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WHEN a number (n) of isoperiodic vibrations of unit

amplitude are combined, the resultant depends upon
the values assigned to the individual phases. When the
phases are at random, the resultant amplitude is indeter-
minate, and all that can be said relates to the probability of
various amplitudes (r), or more strictly to the probability
that the amplitude lies within the limits » and »+dr. The
important case where n is very great I considered a long
time agot with the conclusion that the probability in question
is simply

2
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The phase (&) of the resultant is of course indeterminate, and
all values are equally probable.

The method then followed began with the supposition that
the phases of the unit components were limited to 0° and
180°, taken at random, so that the points (r, ), representative
of the vibrations, lie on the axis §=0, and indifferently on
both sides of the origin. The resultant «, being the difference

* Communicated by the Author,
t Phil. Mag. vol. x. p. 78 (1880) ; Scientific Papers, vol.i. p. 491.
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322 Lord Rayleigh : Problem of Random Vibrations,

between the number of positive and negative components, is
found from Bernoulli’s theorem to have the probability

1 —z%/2
— de. . . . . . (2)F
V' (2mn) ¢ dz )

The next step was to admit also phases of 90° and 270°,
the choice between these two being again at random. If
we suppose in components at random along =+, and £~ also
at random along =y, the chance of the representative point
of the resultant lying within the area da dy is evidently
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= e @@+y¥)/n
Pl dedy, . . . . (3)
or in terms of », 6,

1
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Thus all phases are equally probable, and the chance that
the resultant amplitude lies between » and »+ dr is

2 . '
Sertpdy., . . . . . . (@1
e " dr 1

This is the same as was before stated, but at present the con-
ditions are limited to a distribution of precisely $» components
along # and a like number along y. It concerns us to remove
this restriction, and to show that the result is the same when
the distribution is perfectly arbitrary in respect to all four
directions,

For this purpose let us suppose that § n4-m are distributed
along +x and 4{n—m along +y, and inquire how far the
result is influenced by the value of m. The chance of the
representative point lying in »dr d is now expressed by

1
&/ (n?— dm?)
Since » is of order +/n, and m/n is small, the exponential

containing ¢ may be expanded. Retaining the first four
terms, we have on integration with respect to 6,

2r dr 2 mirt
=T p—nr¥(n?-dm?) IS
4/(11,2-—4;1%2')8 {1 + (n2_4m2)2 +.. .}7

o~ 1Y (n2—4m2) e"2mr2 08 20/(n?~4m3) 00 A0 1)

as the chance of the amplitude lying between » and » -+ dr.
Now if the distribution be entirely at random along the four

#* See below.
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-directions, all the values of m of which there is a finite pro-
bability are of order not higher than v/'n, n being treated as
infinite, But if m is of this order, the above expression
becomes the same as if m were zero; and thus it makes no
difference whether the number of components along +a and
along +y are limited to be equal, or not. The previous
result is accordingly applicable to a thoroughly arbitrary
distribution along the four rectangular directions.

The next point to notice is that the result is symmetrical
and independent of the directions of the rectangular axes,
from which we may conclude that it has a still higher
generality. It a total of n components, to be distributed
along one set of rectangular axes, be divided into any number
of large groups, it makes no difference whether we first
obtain the probabilities of various resultants of the groups
separately and afterwards of the final resultants, or whether
we regard the whole n as one group. But the probability
in each group is the same, notwithstanding a change in the
system of rectangular axes; so that the probabilities of
various resultants are unaltered, whether we suppose the
whole number of components restricted to one set of rect-
angular axes or divided in any manner between any number
of sets of axes. This last state of things is equivalent to no
restriction at all; and we conclude that if » unit vibrations
of equal pitch and of thoroughly arbitrary phases be com-
pounded, then when n is very great the probability of various
resultant amplitudes is given by (1).

If the amplitude of each component be [, instead of unity,
as we have hitherto supposed for brevity, the probability of
a resultant amplitude between » and r+ dr is

2
%ﬁe-r'&‘/nlzrdr. e (5)

In ‘Theory of Sound,” 2nd edition, § 42a (1894), I indi-
cated another method depending upon a transition from an
equation in finite differences to a partial differential equation
and the use of a Fourier solution. This methed has the
advantage of bringing out an important analogy between
the present problems and those of gaseous diffusion, but the
demonstration, though semewhat improved later *, was in-
complete, especially in respect to the determination of a
constant multiplier. At the present time it is hardly
worth while to pursue it further, in view of the important
improvements effected by Kluyver and Pearson. The latter

* Phil, Mag. vol. xlvii. p. 246 (1899); Scientific Papers, vol. v. p. 870.
2A2
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324  Lord Rayleigh: Problem of Random Vibrations,

was interested in the “ Problem of the Random Walk,” whick
he thus formulated :—“A man starts from a point O and
walks [ yards in a straight line; he then turns through any
angle whatever and walks another [ yards in a second straight
line. -He repeats this process n times. I require the pro-
bability that after these n stretches he is at a distance between
» and r +dr from his starting point 0.”

