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A COMPLETE COLLECTION OF THERMODYNAMIC
FORMULAS.

BY P. W. BRIDGMAN.

"N this paper is presented a complete and systematic collection of
thermodynamic formulas involving the 6rst and second derivatives

of the ordinary thermodynamic quantities. It has been possible to
compress such a collection into a reasonable compass by a short-hand

method of expression. The fundamental quantities whose various rela-

tions are treated in the tables are ten in number; namely p, v, v, Z, s,
Q, W, H, Z, and %. It will be remarked that the specific heats are not
included in the fundamental ten quantities. This is because the specific

BQ BQ
heats are properly 6rst derivatives, C„= —,and C, =

87 p BT y

These ten quantities, with their 6rst and second derivatives, are con-
nected by various relations. The relations between the quantities
themselves are simple, and mostly of the nature of de6nitions. But the
relations between the first and second derivatives are more complicated,
and it is these which are of special interest.

We consider 6rst the 6rst derivatives. The conditions imposed by
the first and second laws of thermodynamics and the particular properties
of the substance under consideration are such that every derivative of

88'
the type - — — has a de6nite meaning. This derivative means that

7

the particular body in question is allowed to change so that Q remains

constant, that is, no heat is absorbed, and the ratio of the change of g
to the change of v found during this change. ' Every first derivative
involves, therefore, three difTerent variables, and it is at once seen that
the total number of such derivatives is 72o (= ro X 9 X 8). These
'720 derivatives are connected by various relations, and in general there
is an equation connecting any four of them and certain of the fundamental
ten quantities. There are„ therefore,

72o X pr9 X 7r8 X 7r7 I I,IO4, $6$,420I X2 XgX4
such relations between the 6rst derivatives.

' It should be noted that although the derivatives always have a meaning in the sense

indicated, the functions which are being differentiated need not be expressible as functions
of the position coordinates. R' and Q are such functions; it is impossible to assign any
meaning to them as functions of P and v for example, but still the variations of 8' and Q
in definite directions are entirely determined.
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A complete collection of first derivatives would involve the tabulation,
therefore, of these I I, IO4, 365,420 relations. This of course is absolutely

out of the question; the best we can do is to tabulate some of the deriva-

tives in such a form that any of the derivatives may be obtained by
slight and obvious effort. We evidently shall attain this object if every
one of the 72o first derivatives is tabulated in terms of the same three

fundamental derivatives. To obtain any desired one of the numerous

relations between any four derivatives, therefore, we merely have to
eliminate the three fundamental derivatives between the four, equations
for the four derivatives.

The three fundamental derivatives may be chosen in a great variety
of ways. The three chosen here are the three which are perhaps given

Bv
most directly by experiment; the isothermal compressibility

T

88
the isopiestic dilatation —,and the specific heat at constant pressure

BT

C„. The first. two of these may be obtained from the characteristic
equation of the substance, that is, the relation connecting p, v, and v.

To determine C„, calorimetric measurements must be made in addition
to the measurements for the characteristic equation. It may be proved
that C„ is completely determined, if in addition to our knowledge of the
characteristic equation, C„ is known along some line not at constant
temperature. Such information, for instance, would be given by a deter-
mination of C~ as a function of temperature at atmospheric pressure.

It should be remarked that the method used here of tabulating the 720
derivatives in terms of the same fundamental three will largely do away
with the necessity for determining the other relations by an elimination,
as suggested above. For if in any special problem every quantity of
interest is kept in terms of the same fundamental three, which are inde-

pendent, one may be sure that at the end of the discussion there are no
essential relations not brought to light.

It is now possible to still further reduce the number of expressions
needed. To do this, the 720 derivatives may be divided into groups,
the variable kept constant during differentiation being kept constant in

each group. There are, therefore, ten of these groups, 72 to a group.
Let us suppose, for example, that the group is that in which p is the con-
stant element. Any one of the p2 derivatives of this group is of the type

