10.

Quelques théorèmes de géométrie.

(Par Mr. L. J. Magnus à Berlin.)

Dans un article inséré p. 51. du présent volume j'ai donné une méthode, pour tirer de théorèmes connus sur des coniques des autres théorèmes sur des lignes courbes du même degré. Mais la même méthode suffit pour tirer de ces mêmes théorèmes connus des théorèmes sur des courbes d'un degré plus élevé; et comme l'application de la méthode n'a aucune difficulté, je me borne seulement à en donner quelques résultats qui se rapportent à des courbes dont les géomètres se sont occupés déjà depuis tant de siècles.

Soient données

1°. une cardioide dont l'équation en coord. rect. est

$$(y^2 + x^2)^2 - 4a(y^2 + x^2)x - 4a^2y^2 = 0;$$

2°. une cissoide dont l'équation en coord. rect. est

$$(y^2+x^2)x-ay^2=0;$$

3°. une lemniscate dont l'équation en coord. rect. est

$$(y^2+x^2)^2+a^2(y^2-x^2)=0.$$

Désignons le point de rebroussement de la cardioide, celui de la cissoide, et le centre de la lemniscate par p_1 .

- I. Soit élevée au point de rebroussement p, de la cardioide une perpendiculaire D à l'axe des abscisses. Soit p un point quelconque de la courbe, tirez la corde pp, élevez par son point milieu une droite perpendiculaire à cette corde qui coupera en général la droite D dans un point q, joignez p et q, enfin nommez m et n les droites qui divisent en deux parties égales les angles formés par les droites pq et pp,; de ces droites m et n l'une sera la tangente et l'autre la normale de la courbe au point p.
- II. Soient élevées deux perpendiculaires D, D' à l'axe de la cissoide, l'une par le point de rebroussement p, et l'autre par le point de l'axe dont l'abscisse est égale à 2a. De même soient élevées deux perpendiculaires D, D' à l'axe de la lémniscate par deux points de cette axe dont les abscisses sont égales respectivement à $+\frac{a}{\sqrt{8}}$ et $-\frac{a}{\sqrt{8}}$.

Soit p un point quelconque de l'une de ces deux courbes, tirez la corde pp_1 , élevez par son point milieu une droite perpendiculaire à cette corde, qui coupera en général les deux droites D, D' en deux points q et q_1 , joignez pq et pq_1 , enfin nommez m et n les deux droites qui divisent en deux parties égales les angles formés par les droites pq, pq_1 ; de ces droites m et n l'une sera la tangente et l'autre la normale de la courbe au point p.

III. Si par un point fixe p pris arbitrairement dans le plan de l'une de ces trois courbes ci-dessus nommées et par le point p_1 on fait passer un cercle C_1 , il coupera la courbe tout au plus encore en deux points a et b. Si de plus on décrit deux cercles C_2 , C_3 passant tous deux par le point p_1 , dont l'un touche la courbe au point a et l'autre au point b, ces deux cercles C_2 , C_3 se couperont en un second point q. Si ensuite on fait varier le rayon du cercle C_1 , les rayons des cercles C_2 , C_3 varieront aussi. Alors le point q décrira une courbe qui sera un cercle passant par le point p_1 .

IV. Réciproquement, si le second point d'intersection q de deux cercles $C_{i,0}$ $C_{i,0}$ qui passent par le point p_i et dont l'un touche une des trois courbes en un point a et l'autre en un point b, se meut sur une circonférence d'un cercle fixe qui passe par le point p_i : tous les cercles qu'on peut faire passer par les deux points variables a et b et par le point fixe p_i iront passer par un second point fixe p.

V. Si l'on prend sur une des trois courbes deux points quelconques p_1 , p_3 , et que par ces points on décrive une suite de cercles: chacun de ces cercles coupera la courbe tout au plus encore en deux points a, b. Or, si l'on décrit une nouvelle suite de cercles dont chacun passe par le point p_1 et par une couple de points a, b: tous les cercles de cette suite se toucheront au point p_1 .

VI. Si l'on décrit un cercle C_1 touchant une des trois courbes en un point quelconque p de manière qu'il ait deux autres points q, q_1 de commun avec cette courbe, si par les points q, q_1 et p_4 on fait passer un second cercle C_2 , et par les points p et p_1 un troisième cercle C_3 qui touche le cercle C_4 au point p_1 : ce troisième cercle C_4 coupera la courbe tout au plus encore en un point q_3 . Or, si l'on décrit un quatrième cercle C_4 passant par les points p et q_3 et touchant le cercle C_1 au point p, ce cercle C_4 sera le cercle osculateur de la courbe au point p.

