SOME PROPERTIES OF SYMMETRIC AND ORTHOGONAL SUBSTITUTIONS

By Harold Hilton.
[Received June 2nd, 1912. - Read June 13th, 1912. -
Revised October 17th, 1912.]

1. Suppose we have a substitution A,

$$
x_{t}=a_{t 1} x_{1}+a_{t 2} x_{2}+\ldots+a_{t m} x_{m} \quad(t=1,2, \ldots, m)
$$

in the m variables $x_{1}, x_{2}, \ldots, x_{m}$.
It is possible* in an infinity of ways to transform A by a choice of new variables into the canonical substitution

$$
\begin{equation*}
x_{t}^{\prime}=\lambda_{t} x_{t}+\beta_{t} x_{t+1} \quad(t=1,2, \ldots, m) \tag{a}
\end{equation*}
$$

where $\beta_{t}=0$ or 1 , and is certainly 0 if $\lambda_{t} \neq \lambda_{t+1}$.
The expression

$$
x_{1}^{2}+x_{2}^{2}+\ldots+x_{m}^{2}
$$

will become a quadratic function $\Sigma c_{i j} x_{i} x_{j}$ in the new variables with nonzero determinant. We shall consider in what way the new variables must be chosen so as to transform A into the canonical substitution (a), and to make $\sum c_{i j} x_{i} x_{j}$ as simple as possible; in the cases in which A is symmetric or orthogonal.

The result is as follows :-
(1) Suppose A is symmetric and the canonical substitution N into which A is transformed is the direct product of substitutions of the form

$$
x_{1}^{\prime}=a x_{1}+x_{2}, \ldots, x_{s-1}^{\prime}=a x_{s-1}+x_{s}, x_{s}^{\prime}=\alpha x_{s},
$$

then the new variables can be chosen so that A becomes N, and $\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{m}^{2}\right)$ becomes the sum of functions of the type

$$
\left(x_{1} x_{s}+x_{2} x_{s-1}+x_{3} x_{s-2}+\ldots+x_{s} x_{1}\right)
$$

(2) Suppose A is orthogonal, the canonical substitution N into which A
is transformed will be the direct product of substitutions of the form

$$
\left.\begin{array}{r}
x_{1}^{\prime}=a x_{1}+x_{2}, \ldots, x_{s-1}^{\prime}=a x_{s-1} \quad+x_{s}, x_{s}^{\prime}=a x_{s} \\
y_{1}^{\prime}=a^{-1} y_{1}+y_{2}, \ldots, y_{s-1}^{\prime}=a^{-1} y_{s-1}+y_{s}, y_{s}^{\prime}=a^{-1} y_{s}
\end{array}\right\},
$$

where $a^{2} \neq 1$, or else $a^{2}=1$, and s is even, and of substitutions of the form

$$
X_{1}^{\prime}=a X_{1}+X_{2}, \ldots, X_{-1}^{\prime}=a X_{s-1}+X_{s}, X_{s}^{\prime}=a X_{s},
$$

where $a^{2}=1$, and s is odd.*
Then we can choose the variables x, y, X, so that A becomes N, and $\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{m}^{2}\right)$ becomes the sum of functions of the type $f_{1}(x, y)$ and $f_{1}\left(X_{1} X\right)$ respectively, where $f_{1}(x, y)$ represents the function of x and y denoted by this symbol in Proc. London Math. Soc., Ser. 2, Vol. 10, 1911, p. 426.
2. Suppose that in the substitution

$$
\left.\begin{array}{l}
x_{1}^{\prime}=\alpha x_{1}+x_{2}, \ldots, x_{s-1}^{\prime}=\alpha x_{s-1}+x_{s}, x_{s}^{\prime}=\alpha x_{s} \\
y_{1}^{\prime}=\beta y_{1}+y_{2}, \ldots, y_{s-1}^{\prime}=\beta y_{s-1}+y_{s}, y_{s}^{\prime}=\beta y_{s}
\end{array}\right\},
$$

