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XXX[V.  On tile Pressure of Vibrations. 
By Lord HAYLEIG•, I~:R.S. ~ 

T HE importance of the consequences deduced by Boltz- 
mann and W. Wien from the doctrine of the pressure 

of radiation has naturally drawn increased attention to this 
subject. That ~thereal ~-ibrations must exercise a pressure 
upon a perfectly conducting, and therefore perfectly reflecting, 
boundary was Maxwell's deduction from his general equations 
of the electromagnetic field ; and the existence of the pres- 
sure of light has lately been confirmed experimentally by 
Lebedew. It seemed to me that it would be of interest to 
inquire whether other kinds of vibration exercise a pressure, 
and if possible to frame a general theory of the action. 

We are at once confronted with a difference between the 
conditions to be dealt with in ttle case of mthcreal vibrations 
and, for example, the vibrations of air. When a plate of  
polished silver advances against waves of light, the waves 
indeed are reflected, but the medium itself must be supposed 
capable of penetrating the plate; whereas in the corre- 
sponding case of aerial vibrations the air us well as the 
vibrations are compressed by the advancing wall. In other 
cases, however, a closer parallelism may be established. Thus 
the transverse vibrations of a stretched string, or wire, may 
be supposed to be limited by a small ring constrained t(~ 
remain upon the equilibrium line of the string, hut capable 
of sliding freely upon it. In this arrangement the string 
passes but the vibrations are compressed, when the ring 
moves inwards. 

We will commence with the very simple Fig. 1. 
problem of a pendulum in which a mass C is 
suspended by a string. B is a ring con- 
strained to the vertical line AD and capable 
of moving along i t ;  BC=/ ,  and 8 denotes 
the angle between BC and AD at any time t. 
I f  B is held at rest, BC is an ordinary pen- 
dulum, and it is supposed to be executing 
small vibrations; so that 8 = O c o s n t ,  where 
n~=g/l. The tension of the string is approxi- 
mately W, the weight of the bob; and the 
force tending to push B-upwards is at time t 
W(1--cos 8). Now this expression is closely ~ /  oi 
related to the potential energy of the pendulum, for which 

V = W/(1 --cos 8). 

Communicated by the Author. 
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On the .Pressure o f  Vibrations. 339 

The mean upward force upon B is accordingly equal to the 
mean value of V - - l ;  or since the mean value of V is half the 
constant total energy E of the system, we conclude that the 
mean force (L), driving B upwards, is measured by �89 Eft. 

From the equation 
L = � 8 9  . . . . . . .  (1) 

it is easy to deduce the effect of a slow motion upwards of 
the ring. The work obtained at B must be at the expense 
of the energy of the system, so that 

dE = --  L dl = -- �89 E dl/l. 

By integration 
E =E~I-~, . . . . . . .  (2) 

where E 1 denotes the energy, correspondin, g to l----1. From 
(2) we see that by withdrawing the ring B until l is infi- 
nitely great, the ~hole of the energy of vibration may be 
abstracted in the form of work done by B, and this by a 
uniform motion in which no regard is paid to the momentary 
phase of the vibration. 

The argument is nearly the same for the case of a stretched 
string vibrating transversely in one plane. The string itself 
ma),, ])e supposed to be unlimited, while the vibrations are 
confined by two rings of which one may be fixed and one 
movable. 

If the origin of x be at one end of a string of len~h l, the 
transverse displacement may be expressed by 

sin ~rx 2~rx 
=4,, t + ~ s i u  ~ + . . . ,  (3) 

�9 *. sin~rx . 2~r,v 
y = ~  - / - -  + ~  + .  (4) S l n - - ~  . . ,  

where ~i, ~b~, . . .  are coefficients depending upon the time. 
For the kinetic and potential energies we have resl~ectively 
(' Theory of Sound,' w 128) 

#=oo . #=Qo 82,/r2,4, 2 
T=�88 2 r v=�88 X -g-~. ,  (5) 

$ = 1  $ = 1  

in which W represents the constant tension and p the longi- 
tudinal density, of the string. For each kind of 4, the sums 
of T and V remain constant during the vibration ; and the 
same is of course true of the totals given in (5). 

From (3) 

;( ) dy _ r cos -~  + 2(b~ cos - ~ -  + . . .  , 
, d x .  