VII. Soient a_1 , a_2 , a_3 , a_4 , a_5 , a_6 six points pris arbitrairement sur une des trois courbes. Si l'on décrit six cercles $p_1 a_1 a_2$, $p_1 a_2 a_3$, $p_1 a_3 a_4$, $p_1 a_4 a_5$, $p_1 a_5 a_6$, $p_1 a_6 a_1$ qui passent par le point p_1 et qui joignent respectivement deux points consécutifs sur la courbe: le second point d'intersection du 1^{ier} et du 4^{me} , celui du 2^{me} et du 5^{me} et celui du 3^{me} et du 6^{me} seront situés sur la circonférence d'un cercle qui passe par le point p_1 .

VIII. Soient a_1 , a_2 , a_3 , a_4 , a_5 , a_6 six points pris arbitrairement sur une des trois courbes. Soient décrit six cercles C_1 , C_2 , ... C_6 qui passent par le point p_1 et qui touchent la courbe respectivement aux points a_1 , a_2 , ... a_6 , et soient désignés les deuxièmes points d'intersection des cercles consécutifs par b_1 , b_2 , ... b_6 . Si l'on décrit les trois cercles $p_1b_1b_4$, $p_1b_2b_5$, $p_1b_3b_6$ qui passent par le point p_1 et qui joignent respectivement les points b_1 et b_4 , b_2 et b_5 , b_3 et b_6 : ces trois cercles auront un même second point d'intersection.

Le théorème suivant est également un résultat de l'application de notre méthode.

Soient S et Σ deux spirales logarithmiques égales, situées dans un même plan, ayant le même pôle A et faisant leurs révolutions en sens contraire. Désignons une révolution quelconque de la spirale S par r_0 , les revolutions extérieures qui suivent la révolution r_0 par r_1 , r_2 , r_3 etc., et les révolutions intérieures qui la précèdent par r_{-1} , r_{-2} , r_{-3} etc. Désignons de plus une révolution quelconque de la spirale Σ par ϱ_0 , les révolutions intérieures qui précèdent la révolution ϱ_0 par ϱ_1 , ϱ_2 , ϱ_3 etc., et les révolutions extérieures qui la suivent par ϱ_{-1} , ϱ_{-2} , ϱ_{-3} etc.

Cela posé, si l'on tire une droite quelconque dans le plan des deux courbes, elle coupera une infinité de révolutions de la spirale S, et chacune d'elles en deux points. Si l'on désigne les deux points d'intersection de cette droite et de chacune de ces révolutions respectivement par a_0 , b_0 ; a_1 , b_1 ; a_{-1} , b_{-1} ; a_2 , b_2 ; etc., si l'on joint le pôle A et chacun de ces points d'intersection par des droites qu'on imagine être prolongées indéfiniment au delà de ces points d'intersection; chacune de ces droites coupera chacune des révolutions de la spirale Σ en un seul point. Si l'on désigne le point d'intersection de la droite Aa_m ou Ab_m et de la révolution e_n par e_m , ou e_m , on peut former une infinité de séries de points d'intersection, dont chacune est composée d'une infinité de points e_m , e_m , e_m , de sorte que les indices e_m , e_m , des points d'une même série ont une

18

différence constante. Tous les points de chaque série seront situés sur une même circonférence d'un cercle, et tous ces cercles se toucheront au point \mathcal{A} .

Réciproquement, si l'on décrit un cercle par le pôle \mathcal{A} , il coupera une infinité de révolutions de la spirale \mathcal{S} , et chacune d'elles en deux points. Si l'on désigne les deux points d'intersection de ce cercle et de chacune de ces révolutions respectivement par c_0 , d_0 ; c_1 , d_1 ; c_{-1} , d_{-1} ; c_2 , d_2 ; etc.; si l'on joint le pôle \mathcal{A} et chacun de ces points d'intersection par des droites, qu'on imagine être prolongées indéfiniment au delà de ces points d'intersection: chacune de ces droites coupera chacune des révolutions de la spirale Σ en un seul point. Si l'on désigne le point d'intersection de la droite $\mathcal{A} c_m$ ou $\mathcal{A} d_m$ et de la révolution ϱ_n par $\gamma_{m,n}$ ou $\delta_{m,n}$, on peut former une infinité de séries de points d'intersection, dont chacune est composée d'une infinité de points $\gamma_{m,n}$, $\delta_{m,n}$, de sorte que les indices m, n des points d'une même série ont une différence constante. Tous les points de chaque série seront situés sur une même droite, et toutes ces droites seront parallèles entr'elles.