“The problem is one of considerable interest, but I have
only succeeded in obtaining an integrated solution for two
stretches. I think, however, that a solution ought to be
found, if only in the form of a series in powers of 1/n, when
n is large”*. In response,Ipointed out thai this questionis
mathematically identical with that of the unit vibrations with
phases at random, of which I had already given the solution
for the case of n infinitet, the identity depending of course
upon the vector character of the components.

In the present paper I propose to consider the question
further with extension to t/iree dimensions, and with a com-
parison of results for one, two, and three dimensions{. The
last case has no application to random vibrations but only to-
random flights.

One Dimension.

In this case the required information for any finite n is.
afforded by Bernoulli’s theorem. There are n+1 possible
resultants, and if we suppose the component amplitudes, or:
stretches, to be unity, they proceed by intervals of two from
+n to —n, values which are the largest possible. The pro-
babilities of the various resultants are expressed by the cor-
responding terms in the expansion of (4 +4)%. For instance
the probabilities of the extreme values +n are (1/2)*. And
the probability of a combination of a positive and & negative
components is

n !

e AT ()

in which a+b=n, making the resultant a—b. The largest
values of (6} occur in the middle of the series, and here a
distinetion arises according as » is even or odd. In the

* ¢ Nature,” vol. Ixxii. p. 294 (1905).

+ ¢ Nature,’ vol. Lxxii. p. 318 (1905) ; Scientific Papers, vol. v. p. 256.

+ It will be understood that we have nothing here to do with the
direction in which the vibrations take place, or are supposed to take.
place. If that is variable, there must first be a resolution in fixed
directions, and it is ouly after this operation that our present problems
arise.
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former alternative there is a unique middle term when
a=b=4n; but in the latter @ and b cannot be equated, and
there are two equal middle terms corresponding to a=1n-+3,
b=%n—1%, and to a=in~13, b=3n+3. The values of the
second fraction in (6) are the series of integers in what is
known as the “arithmetical triangle.”

We have now to consider the values of

n!

m . . . - . . . . (7)

to be found in the neighbourhood of the middle of the series.
If » be even, the value of the term counted s onwards from the
unique maximum is
!
221

(Fn—s)! (n+s) ¥

¥

If » be odd, we have to choose between the two middle
terms. Taking for instance, a=4n+%, b=4n—4, the sth
term onwards is

n!

= G=hH =B}

9)

The expressions (8) and (9) are brought into the same form
when we replace s by the resultant amplitude 2.  When n is
even, x=—2s ; when sis odd, # is —2(s— %), so that in both
cases we have on restoration of the factor ()*

!
n!
22, (dn—Lt2)! (4n+32) 0

The difference is that when = is even, « has the (n+1) values
0, +2, +4, +6,.... 4n;

and when 7 is odd, the (n+1) values
+1, +3, +5, ... 40

The expression (10) may be regarded as affording the
complete solution of the problem proposed; it expresses
the probability of any one of the possible resultants, but for
practical purposes it requires transformation when we con-
template a very great =.

The necessary transformation can be obtained after Laplace
with the aid of Stirling’s theorem. The process is detailed
in Todhunter’s ‘History of the Theory of Probability,’

. 548, but the corrections te the principal term there exhi-
bited (of the first order in #) do not appear here where the

(10)
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probabilities of the plus and minus alternatives are equal. On
account of the symmetry, no odd powers of & can oceur.
I have calculated the resulting ez\pressmn with retention of
the terms which are of the order 1/#? in comparison with
the principal term. The resultant & itself may be considered
to be of order not higher than v/n.