~

~

Bx
, where x and y are any two of the nine remaining of the ten funda-

~3

mental quantities. Now let us write, merely as a matter of notation,

(
Bx (Bx)„

The abridgement in the numb|„r of required formulas
~x n (~x)~



VoI.. III.
No. 4. A COLLZCTION OF THBRMOD YNAMIC FORMULAS. 275

is suggested by noticing that we may tabulate (Bx)„and (By)i, separately
Bv Bv

as appropriate functions of —,—,and C„, and always get
BP , Br

the right value for the derivative by replacing (Bx)~ and (By)~ by these
functions and taking the ratio. But there are only nine such expressioiis
in any group, so that we have reduced the number of expressions needed

from 720 to 90.
To prove the possibility of splitting up a derivative in the way above

ax ax / ay
is simple. We have the mathematical identity

8$ „Bn „/ 80.

where 0, is any variable, not even necessarily one of the fundamental ten,
which remains the same throughout the group of 72. If therefore, we

Bx ~ Bg
replace (Bx)~ by —,and similarly (By)„by —,we shall always

8(x y Btx p

obtain the right answer when we take the ratio of any two such functions

to find the derivative. It is especially to be noticed that (Bx)„ is not
Bx

equal to —;in fact, (Bx)„in general does not have the same dimen-
80! y

Bx
sions as — . The 6nite functions replacing the differentials have

BA y

meaning only when the ratio of two is taken.
Finally it is possible to further reduce the number of expressions

from 90 to 45. We notice that a, of the paragraph above, is not subject
to any essential restriction —any function will do. There are ten of
these n's. We may now impose a restriction, making (Bx)„= —(Bp)„.
thus reducing to one half the number of fundamental functions. The
proof of this will not be given here, but it may be readily seen on writing
out the derivatives of the various groups that if an n is chosen so that
the relation is satisfied for one derivative of a group, then it will be
satis6ed by all the others also. The 0.'s so restricted are not completely
determined by any means, but the derivatives, which only we are inter-
ested in, are now nearly determined. There is still a certain amount
of arbitrariness left, in that the entire collection of functions replacing-

tbe partial differentials may be modi6ed by the addition of any factor, .

but otherwise the functions are determined. This arbitrary factor will'

be so chosen as to make the functions as simple as possible.
In the actual derivation of the formulas, the u's play no part; they

are simply the mathematical scaffolding used in proving the possibility
of replacing the differentials by finite functions, and may now be com-
pletely discarded. The method actually used in deriving the formulas
was to 6nd a sufficient number of derivatives by well established methods,
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and then to split them up, by inspection, into the functions replacing
numerator and denominator.

We turn now to a consideration of the second derivatives. The
number of combinations of second derivatives is so great that it cannot
be reduced to a reasonable number, as could the number of combinations
of first derivatives. All that we can do here is to tabulate a sufficient

number of the fundamental second derivatives so that any relation

existing between them may be found readily by such purely formal

mathematical operations of differentiation or elimination as are in the
mathematical equipment of every one.

The problem in the case of the second derivatives is analogous to that
for the first derivatives; namely to express everything in terms of the
same fundamental second derivatives. It may be shown that in general
there are four such second derivatives, and for use here we choose the

$2v $2v cil~v

four most directly given by experiment, —, , , —, , and

(ac, )
Suppose now that we wish to find any second derivative. The general

a axg&
second derivative is of the type ———

~
. This is mathemati-

BXi 8X3 p g4 g5

8 l Bgq BP BP
cally equivalent to —

~

— ~ — . But — is a func-
~P 4 ~+3 g4 5 ~+] Ox'

88 88
lion of —,—,and C~, which is already known from the tables

Bp ~ 81 y

Bx2
for the first derivatives. Furthermore, — is also a known func-

BX3 g4

8 8Ã2tion of the same three fundamental derivatives, so that
BP Bx3

8
may be found by a purely formal differentiation, if we know — of

ap .5
Bv Bv

, and C„. There are 27 such second derivatives. Theap, a~ „'
only exception to this scheme of treatment is when p =—x&, in which
case we have an indeterminate form to evaluate. This may be avoided
by taking 7. instead of p as our auxiliary variable of differentiation. The
differentiation in this case is so simple that it may be performed by
inspection.

From these zg second derivatives we may obtain by a simple formal
differentiation any of the 64,8oo second derivatives. Each of these
second derivatives involves, besides certain of the ten original quantities



Vox. III.
No. 4. A COLLECTION OF THERMODYNAMIC FORMULAS. 277

and the three fundamental first derivatives, only four independent
second derivatives. Hence by eliminating these four second derivatives
between the equations for any five second derivatives, we may obtain
the relation between any combination of five second derivatives. There
are approximately 9.5 &( xo" such relations.