we replace

x_{1} by $a_{s} x_{1}+a_{s-1} x_{2}+a_{s-2} x_{3}+\ldots+a_{1} x_{s}$					
x_{2} by		$a_{s} x_{2}+a_{s-1} x_{3}+\ldots+a_{2} x_{s}$			
x_{3} by		$a_{s} x_{3}+\ldots+a_{3} x_{s}$			
\ldots	\ldots	\ldots	\ldots		\ldots
x_{s} by					$a_{s} x_{s}$
y_{1} by $b_{s} y_{1}+b_{s-1} y_{2}+b_{s-2} y_{3}+\ldots+b_{1} y_{s}$					
y_{2} by		$b_{s} y_{2}+b_{s-1} y_{3}+\ldots+b_{2} y_{s}$			
y_{3} by		$b_{s} y_{3}+\ldots+b_{3} y_{s}$			
	\ldots	...	\ldots	\cdots	
y_{s} by					$b_{s} y_{s}$ J

This will not alter (β), for (γ) is a substitution permutable with (β). \dagger
Suppose

* Proc. London Math. Soc., Ser. 2, Vol. 10, 1911, pp. 429, 432.
\dagger Messenger of Math., 1911, p. 111.

The substitution (γ) replaces

$$
k_{1} \phi_{1}(x, y)+k_{2} \phi_{2}(x, y)+k_{3} \phi_{9}(x, y)+\ldots+k_{s} \phi_{s}(x, y)
$$

by

$$
K_{1} \phi_{1}(x, y)+K_{2} \phi_{2}(x, y)+K_{3} \phi_{3}(x, y)+\ldots+K_{s} \phi_{s}(x, y)
$$

where

$$
\begin{aligned}
& K_{1}=k_{1} \phi_{s}(a, b) \\
& K_{2}=k_{1} \phi_{s-1}(a, b)+k_{2} \phi_{s}(a, b) \\
& K_{8}=k_{1} \phi_{s-2}(a, b)+k_{2} \phi_{s-1}(a, b)+k_{3} \phi_{s}(a, b) \\
& \ldots \\
& \ldots
\end{aligned} \quad \ldots \quad \ldots \quad \ldots \quad . \quad \ldots \quad . \quad \ldots .
$$

The proof, which is easy, is left to the reader.
3. Again, suppose in (β) we take $\alpha \beta=1$; and let $f_{1}(x, y), f_{2}(x, y), \ldots$, $f_{s}(x, y)$ be the invariants of (β) given in Proc. London Math. Soc., Ser. 2, Vol. 10, 1911, pp. 426, 427.

Then the substitution (γ) replaces $f_{1}(x, y)$ by
$\left\{f_{s}(a, b) f_{1}(x, y)+f_{s-1}(a, b) f_{2}(x, y)+f_{s-2}(a, b) f_{3}(x, y)+\ldots+f_{1}(a, b) f_{s}(x, y)\right\}$, when s is even, and by

$$
\begin{aligned}
&\left\{f_{s}(a, b) f_{1}(x, y)+f_{s-1}(a, b) f_{2}(x, y)+f_{s-2}(a, b) f_{9}(x, y)+\ldots+f_{1}(a, b) f_{s}(x, y)\right\} \\
&+\frac{1}{4}\left\{f_{s-1}(a, b) f_{4}(x, y)+f_{s-3}(a, b) f_{6}(x, y)+\ldots+f_{4}(a, b) f_{s-1}(x, y)\right\}
\end{aligned}
$$

when s is odd.
In fact, since $f_{1}(x, y)$ is an invariant of (β), and (γ) is permutable with (β), therefore (γ) replaces $f_{1}(x, y)$ by an invariant of (β), e.q., by

$$
k_{1} f_{1}(x, y)+k_{2} f_{2}(x, y)+k_{3} f_{3}(x, y)+\ldots+k_{s-1} f_{s-1}(x, y)+k_{s} f_{4}(x, y) .
$$

The above theorem may be verified by direct substitution when $s=1,2,3,4,5$. Assume it true for all values of s up to the one considered. If we put x_{s} and y_{s} zero in $f_{t}(x, y)$, we get the result of changing $x_{1}, x_{2}, x_{3}, \ldots, x_{4}$ into $0, x_{1}, x_{2}, \ldots, x_{s-1}$ and $y_{1}, y_{2}, y_{3}, \ldots, y$, into $0, y_{1}, y_{2}, \ldots, y_{t-1}$ in $-f_{t+2}(x, y)$. Thence by our assumption $k_{1}, k_{2}, \ldots, k_{s-2}$ have the values required by the given theorem. It is at once seen by direct substitution that $k_{5}=f_{1}(a, b)$. We leave to the reader the proof that $k_{t-1}=f_{2}(a, b)$, when s is even, and

$$
k_{t-1}=f_{2}(a, b)+\frac{1}{4} f_{4}(a, b),
$$

when s is odd.
4. We now prove the theorem (1) of § 1 when A is symmetric.