By Stirling’s theorem

nl= v (@m0, L L (12)
1 1 ,
2
where C,,_1+12 +ogget o oo (12)

with similar expressions for (n—234a) ! and (34 443! For
the moment we omit the correcting tactors C. Thus

1 _ ot (,n)—n—l(l '£2 -in-% l—x/’n)h
(3n—3%2)! (4n+42)! 2r \2 - né) (l--i— z/n)’

For the logarithm of the product of the two last factors,
we have

n-l-l{ at ) 2 at &8
.5n +"'}—7;—3n3—5_)13_
. a w2 at /1 1 28 /1 1
- 2n+2u 4n"<5—7ﬁl)_m(:)i—; T

and for the product itself

| 1/2> 2 1 /3t 3.76
~232n Pl Bl B (et ad
¢ JLl + 2n<n 67;2) + 8n* ( w5t 36) )} (13)
The prineipal term in (10) is

VEem) . e oy e \/(*% ~2Y2n
o - (‘)) - nm )¢ )

There are still the factors C to be considered. We have

L SN S S S }
CipnmnCimnrny U 12n " 28807

1 1 -1 ’ 1 1 z -1
{1+ 6(n—ux) + 7‘)(9:,-—.1;)2} {1+ 6(n+.r) + 2(n+2)%§
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=1 Mn(l 32@2). R ¢ 1))
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Finally we obtain

2 2 1 2%
—z2/2n — e v
/\/(Er)e {1 4n \1 n + 3n?)
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as the probability when = is large of the resultant ampli-
tude #. It is to be remembered that # is limited to a series
of discrete values with a common difference equal to 2, and
that our approximation has proceeded upon the supposition
that # is not of higher order than v/=.

It the component amplitudes or stretches be /, in place of
unity, we have merely to write «/l in place of a.

The special value of the series (15) is realized only when
n is very great. But it affords a closer approximation to
the true value than might be expected when =» is only
moderate. I have calculated the case of n=10, both directly
from the exact expression (10) and from the series (15) for
all the admissible values of .

+ (15)

TaBLE 1.
n=10.
x. From (10). From (15).
[ 24609 *24608
2, 20508 20509
4. 11719 11722
6......cet 04394 104392
- S 00977 ‘00975
10......... ‘00098 00102

The values for =0 and twice those belonging to higher
values of z should total unity. Those above from (10) give
1:00001 and those from (15) give 1'00008. It will be seen
that except in the extreme case of #=10, the agresment
between the two formulwe is very close. But, even for mueb
higher values of n, the actual calculation is simpler from the
exact formula (10).

When [is very small, while n is very great, we may be-
able for some purposes to disregard the discontinuous.
character of the probability as a function of «, replacing the
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isolated points by a continuous representative curve, The
difference between the abscissz of consecutive isolated points
is 21; so that if dx be a large multiple of I, we may rake

\/ (‘1 )e—f"/’z"‘”dx/z, L. . (16)
2nar

as the approximate expression of the probability that the
resultant amplitude lies between x and z+ d.

Two Dimensions.

If there is but one stretch of length [, the only possible
value of r is of course L.

When there are two stretches of lengths ; and Iy, » may
vary from l;—1; to [+, and then if 8 be the angle between
them

7‘2= l12+ 122-—2[112 Ccos 0, . . . . (17)

and sinfdf=rdrflil,, . . . . . (18)

Since all angles @ between 0 and = are deemed equally
probable, the chance of an angle between § and 6+ d6 is
dfjm. Accordingly the  chance that the resultant » lies
between » and »+ dr is
rdr

hlysin 87 (19)
or if with Prof. Pearson * we refer the probability to unit of
area in the plane of representation,

1
2 o T
$2r?) = 2%, 1, sin @
1
=7T2'\/{27‘2(l12+l22) T () (20)
$o(r*)dA denoting the chance of the representative point

lying in a small area dA at distance » from the origin.
If the stretches [, and /, are equal, (20) reduces to

W)=y D

Prof. Pearson’s expression, applicable when »<2l. When
r> 21, dy(r?) =C.
When there are three equal stretches (n=3), ¢3(r®) is

* Drapers’ Company Research Memoirs, Biometric Series 111., London,
906.
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-expressible by elliptic functions* with a discontinuity in
form as » passes through .

For values of » from 4 to 7 inclusive, Pearson’s work is
founded upon the general functional relation t

¢n+1(r2) = i_jo” ¢n(7‘2 + Z2 - 27'l [6Z¢L] ﬁ)dﬁ. . . (22)

Patting »=0, Le deduces the special conclusion that

o =0,), . . . . . (23)

as is indeed evident a priort.