The tables follow. These are given in three parts. First are the
fundamental ten quantities with their equations of definition; second
the tables in abbreviated form for the first derivatives; and lastly the

27 second derivatives necessary in obtaining any of the 64,8oo second

derivatives.

TABLE I.
The FundanMnta/ 'ren Quantities

In this table are given the notation and the definition of the funda-

mental ten thermodynamic quantities. It is to be understood that
all the quantities refer to unit amount of the substance. This unit is
usually chosen either as I gm. , or as the quantity that at O' C. and at-
mospheric pressure occupies a volume of z c.c.

P = pressure per unit area.
v = temperature on the absolute thermodynamic scale.
v = volume of the unit quantity of the substance.

s = entropy, defined by the integral, Jdg/r
Q = heat absorbed, measured in the mechanical units appropriate to

p and v. A physical meaning can be given only to dQ, the heat
absorbed during a given change.

8' = work done by the substance, in the appropriate mechanical

units. Here again, only dS" has a physical meaning.
E = the internal energy of the substance in mechanical units. E may

be changed by an additive constant without changing its physical
meaning. Z is one of the thermodynamic potential functions.

II = 8 + pv, the "total heat, " also one of the potential functions.
Z = Z + pv —~s, the Gibbs thermodynamic potential.
+ = B —rs, also a thermodynamic potential, the "free energy" of

Helmholtz.
TABLE II.

The First Derivatives.

This contains the abbreviated notation by which any of the 72o first
Bv Bv

derivatives may be found in terms of —,—,and C„. For
BP 87'

BB (~&)~
instance, if — is desired, write this in the equivalent form

BT y r p
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and take the ratio of the functions given in the table for (BE)„and (ar)„.
Notice in general that (ax)„= —(ay), .

(ar)v = —(ap). = ~

(av)„ = —(ap). = (Bv/ar)„,

(as), = —(BP), = Cv/r,

(BQ)v = —(ap) q
= Cv

(BW)v = —(ap)w = p(»lar).
(az)„= —(ap) = c„—p(av/ar)„,
(BH). = —(Bp)~ = C.
(BZ)„=—(ap) = —s,
(a+) = —(ap) = —{s+p(»la ) }

(av), =-
(»). =

(BQ), =-
(BW), =-
(az), =-
(BH), =-
(BZ), =-
(a@), =—

(») = —(»lap),
(a) =(»/a)
(a r) q

——r(av/a r)„
(ar) w = —p(»lap)v
(a ) = (»/a ) + p(»lap).
(ar)n = —v + r(av/ar)„,
(ar)z = —»
(ar)~ = p(»lap)'

(v) (»). =-
(BQ)

(BW), =-
(a&). =-
(BH). =-
(az)„=-
(a%), =—

(a ), = I/ {C„(av/ap), + (av/a )' },
(av), = c„(avlap), + (»la )'.
(av)s =o
(av) = c„(av/.ap), + (avla )'„,
(av)~ = C„(av/ap), + r(av/ar)', —v(av/ar)„,

(av), = —{v(av/ar)„ + s(»/ap). },
(»)v = —s(»lap)'

(s)

(Q)

(BQ) =
(BW). =
(BE).=
(BH). =
(BZ), =
(a@), =

(BW)q =—
(»)q =-
(BH)q =—'

(as) q
——o,

(as) „=—(p/r) {c„(av/ap), + r(av/ar)'„},
(as)z = (P/r) {Cn(av/BP), + r(av/ar)'v},
(as)zr = —vC„/r,
(BS)z = —(Z/r) {VC„—Sr(BV/ar)„},
(as) = (i/r) {P{C,(av/BP), + r(av/ar)', }

+ sr(av/ar) „}.
0

(BQ) tr = —P{C,(av/BP), + r(av/ar)', },
(BQ) = p{c (»lap). + (»Ia )' }
(BQ)rr = —vC„
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(II')

(Z)

(az) q
——

(M)q =

(a&)w =
(aH) v =
(az)w =
(a+)w =

(aZ)w =
(a+)sr ——

(a@)

(aQ) s ———{sr(av/a r) v
—vC„},

(aQ), = p{C„(av/ap), + (av/a )'„}+ s (av/a )„.