Z 2  
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340 Lord Rayleigh on the 

so that when x = l  
du = ( -  + +. . ) ,  
dx 

Accordingly the force tending to drive out the ring at 
x=l  is at time t 

7r  2 
� 8 9  ~ ( - ~ 1  + ~ r  + . . . ) ~ ,  

or in the mean taken over a long interval, 

� 8 9  p w," 

Comparin'g with (5)~ we see that the mean force L has the 
value 2/ .xmeanV; or since meanV~--meanT-----�89 E de- 
noting the constant total energy, 

L = E f l  . . . . . . . .  (6)  

The force driving out the ring is thus numerically equal to 
the longitudinal density of the energy. 

This result may readily be extended to cases where the 
vibrations are not limited to one plane ; and indeed the case 
in which the plane of the string uniformly revolves is espe- 
cially simple in that T and V are then constant with respect 
to time. 

If  the ring is allowed to move out slowly, we have 

dE----- - -L dl= --E dl/1, 
or on integration 

E = E I / - 1 ,  . . . . . . .  (7) 

analogous to (5), though different from it in the power of l 
involved. If  1 increase without limit, the whole energy of 
the vibrations may be abstracted in the form of work done on 
the ring, 

We will now pass on to consider the case of air in a 
cylinder, vibrating in one dimension and supposed to obey 
Boyle's law according to which p=a~p. By the general 
hydrodynamieal equation (' Theory of Sound,' w a), 

" ~ =  - ~7 �89 . . . .  (s) 

where ~b denotes the velocity-potential and U the resultant 
velocity at any point ; so that in the present case, if we 
integrate over a long interval of time, 

a 'S logrdt+ �89  fU'dt  . . . .  (9) 

D
ow

nl
oa

de
d 

by
 [

M
cG

ill
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
5:

56
 0

4 
A

ug
us

t 2
01

2 



.Pressure of Vibrations. 341 

retains a constant value over the length of the cylinder. 
Ifpo denote the pressure that would prevail throughout, had 
there been no vibrations, p--po is small and we may replace 
(9) by 

a ' f  {P-p:  ~ �89 (PToP~~189 . . (lO) 

The expression (10) has accordingly the same value at the 
piston as for the mean of the ~ hole column of length I. Now 
for the mean of the whole column 

S (p-P~ 
and thus i fpt  denote the value of p at the piston where x = l ,  

a' ~f  Pl--P~ (Pl~--: 0)2 ~ dt 

It is not difficult to prove that the right-hand member of 
(11) vanishes. Thus, expressing the motion in terms of r 
suppose that 

t~ s~rx s~rat (12) 
= c o s  - U  cos  - T -  . . . .  

Then 
P--To = Po ddp/dt, U = ddp/dx; 

and since po=a~po, we get 

\ d x ]  ~ \ - ~ ]  j dxdt,  

and this vanishes by (12). Accordingly 

j(p,-.~ t= ~(P' -p~ at _ v .  t j ~po " (13) 

Again by (12) 

at k 
so that 

Now Po j" U ~ dx dt represents twice the total kinetic . , mean 
energy of the vibrations or, what is the same, the constant 
total energy E. Thus if L denote the mean additional force 
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342 Lord Rayleigh on the 

due to the vibrations and tending to push the piston out, 

L = E 1-1 . . . . . . . .  (14) 

As in the case of the string, the total force is measured by 
the longitudinal density of the total energy; or, if we prefer 
:so to express it~ the ~ddir pressu~'e is-measured by the 
volume-densit) of the energy. 

In  the last problem, as well as in that of the string, the 
vibrations are ill one dimension. In the case of air there is 
no difficulty in the extension to two or three dimensions. 
Thus, if aerial vibrations be distributed equally in all di- 
rections, the pressure due to them coincides with one-thlrd of 
the volume-density of the energy. In the case of the string, 
where the vibrations are transverse, we cannot find an 
analogue in three dimensions; bu~a membrane with a flexible 
and extensible boundary capable of slipping along the sur- 
face, provides for two dimensions. I f  the vibrations be 
equall~ distributed in the plane, the force outwards per unit 
length of contour will be measured by one-half of the super- 
ficial density of the total energy. 