From (22) the successive forms are determined graphically.
For values of n higher than 7 an analytical expression
proceeding by powers of 1/n is available, and will be further
referred to later.

A remarkable advance in the theory of random vibrations
and of flights in two dimensions, when the number (n) is
finite, is due to J. C. Kluyver {, who has discovered an
-expression for the probability of various resultants in the
form of a definite integral involving Bessel’s functions.
His exposition is rather concise, and I think I shall be doing
a service in reproducing it with some developments and slight
changes of notation. It depends upon the use of a discon-
tinuous integral evaluated by Weber, viz.

yBl(bx)J o(ax)de=u (say).
To examine tlli“s we substitute from
. Jy(b7) =2 yo ¥ cos Osin (b cos )6 §,
and take first the integration with respect to 2. We have |

J da sin (ba cos 0)Jy(ax)=0, if a®>0%cos? 4,
0

or =(b? cos*0—a?) -5 il 82 cos® @ >at,
Thus, if a?>0%, u=0. If > a?,
_2( dfcost _ E—sin‘l bsin @
T ) V{iPcostf—a®) T mh V(P —a®)’

* Pearson (/. c.) attributes this evaluation to G. T. Bennett.

+ Compare ‘ Theory of Sound,” § 42 a.

1 Amsterdam Proceedings, vol. viii. p. 341 (1905). .

§ Gray and Matthews, ¢ Bessel's Functions,’ p. 18, equation (46).
| G.and M. p. 73,
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The lower limit for 8 is 0, and the upper limit is given by
cos?@=a?/6%. Hence u=1/b, and thus

br Jiba)dy(ax)da=1, (b°>a?) } (24)
" or =0, (a®>0%)

A second Jemma required is included in Neumann’s
theorew, and may be very simply arrived at. In fig. 1.

Fig. 1.

G r £

(& and E being fixed points, the function at F denoted by
Jo(9)y or Jov/ (4 —2¢fcos G),

is a potential satisfying everywhere the equation V?+1=0,,
and accordingly may be expanded round G in the Fourier
series

Agdo(e) + Ay () cos G+ Agdy(e) cos 2G+ ...,
the coefficienis A being independent of ¢ and G. Thus
2r
;l;; ( JoV/ (e + /2 —2¢f cos )G =A,J(e).
0

By parity of reasoning when E and F are interchanged,.
the same integral is proportional to J,(f), and may therefore
bo equated to Ay'dy(e)do(f), where Ay is now an absolute-
constant, whose value is at once determined to be unity by
making e, or f, vanish. The lemma

fo T JoV/ (€4 = 2ef cos G)AG=2mTy()To(f),  (25)

is thus established *.

* Similar reasoning shows that if Dy(g) represent a symmetrical
purely divergent wave,

2
j‘ Do o/ (e*+/* —2ef cos G )dG = 2nda(e) Do( 1),
0

provided that f>e.



and Random Flights in one, two, or three Dimensions. 331
We are now prepared to investigate the probability
Palrs U, by, .. L)

that after n stretches Iy, Iy, ... [, taken in directions at random
the distance from the starting-point O (fig. 2), shall be less

Fig. 2.

than an assigned magnitude ». The direction of the first
stretch [, is plainly a matter of indifference. On the other
hand the probability that the angles 8 lie within the limits-
0, and 6,+d#0,, 6, and 0,+d#,, ... 6,1 and F,_1+db,_y is

1
(—_'2;)‘71__1 deldeg ..... den—l’ . . . (26)
which is now to be integrated under the condition that the
nth radius vector s, shall be less than ».
Let us commence with the case of two stretches [; and l;.
Then .
P2(7' 5 b, l2)= 2ij ad,,

,

the integration being taken within such limits that s; <7,
where
322=ll2+ 122 - 2l1l2 COs 81.
The required condition as to the limits can be secured by
the introduction of the discontinuous function afforded by
Weber’s integral. For

rj‘ Ji(ra)do(sex)da
0

vanishes when s,>r and is equal to unity when s,<». After
the introduction of this factor, the integration with respect
to #; may be taken over the complete range from 0 to 2.
Thas

2w g
Po(r; 1, b= 2—:;5; delj; da Ji(ra)do(ss).
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Taking first the integration with respect to ), we have
by (25)
1 “on
Q—ﬁ dolJo(Sztz’)=J0<lla})Jo(Z2ﬂ/’),
7)o
and thus p (0 y=r| dedi()Tolha) o). . (27)
Jo
The method can be extended to any number (n) of stretches.

