_ i (x) are such that '}"VT;;I)

is a function which is a solution of a difference equation of the type
P+1)—P(@) = — gy x(@) ¢ (@) ;

or ;my = 0 for each of the terms ,Q.(y), and the differential equation

may be written

@] 3 @ Q)+ Fl s 1@ 41 Q (y)]+ terms of lower class = 0,
k=1 =

where the ¢’s are simply-periodic functions of # of period unity. In this
differential equation the terms ,Qi(y) do not involve y apart from its
differentials with regard to z.
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Take the latter of the two alternatives thus presented, and let terms
of class (s—2) in the differential equation just written be

,21 Lok (@) o—aQi ))-

If from this differential equation we now form the reduced equation,
it will be of lower class than (s—1) and the terms of class (s—2) will be

k‘z'l 'L}\,lfﬁ; 1) _Qf%(;(x [ -2Qe@) + z @) Q@) Bmax_;_

+ é:s-@k(ﬁ?) s-ka-Qz/) s=11 )—(-(yy-—) .

These terms will persist unless the functions s;}%;—- (or some of them)

satisfy a difference equation of the type

P(z+41) =P (z) = — myr (@) XV (@) —,_ 1, 191 () X ().

Both the constants ,m; and ,_;m, may vanish when, and only when,
none of the terms of class s in the original reduced differential equation
involve y or y' apart from their differentials with regard to z, and none
of the terms of class (s—1) involve y.

6. Repeating the process, we see that ultimately :—(1) Either some
of the coeflicients of the differential equation, when written in the form

9¢L(I) @Qr(y) + terms of lower class = 0,

must satisfy a difference equation of the type

P@+)—P(@) = I ax"@ () ©

where the constants @ do not all vanish; or (2) the differential equation
must be of the form

B @) (™)™ 4 2}3 sm19(@) 5-1Qk {1y, Yy}
+ ? s—2¢k(z) R—')Qk {y(‘""'?), y""‘l)’ y(n)} + .

+ ?s—}s (L § 3-—an : Y, y(‘)’ CRXY ’.l/("’}

+ terms of lower class than (s—n) = 0,
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where s = (n+1) #m,.+ and the ¢'s are one-valued simply-periodic fune-
tions of period unity; or (8) the differential equation can be reduced to
one of lower class, in which terms of highest class persist.

If now we consider case (2) and reduce the equation last written,
we get a differential equation of class (s—n), of which the terms of
highest class are

> 18- \bk (x+ 1) —_ l-ﬂMx) ’_
s U file+1) fo@)

+Z51 @) sorma XD (@) [y ™" [y T 4

s—an (y) +8¢ (T) M 41 X(") (x) [y("')]muo =1

These terms of highest class exist unless some of the functions s‘}——"ﬁ‘——;‘ﬂ
s (x

satisfy difference equations of the form
n—1
Px+1)—P @) = —mypr1.¢ @ X)) + T a.x7 (@) ¢r(2),
r=0

which is of the same type as equation (C).
In this last difference equation the terms on the right-hand side only
vanish when x (z) satisfies a differential equation of the form

Mt E;:% P @) = E o %Y I ¢r

Thus either (1) the original differential equation can be reduced to one
of lower class in which terms of the highest class persist, or (2) it has
coefficients which, when the terms of highest class are written in the form

2 @) .0:0),

are solutions of a difference equation of the type
P+1)—P(@) = ?0 a, ¢ (z) X (2), ©

in which all the coefficients a, on the right-hand side are certainly not
zero.

7. In the first case we can again reduce the equation to one of lower
class, and so on indefinitely, unless the second alternative occurs again.
Ultimately, we either are forced to the second alternative, or we get an
equation whose class is unity, that is, an equation

h(z)y+k(z) =0,
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which is not a differential equation, and whose coefficients must be such
that — %—% is & solution of the difference equation (B).

Suppose now that the antepenultimate reduced equation to the one
just written is

¥ +p1(@)y+py @) y* +ps @) =0, )

which is of class 2, and the most general form of equation of this class.
We reduce it to

2t 21+ 1)—p (@) —2p,y(z+1)x
Palz+1)—py (@)

42T D Xtps e+ D)—ps@+X _
Pa(z+1)—py(2) ’

or (say) P+a@y+g@ = 0.
And, reducing this, we get

¥ e+ —g@—2x; +q, @+ D)x+x + 93+ 1)—gy(2) = 0.