A more general treatment of the question may be effected 
by means of Lagrange's theory. I f  l be one of the coordi- 
nates fixing the configuration of a system, the corresponding 
equation is 

~/-t ~/i --7t/  + ' ~ / = L ,  . . . .  (15) 

where T and V denote as usual the expressions for the kinetic 
and potential energies. On integration over a-time tl 

f Ldt 1 1  '/dV 

If dT/dl: remain finite throughout, and if the range of integra- 
r be sufficiently extended, the integrated term disappears, 
and we get 

On the right hand of (16)the differentiations are partial, 
the coordinates other than l and all the velocities being sup- 
posed constant. 

We will apply our equation (16) in the first place to the 
simple pendulum of fig. 1, l denoting the length of the 
vibrating portion of the string BC. If x, y be the horizontal 
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Pressure of [~bratlons. 343 

and vertical coordinates of C, 

x = / s i n  ~,  y=l - - l cos  8; 
and accordingly if the mass of C he taken to be unity, 

T=[lr2(2--2cos~)+lrY.lsinS+�89 ~, . . (17) 

~r, b ~ denoting dl/dt, dO/dr. Also 

v=(dz ( i -  co~ 0) . . . . . .  ( i s )  
:From (17), (18) 

dV = g ( 1 - - c o s  (~), dT =l,O r sin ~ +  8'21. (19) 
dl d[ " 

These expressions are g~neral ; but for our present purpose 
it will suffice if we suppose that 1 r is zero~ that is tbat the 
ring is held at rest. Accordingly 

dV V d l  ~ 2T 
d [  = -[ '  d i  = - ( '  

and (16) gives 
j Ldt 1 ~V--2Tdt  

t~- = t , J  l . . . . .  (20) 

On tile right hand of ('20) we find the mean values of V and 
and of T. But these mean values are equal. In fact 

.i Vdt = S T  dt={Et ,  . . . . . .  (21) 

if E denote the total energy. Hence,  if L now denote the 
mean value, 

L=--�89 . . . . . .  (2"2) 
the negative sign denoting that the mean force necessary to 
hold the ring at rest must be applied in the direction which 
tends to diminish l, i..e. downwards. In former equations 
(1), (6), (14), L had the reverse sign. 

We will now consider more generally the case of one 
dimension, using a method that will apply equally whether 
for example the vibrating body be a stretched string, or a 
rod vibrating flexurally. All tha t  we postulate is homogeneity 
of constitution, so that what can be said about any part of 
the length can be said equally about any other part. In 
applying Lagrange's  method the coordinates are I the length 
of the vibrating portion, and ~bl, ~b.~, &c. defining~ as in (3), 
~he displacement from equilibrium during the vibrations. 
As functions of l, we suppose that 

V :r l", T ~ l". . . . . .  (23) 
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344 Lord Rayleigh on the 

Thus, if L be the force corresponding to l, we get by (16) 

fLdt_lf{,~V ~T) 
~dk7 dr, 

in which 
vd =. T d =�89 .t,, 

E representing as before the constant total energy. Accord- 
ingiy, L now representing the mean value, 

L = (m-- n)E 
2z . . . . . . .  ( 2 4 )  

In the case of a medium, like a stretched string, propagating 
waves of all lengths with the same velocity, m = - - 1 ,  n =  1, 
and L = - - E / 1 ,  as was found before. 

In the application to a rod vibrating flexurally, m = - - 3 ,  
n = 1, so that 

L = - 2 E / 1  . . . . . . .  (25} 

I f  re=n,  L vanishes. This occurs in the case of the line of  
disconnected pendulums considered by Reynolds in illustra- 
tion of the theory of the group velocity*7 and the circumstance 
suggest~ that L represents the tendency of a group of waves 
to spread. This conjecture is easily verified�9 I f  in conformity 
with (13) we suppose that 

V = V o l m r T = T O l" 4)i 2, 
and also that 

~bx =sin2~rt, ~'1 = 2~r 27rt 
- -  COS - - ~  

T T T 

being the period of the vibration represented by the co- 
ordinate ~bl, we obtain, remembering that the sum of T and V 
must remain constant, 

Vo l " =  To l ~ �9 4~r/~. 