(aW) = p{C„(av/ap), y (av/a ) „},
(aII')~ = P{Cv(avlap). + r(avlar)'v —v(»lar)P}
(aIIr) = —p{ (a la ) + s(»laP), }

(aII')~ = —Ps(»laP), .

(a&) = —v{C —P(»la ) }
—p{C„(av/ap), + r(av/ar)'„},

(aZ) z ———v {C„—P(av/ar), }
+ s{r(av/ar), + p(av/ap), },

(a&)v = P[Cv(av/ap), + r(avlar)'v}.

(aFI)s = —v(C„+ s) + rs(av/ar)„,
(aH)v = —[s + p(av/ar), ] [v —r(av/ar) p]

+ p(»lap), .

(aZ)v = —s[v + P(av/aP), ] —Pv(av/ar)„

TABLE III.
The Second Derivatives.

In this table auxiliary formulas are given which simplify the compu-
tation of any second derivative in terms of the four following funda-

8~V 82V 8~V ac„~
mentai second derivatives; —.. . —, , and "-

~

~ In
T Pn

8 Bxg
general, if we desire to compute ——

& we write this in the
BX] 8X3 g4

8 8xg BP BP
form —— X — . But — is already known, and

~p ~&3 g4 g; ~&I BXj, ga

(
Bxg ~ BV BV

is a known function of —,—,and C„. Hence the
Bxa BT „' BP

result may be obtained by a purely formal differentiation, provided we
8 BV 8 BV

know ——
s

——,and —C„. These deriva-
BP 8 T y ga BP BP q ga BP

tives are listed in the following tables. If xs —= p, then we may use T as
our auxiliary variable of differentiation, and the entire differentiation
may be performed by inspection.
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constant:

constant:

[8(BP (»IBP).]. = (8'v(BP').

[8(BP (»la ) 1, = 8'v(BPB ~

(BC.IBP), = —r(a'vlar')v.

[8/BP (Bv/aP), ], = (a'v/aP') —a'v/a. aP (av(BP),/(Bv/Br)„,

[a/ap (av/a, ),l, = a'v/apa, —(a'v/ar')„~ (av/ap), l(av/a, )„
(BC.IBP). = —r(a'via"). —(Bc.la ), (»IBP)J(»(a ).

constant:
[a/ap (av/ap), ], = (a'v/ap'), + a'v/arap .(av/a, ),lc„
[a/aP (av/a )„],= a'v/aPa y (a'v/ar'), ,(av(a )„IC„,

[BC.IBP}* = —r(a'vlar')v + (BCv(a ). r(»lar). lc'

constant:
The three derivatives at constant Q are identically equal to the corre-

sponding three at constant s.

constant:
The three derivatives at constant lV are identically eqUal to the corre-

sponding three at constant v.

constant:
[alap (8 /Bvp), l =s(8"/ap'), + {8"/B.ap} x

{ (»Ia ) + p(»lap), } I {c —p(»la ). }
[8/BP (Bv/Br)„],. = 8'v/BPar + {(8'v/Br')„} X

{ (8 la ) + p(a Iap). }I {c. —p(a Ia ). }
(ac./ap). = —.(8"/a"), + {(ac./a. ),} x

{ (»la ) + P(»IBP),}l{c—P(»la ) }.

H [8/BP (Bv(BP).] = (8'v(BP'). {8'v(araP} ' {v (Bvla ) }(C
constant: [8(ap (Bv/Br)„]rr = 8 v/Bpar —{(8 v/Br')„} ~ {v —r(avlar)v} /Cv,

(ac lap) Jr r(a'via"). —{(aC.(a.).} X
{v —r(av/Br)„} /C, .

z ['I'P ("I'P) ].= ("I'P') + (v('»'v("»
constant: [8/Bp (Bv/Br)„] = 8'v/apar + (%) (8'v/Br')„,

(BC.IBP)z = —r(a'vlar'). + (v(~) (BCv(ar)v.
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9/~P (»/~P), le = (~'&/~P'), t~—'&I~~~P) tP(»/~P). ) /t & + P(»/~~)~ )

COI18tRQ t:
[8/BP (»/87), ]~ = 8'u/&PBBS —

t (8'v/8~'), } y
lP(»/~P), ) /f~ + 0(»/~ ).),

&~c./~P)~ = —~(~'&I~~'). —
l (~c.l~~).) &&

t P(»I~P), I I (s + P(»/~~). )
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