Beginning with the integration with respect to 6,_, in (26),
we have as before

1 . (‘2% o
z—wf 6, = 2’_7‘0 do,,_ljo dady(re)T o(5at)

=7 ‘ dady(ra)d (L) o(sn-12).

<0

The next integration gives

o )J 46,0, 1_4 T1(r2)d o) To(Luo12)F o snstt)di,

0
and so on. Finally

1 L3 ]
Pu(rs by by e )= (g3 J j ..d6,d6,...d6,_,
J1(7'x)J0(ll.'v)Jo( 12&3) ‘e Jo(lnw)dw, . (28)
—the expression for P, discovered by Kluyver.
It will be observed that (28) is symmerrical with respect
to the I's ; the order in which they are taken is immaterial.
When all the ’s are equal,

Poir; 1) =r‘ I ) To(l)rde. . . (29)
0
If in (29) we suppose r=1,

Pl 1)=_f {3, (2) Y dIo(la)

(Tl °_ 1

= bt LRI (30)
so that after n equal components have been combined the
chance that the resultant shall be less than one of the com-
ponents is 1/(n+1), an interesting result due to Kluyver,
The same author notices some of the discontinuities which
present themselves, but it will be more convenient to consider
this in a modified form of the problem.
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The modification consists in dealing, not with the chance
of a resultant less than », but with the chance that it lies
between » and »+dr. It may seem easy to pass from the
one to the other, as it involves merely a differentiation with
respect to . We have

& )= = L1 ()

= —Jy(ra) —rady (ra)=rady(rz),
in virtue of the differential equation satisfied by J,. Thus,
if the differentiation under the integral sign is legitimate,

D drer ety = e By (r)Tof )Tl (L., (31)
0

and, if all the I's are equal,

bu(r?)= 21;30 adadyra){Jo ()}, . . (32)

the form employed by Pearson, whose investigation is by a
different method. It we put n=1 in (32),

1 LYY
¢1(o’2\)=:;—7r5 sdady(ra)do(lz), . . . (33)
0

and this is in fact the equation from which Pearson starts.
But it should be remarked that the integral (33), as it stands,
is not convergent. For when z is very great,

Jo(z)=,\/<%)cos(:i7r—z), e (34

so that (»0)
1{* : -
57;) zded(ra)dy(le) = 2?\/@) @

{sin(r+la+ cos(r—1)r},
and this is not convergent when =0 .

The criticism does not apply to (29) itself when n=1, but
it leads back to the question of differentiation under the
sign of integration. It appears at any rate that any number
of snch operations can be justified, provided that the integrals,
resulting from these and the next following operation, are
finite for the values of » in question. But this condition is
not satisfied in the differentiation under the integral sign
of (29) when n=1. For the next operation upon (32) then
yields

f i dad (re)dy(la).

v 0
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When we substitute for Jo(/z) from (34) and for J,(ra)

from
2 37
Jl(C)= /\V/(W—:) cos (—4:' —Z) s

fl adr cos (31—- —r;v) cos (Z—r —-lx),

which becomes infinite with #, even for general values of
rand I

So much by way of explanation ; but of course we do not
really need to discuss the cases n=1, n=2, or even n=3,
for which exact solutions can be expressed in terms of
functions which may be regarded as known.

For higher values of n it would be of interest to know
how many differentiations with respect to » may be made
under the sign of integration. It may be remarked that
since all J’s and their derivatives to any order are less than
unity, the integral can become infinite only in virtue of
that part of the range where & is very great, and that there
we may introduce the asymptotic values.

We have thus to consider

a 10" ‘
W@(rz):%ﬂ dear @ (ra) [(To(z)}m . (35)

we get

For the leading term when : is very great, we have

100=5 {0/ (D)en(im=2)}
=\/(;22>cos(i—7r—-z—%p7r\), .. (36)

{Jo(z)}"=(i)%ncos"(i'n'—z), N ¢ 1))

nz

so that with omission of constant factors our integral becomes

j' dua® 4 cos (i Ty — %pw) cos”(i'vr- Zr). (38)

In this cos*(3m—Il2) can be expanded in a series of cosines
of multiples of (Jm—Ilx), commencing with cosn(}mr—Iz)
and ending when n is odd with cos (}7 —I2), and when = is
even with a constant term. The various products of cosines
are then to be replaced by cosines of sums and differences.
The most unfavourable case occurs when this operation
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leaves a constant term, which can happen only for values
-of » which are multiples of I. We are then left with

” o BHE=ER
’ deat ? = T
. p+a—zgnl
The integral is thus finite or infinite according as
p< or >§(n—3).