We see therefore that by taking the coefficients of the equation (1),
forming similar functions when (z+-1) is substituted for z, and taking
rational combinations of these quantities and x and x’, we can form a
solution of the difference equation (B). Hence the coefficients of (1) must,
all or some of them, be functions from which, by the fundamental process
of forming finite differences coupled with a finite number of elementary
algebraical operations (addition, subtraction, multiplication, or division),
solutions of the difference equation (B) can, with the aid of x(z) and its
derivates, be built up. Some of them must therefore be one-valued
functions with infinite sequences of zeros or poles arranged in a manner
which is in striet correlation to the distribution of zeros and poles which
characterises the nature of the solution of the difference equation. The
coefficients may, of course, be more complex functions than the functions
which are solutions of the difference equation; for the process of forming
finite differences may materially simplify the distribution of zeros and
poles. This would be the case when the coefficients are derived from
linear difference equations. And so, for instance, the gamma function
might be a solution of a differential equation whose coefficients were built
up with the aid of double gamma functions. But the gamma function
can be derived, without the intervention of differential equations, by the
ordinary process of forming finite differences from the double gamma
function. Thus this possibility does not affect the main object of this
paper, which is to show nof that by means of differential equations we can
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go from functions which are more to functions which are less complex, but
that we cannot proceed wvice versa, the more complex functions being
obtained from the less complex by the process of difference integration.
It we proceed successively backwards, we see that all the previous remarks
about the nature of the coefficients of the differential equation (1) must be
true of the coefficients of the original differential equation.

8. Consider now the second alternative of § 6.
We have the difference equation

P(z+1)—P(z) = EO ar ¢ (x) X7 (@), ©)

in which any but not all of the a’s may vanish.

[When the upper limit for r is n, a4 is not zero.]

Let the solution of Px+1)—P(z) = x (x)
be G (2)+ ¢ (),
¢, (x) being & simply-periodic function of z of period unity. The solution
of P@+1)—P@) = x (@)
will be G"(z)+ ¢, (@).
Hence the solution of the difference equation (C) will be

§n an e (£) GV (2)+ ¢ (2).

Thus in this case the coefficients of the original differential equation must
be functions which may be obtained from the solution of the original
difference equation (B) by the process of differentiation.

9. We have, however, still to consider the particular case when the
difference equation (C) reduces to

Pxz+1)—P(zx)= 0.

This will happen if x (z) satisfies the linear differential equation

n

Y —
r§0 ArPr (x) d'? =y (Cl)

in which the functions ¢ are uniform functions simply-periodic of period
unity.

Consider the case in which the ¢'s are meromorphic functions with a
single essential singularity at infinity. This is equivalent to assuming
that the coefficients of the original differential equation (A) are also mero-



288 Rev. E. W. Barngs [July 7,

morphic. In this case one of the fundamental solutions of (C,) is* given

by an aggregate of the type :g: z*®,(z), where P;(z) denotes a simply-

periodic function of the second kind which satisfies the difference equation
P z+1) = i),

where ¢’ is the I-th root 7-ply repeated of the fundamental equation of
(C) and (1 L m L 7).

The number 7, which intervenes must of course be €n. When the
roots of the fundamental equation of (C,) are all different the numbers 7,
are all unity.

We see then that it is possible that the solution of the difference
equation -1

P@z+1)—P(@) = EO 2+ Py (z), D)

or a sum of solutions of such equations, may satisfy a differential equation
of finite order and dimensions whose coefficients, supposed meromorphie,
are not of a type which, in the language of § 1, embraces the solution of
the difference equation.

10. Let us consider the solution of this difference equation.

Since P (z) satisfies  Pi(z+1) = ? (),
we have P, (x) = e*p; (z),
where #,(z) is a simply-periodic function of period unity.

Hence a solution of P(z+1)—P(z) = $(z)

Dy (z)
f—1

is

+# ().

The solution of (D) is composed of the sum of solutions of equations of
the type Ple+1)—P(@) = o', (). (E)
Put P (z) = "py(2) Q (@),
and this equation becomes

€Q+1)—Q () = 2%
of which a solution is

Q(z)=—‘r‘1+"’j (=)t

21 1—ef*

¢ Forsyth, Differential Equations, Part mx., Vol, 1v, (1902), p. 415.
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the integral being taken round the usual contour for the Riemann ¢
function.* This solution may be readily verified by substitution.
Hence the solution of the equation (E) ig

P (z) {%Si____geﬁz—' (—2)~F1dz ] +¢ ().

k! e
{1—69—2} {—Z}k+1 ¢
It is thus an extended Bernoullian number, which we may denote by
Si(z, 6). It is evidently, in general, a polynomial in z of degree k. [It
i of degree k+1 when ¢’ =1 and we have real Bernoullian numbers.]

The solution of (E) is therefore

(@) € S (z, 0) +¢ ().

Hence the solution of (D) is

The integral is equal to the residue at the origin of

m—1
;Eo [e* @i (@) Sk (z, 0)]+# (),

which is the type of function generated by linear differential equations
with simply-periodic coefficients.

11. Thus it is possible that a differential equation may admit as a
solution a sum of terms of the type

e pi.(z) S (z, 0),

which sum is a solution of a linear difference equation of the type (D),
when its coefficients are not of a type which embraces the solution.

The linear differential equation with constant coefficients is an example
of this peculiarity. This equation admits terms of the type ¢*z* as solu-
tions. Such terms satisfy a linear difference equation of the type (B), but
it would be absurd to say that some of the constant coefficients of the
differential equation belong, in the language of §1, to a type which
embraces the solution Ze*z".