This gives the relation between ~" and l. :Now v, the wave- 
velocity, is proportional to l/'r; so that 

v ~  11~'+~ m. . �9 (~6) 
Thus, if  u denote the group-velocity, we have by the general 
theory 

ulv = � 8 9  �89 ; . . . . . .  (27)  
and in terms of u and v by (24) 

L= uE  
- v ~  . . . . . . .  ( 2 8 )  

See Proc.  Ma th .  Soc. ix,  p. 21 (1877) ; Scientif ic Paper% i. p. 322. 
Also Theory of Sound, vol. i. Appendix. 
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Pressure of Vibrations. 3~5 

Boltzmann's theory is founded upon the application of 
Carnot's cycle to the radiation inclosed within movable re- 
flecting walls. If  the pressure (p) of a body be regarded 
as a function of the volmne v *, and the absolute temperature 
0, the general equation deduced from the second law of ther- 
modynamics is 

dp =M,  . . . . .  (29} 
d log 0 

where M dv represents the heat that must be communicated 
while the volume alters by dv and dO = 0. In the applicatio~ 
of (29) to radiation we have evidently 

• = W + p ,  �9 . . . . .  (30) 
where U denotes the density of the energy--a function of 0 
only. Hence t 

dp U + p .  (31) 
d log O -- 

If  further, as for radiation and for aerial vibrations, 

- 1 U  ( 3 2 )  ~9 - -  ;.~ ~ . . . . . . .  
it follows at once that 

dlog U----4dlog 0. 
whence 

U r 04, . . . . . . .  (33) 

the well-known law of Stefan. It may be observed that the 
existence of a pressure is demanded by (31), independently 
of (32). 

If we generalize (32) by taking 

~-V (3r 

whore n is some numerical quantity, we obtain as the genera- 
lization of (33) 

U 0 . . . . . . . .  (35) 

It  is an interesting question whether any analogue of the 
second law of thermodynamics can be found in the general 
theory of the pressure of vibrations, whether for example the 
energy of the vibrations of a stretched string is partially 
unavailable in the absence of appliances for distinguishing 
phases. It  might appear at first sight that the conclusion 
already given, as to the possibility of recovering the whole 
energy by mere retreat of the inclosing ring, was a proof to 

N o w  w i t h  an  altered meaning.  
t Compare  Lorentz,  A m s t e r d a m  Proceedings,  Ap. 1901. 
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346 Mr. J. A. Wanklyn on the Physical 

the contrary. This argument, however, will not appear con- 
clusive, if we remember that a like proposition is true for the 
energy of a gas confined adiabatically under a piston. The 
residual energy of the molecules may be made as small as we 
please, but the completion of the cycle by pushing the piston 
back will restore the molecular energy unless we can first 
abolish the infinitesimal residue remaining after expansion, 
and thig can only be doric with the aid of a body at the absolute 
zero of temperature. It would appear that we may find an 
analogue for temperature, so far as the vibrations of one 
system are concerned ; but, so far as I can see, the analogy 
breaks down when we attempt a general theory. 

XXXV. On the Physical Peculiarities of Solutions o/ Gases 
in Liquids. ~ y  J. ALFRED WA:SKLY~, Corresponding 
Member v f  the Royal .Bavarian Academy of Sciences *. 

T HOSE who are acquainted with Bunsen's methods of 
manipulating gases, and especially those chemists who 

have enjoyed the privilege of Bunsen's personal instruction, 
will be familiar with Bunsen's zealous care in so using his 
"Absorptiometer" that every drop of the liquid solvent 
should come into repeated contact with the gas to be dissolved. 

Bunsen's arrangements presuppose that only those particles 
of the solvent brough~ into actual contact with the gas he- 
come charged with the gas~ and that actual passage of the gas 
from one stratum of liquid to an adjacent stratum either does 
not take place at all, or is exceedingly slow. 

The question may be fairly asked :--Given a quantity of 
gas in contact with the surface of pure water in a state of 
absolute quiescence, Will that gas penetrate below the surface 
of the water except with a degree of slowness calling to 
mind the slow passage of the less diffusive salts which do not 
traverse a space of 100 millimetres in a fortnight ? An 
experiment on the action of carbonic acid has been made in 
my laboratory, which I will now describe. 

First of all there was the very simple observation that 
carbonic acid, confined in a tube over mercury, is capable of 
being absorbed by distilled water kept at rest, that is to say, 
without being subjected to the shaking up which is usually 
resorted to in order to bring about such absorptions. The 
rate of absorption was also noted, and found to be about one 

* Communicated by the Auihor. 
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