Suppose N is the canonical substitution into which A can be transformed [cf. (α) of $\S 1$], so that $P^{-1} N P=A$. Let $P P^{\prime}=C$, where P^{\prime} is the substitution transposed to P and C is

$$
x^{\prime}=c_{t 1} x_{1}+c_{t 2} x_{2}+\ldots+c_{t m} x_{m} \quad(t=1,2, \ldots, n)
$$

When A is transformed into N, $\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{m}^{2}\right)$ is transformed into $\Sigma c_{i j} x_{i} x_{j}$.

Now, since A is symmetric, we prove, as in Messenger of Math., 1912, p. 152, that new variables can be chosen so that N is unaltered, and $\sum c_{i j} x_{i} x_{j}$ is the sum of quadratic forms with matrices of the type

$$
\left|\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 1 & k_{2} \\
0 & 0 & \ldots & k_{2} & k_{3} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 1 & \ldots & k_{s-2} & k_{s-1} \\
1 & k_{2} & \ldots & k_{s-1} & k_{s}
\end{array}\right|
$$

each corresponding to one of the substitutions of the type

$$
x_{1}^{\prime}=\alpha x_{1}+x_{2}, \ldots, x_{s-1}^{\prime}=\alpha x_{s-1}+x_{s}, x_{s}^{\prime}=\alpha x_{s},
$$

of which N is the direct product.
Apply (γ) to this, putting in (γ) $x_{t}=y_{t}$ and $a_{t}=b_{t}$; this does not alter N. Then, by $\S 2$, we get the sum of quadratic forms with matrices of the type

$$
\left|\begin{array}{ccccc}
0 & 0 & \ldots & 0 & K_{1} \\
0 & 0 & \ldots & K_{1} & K_{2} \\
0 & 0 & \ldots & K_{2} & K_{3} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
K_{1} & K_{2} & \ldots & K_{s-1} & K_{s}
\end{array}\right|,
$$

where

$$
\begin{aligned}
& K_{1}=a_{s}^{2}, \quad K_{2}=2 a_{s} a_{s-1}+a_{s}^{2} k_{2}, \\
& K_{3}=\left(2 a_{s-2} a_{s}+\dot{a}_{s-1}^{2}\right)+2 a_{s} a_{s-1} k_{2}+a_{s}^{2} k_{3}, \ldots
\end{aligned}
$$

Now choose in turn $a_{s}, a_{s-1}, a_{s-2}, \ldots$, so that

$$
K_{1}=1, \quad K_{2}=K_{3}=\ldots=0 ;
$$

and the required transformation of A into N and $x_{1}^{2}+x_{2}^{2}+\ldots+x_{m}^{2}$ into the standard form of $\S 1(1)$ is completed.

It follows from this theorem (1) of $\S 1$ that any two symmetric substitutions with the same invariant-factors (and therefore with the same canonical substitution) can be transformed into one another by an orthogonal substitution.

For suppose $P A P^{-1}=N$, where $P P^{\prime}=C$; and suppose that when we put

$$
b_{t 1} x_{1}+b_{t 2} x_{2}+\ldots+b_{t m} x_{m} \text { for } x_{t}
$$

N remains unaltered while $\sum c_{i j} \dot{x}_{i} x_{j}$ takes the standard form of $\S 1(1)$, which we call $\Sigma l_{i j} x_{i} x_{j}$. Then, if L, B are
and

$$
x_{t}^{\prime}=l_{t 1} x_{1}+l_{t 2} x_{2}+\ldots+l_{t m} x_{m}
$$

$$
x_{t}^{\prime}=b_{t 1} x_{1}+b_{t 2} x_{2}+\ldots+b_{t m} x_{m}
$$

respectively, we have $B C B^{\prime}=L$, and $B N=N B$.
Then, if $Q=B P, Q A Q^{-1}=N$, and $Q Q^{\prime}=L$, i.e., we can transform A into N, and $x_{1}^{2}+x_{2}^{2}+\ldots+x_{m}^{2}$ into $\Sigma l_{i j} x_{i} x_{j}$ simultaneously.