As another example, we may take the linear differential equation with
meromorphic simply-periodic coefficients of period unity. This equation,
when the roots of its fundamental equation are all different has simply-
periodic functions of the second kind as its independent solutions. These
functions are each a solution of a difference equation

Pz+1)—P(z) = x (@),

* See, for instance, & paper by the author, Messenger of Mathematics, Vol. XXIX., pp. 64-128.

SER. 2. VOL. 2. No. 869. U
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where x(r) is a simply-periodic function of the second kind. And the
simply-periodic coefficients of the linear differential equation obviously
cannot be said to belong to a type which embraces, in the sense we have
defined in § 1, the simply-periodic functions of the second kind which
are solutions.

12. We have, finally, the theorem :—

When the solution of the difference equation
Pz+1)—Plx) = x(2), B)

where x(z) is a meromorphic function, is not the type of function
that can be obtained as a solution of a linear differential equation
with uniform simply-periodic coefficients of period unity, it cannot be
obtained as the solution of any differential equation of finite order
and dimensions with meromorphic coefficients, unless either (1) these
coefficients are obtained by differentiation from the function itself,
or (2) from these coefficients and x(z) and its differentials we can by
the fundamental process of forming finite differences coupled with a
finite number of elementary algebraical operations, derive the solution
itself.

In the more general case when y(z) is not meromorphic, but has
essential singularities in the finite part of the plane, it must satisfy a
linear differential equation with simply-periodic coefficients of period unity
if the solution of the difference equation is also to be a solution of a
differential equation of finite order and dimensions with uniform co-
efficients whose coefficients do not some of them belong to a type which
embraces the solution itself.

18. We may now extend the previous theorem to the case when the
difference equation (B) is of the more general type

Pz+1)—y (2) P(z) = x(@). )]
Let G(z) be a particular solution of the equation
P+1)—y(z) P(z) = 0,

and let H ()4 ¢ (z), where ¢(z) is simply periodic of period unity, be the

general solution of

Plz+1)—P) = &_x(_“;)_l_)
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Then the complete solution of the equation (F') is obviously
P(@)= G) {Hx)+¢@)].

Pl |

G(z)

differential equation some of whose coefticients embrace H (z). That

is to say, either the coefficients of the differential equation for

P(z) P(z)

@ are obtained by differentiation from T’ or from them and

By the theorem just proved an, in general, only be a solution of a

5%9:%-)_1_) and its derivates, by the fundamental process of forming finite
differences coupled with a finite number of elementary algebraical opera-
P(x)
G(z)

Therefore the coefficients of the differential equation for P(z) are
either obtained by the finite combination of a finite number of differentials
of P(z) and G(z), or from them and a finite number of successive
-differentials of x(z), G(zx+1), and G(z) we can, by the fundamental
process of forming finite differences coupled with a finite number of
elementary algebraical operations, derive P(z).

Now, in general, G (z), which is the solution of

fle+1)—y () flz) = 0O,

is & much more simple type* of function than P (x), which is the solution
¢ :
° P@+1)—y @) P@) = x(@). (F)

Therefore we may say that, in this case, as in the previous one, the
solution of the difference equation cannot, in general, be the solution of a
differential equation of finite order and dimensions, unless some of the

coefficients of this differential equation are of a type which embraces
P (z).

tions, we can deduce

x ()

m can be

14. The fundamental case of exception occurs when

n-—1
expressed as the sum of one or more aggregates of the type kE z*e*py (z).
=0
n=1
In this ease x@ =G@+1)Z Z &oip(a),
: k=0
and the difference equation (F) is resoluble into a sum of others of the

type m=1
Pe+D)=y¥ @ P@ = G+l 2 ea'pi(),

® The further discussion of this point must be reserved for the investigation referred to in § 1.

U 2
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whose solution is G(z) { ’:2:); [e*8k(z, 6) Pk(z)]+69(x)} .

Now %'((—3 18 a solution of the difference equation
11— Py = ¥ @)
PE+1)—P(z) v

Hence the differential equation whose solution is

G' (z)
G ()

efficients functions belonging to a type which embraces (-(’% , 1.6, which

embraces G (z), unless %‘;—) is typified by £ ¢%“z'p;(z). Therefore, unless
1=0

¥ @ is of this character, the differential equation whose solution is of

Y (2)

the form

must have as co-

m—1
266) {2 #Si(e 0 p) o) |

must have as coefficients functions belonging to a type which embraces
solutions of the difference equation (F) when x(z) is zero.

When, however, \\% = z=zo e r'p, (z),
’
we have %((—:)2 = Eo e*Si(z, ) #1(z) ;

and therefore G (z) = exp Uz Zef” 8i(z, 0, (1:)].

Thus, for the complete case of exception to arise, the difference equation
(F) must be resoluble into a sum of others of the type

P(z+1)—exp Uz 1=20 eo'lepl(x)] P(z)

-1 z+1
= [“2 ezt g, (x)+P(x)] epr 2 Sz, 0) g (z):l-
k=0 =0