Take D so that $D D^{\prime}=L$ (Messenger of Math., 1912, p. 147).
Then we have $\quad\left(D^{-1} Q\right) A\left(D^{-1} Q\right)^{-1}=D^{-1} N D$,
and

$$
\left(D^{-1} Q\right)\left(D^{-1} Q\right)^{\prime}=E
$$

i.e., $D^{-1} Q$ is orthogonal.

Similarly any symmetric substitution with the same invariant-factors as A is transformable into $D^{-1} N D$ by an orthogonal substitution, and is therefore transformable into A by an orthogonal substitution.

For another proof, see Bôcher's Introduction to Higher Algebra, p. 302.
5. The theorem (2) of $\S 1$ when \dot{A} is orthogonal is established in a somewhat similar manner by making use of $\S 3$ instead of $\S 2$, though the details of the proof are more troublesome.

In the Messenger of Math., 1912, pp. 153, 154, it is shown that, without altering $N,\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)$ can be expressed as the sum of invariants of the type

$$
\begin{aligned}
& k_{1} f_{1}(x, y)+k_{2} f_{2}(x, y)+k_{3} f_{3}(x, y)+\ldots, \quad \text { when } \quad a^{2} \neq 1 \\
& \text { or } k_{1} f_{1}(x, y)+k_{2} f_{2}(x, y)+k_{9} f_{3}(x, y)+\ldots+m_{2} f_{2}(x, x)+m_{4} f_{4}(x, x) \\
& +m_{6} f_{6}(x, x)+\ldots+n_{2} f_{2}(y, y)+n_{4} f_{4}(y, y)+n_{6} f_{6}(y, y)+\ldots
\end{aligned}
$$

when $a^{2}=1$, and s is even, or

$$
k_{1} f_{1}(X, X)+k_{9} f_{3}(X, X)+k_{5} f_{5}(X, X)+\ldots,
$$

when $a^{2}=1$, and s is odd.*
Apply the substitution equivalent to (γ), and we get another invariant

[^0]of N. Then we can choose $a_{s}, a_{s-1}, a_{s-2}, \ldots$, and $b_{s}, b_{s-1}, b_{s-2}, \ldots$, in turn to reduce this new invariant to $f_{1}(x, y), f_{1}(x, y)$, or $f_{1}(X, X)$ respectively as in § 4.

It follows from this theorem (2) of $\S 1$, just as in $\S 4$, that any two orthogonal substitutions with the same invariant-factors can be transformed into one another by an orthogonal substitution.

More generally, whenever we bave two substitutions which are such that either can be transformed into a given substitution at the same time that $x_{1}^{2}+x_{2}^{2}+\ldots+x_{m}^{2}$ is transformed into a given quadratic form, the two substitutions are transformable into one another by an orthogonal substitution.

Again :-
Any quadratic invariant with non-zero determinant of any substitution can be changed into any other quadratic invariant with non-zero determinant by a change of variables which does not alter the substitution.
If the substitution is the canonical substitution N, it has just been established that each of the two. quadratic invariants can be transformed without altering N into a standard form [which is the sum of invariants such as $f_{1}(x, y)$ and $f_{1}(X, X)$]. Hence one quadratic invariant can be transformed into the other without altering N.

In the general case suppose A is any substitution with two quadratic invariants of non-zero determinant. Let $A=P^{-1} N P$, where N is the canonical form of A; and let Q be a substitution permutable with N transforming one of the invariants of N corresponding to one of the invariants of A into the other.

Then $P^{-1} Q P$ transforms one invariant of A into the other.

[^0]: *Remembering that $f_{t}(x, x), f_{t}(y, y)$, and $f_{t}(X, X)$ are zero if $s-t$ is odd.