If, however, there arise no constant term, we have to
-consider

wp+—§ -in jo

@©

L et
~1 o
- diL'(L's SN mx,
n

© 28 .
dix s cos my = —-sinma
b3

where m is finite ; and this is finite if s, that is p+41—1in,
be negative. The differentiations are theu valid, 1f

p<i(n—1).
We may now consider more especially the cases n=4, &e.
When n=4, s=p+4—kn=p—3.
If p=1, s= —4, and the cosine factors in (38) become

cos (Im+ra) cost (3w —lo),

yielding finally

cos (ég + wu-——4l;v), cos (%f —r.z—4l.v),

cos @i—r + m*~21x) , COS G: —re— 2l.9:), cos C{ + m),
so that there is no constant term unless =41, or 2I. With
these exceptions, the original differentiation under the
integral sign is justified.

We fall back upon ¢, itself by putting p=0, making
s=-—3. The integral is then finite in all cases (»5:0), in
agreement with Pearson’s curve.

Next for n=35, s=p—2.

When p=1, s=—1, and we find that the cosine factors
yield a constant term only when r=3l. Pearson’s curve
does mnot suggest anything special at »=3l; it may be
remarked that the integral with p=1 is there only logarith-
mically infinite,

If n=>5, p=0, s=—2; and the integral for ¢; is finite
for all values of ».

When n=6, s=p—24. In this case, whether p=1, or 0,
no question can arise. The integrals are finite for all values
of r.

A fortiori is this so, when n>6,
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If we suppose p=2, s=4(5—n). Thus n=7 makes
s=—1, and infinities might occur for special values of .
But if n>7, s<$, and intinities are excluded whatever may
be the value of r.

Similarly if p =3, infinities are excluded if » > 9, and so on.

Our discussion has not yielded all that could be wished ;
the subject may be commended to those better versed in
pure mathematics. Probably what is required is a better
criterion as to the differentiation under the integral sign.

We may now pass on to consider what becomes of
Kluyver’s integral when n is made infinite. As already
remarked, Pearson has developed for it a series proceeding
by powers of 1/n, and it may be convenient to give a version
of his derivation, without, however, currying the process.
so far,

The evaluation of the principal term depends upon a
formula due, I think, to Weber *, viz.

i — o2 1 e
"=.ﬁ Jy(rz)e 7 :cda:=2—p2e neL 39

making f

(lu To < i 1 @® .
ar =j0 Jo' (rz)e™? 2‘r2dw=—2—}ﬂj; Jo' (ra)ude™

= —13 P T (ra) +rady (rx) Yda

2p Jo
r ® . —piy2 r
==\ Jra)e P ade=—su.
2]"\’; o) 2p*
Hence = CC_T2/4P2.

To determine C we have merely to make r=0. Thus

— 1
C=upp= e Pl rdr= 5,
0 \5; 2])2
by which (39) is established.

Unless lx is small, the factor {J,({z)}" in (32) diminishes
rapidly as n increases, inasmuch as Jo(lx) is less than unity
for any finite lz. Thus when » is very great, the important
part of the range of integration corresponds to a small la.

* Gray and Matthews, loc. ¢it. p. 77.
+ 1 apprehend that there can be no difficulty here as to the differ-
entiation, the situation being dominated by the exponential factor.
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Writing s for 4nl?, we have

52.2:4 s3z8
log Jo(l) = log (1 + e —oeea )
_ siz szt E; x“g .
9n T 16m2 1228 7
so that

sz st sfab s'at
Jo(l)}'=e (1— 16n 7227 + 512%2)’

making

27, (1) = w@'er (ra)e™+ 1_&.@* nge ) (40)
ETPaNT /T TEEEOU ( Ten 722 T 01%

Calling the four integrals on the right I, Ip, I, and I,
we have by (39)

Il:jo xdady(ra)e ¥ = %e_ﬂ@s, .. (41)
_ s? (l2Il s d? /1 —2/2s :
—L= e T i dse ( ¢ )’ ce (1)

_ s dSIl_ £ A1 - 12/28
13_537123}?—9_115'%3(58 ) - - ()

s dH, stodt (1 e
= 21 " " [T . 4
T390 dst T 3207 ds*(se ) ()

Thus
—1r%/28

o, (%)= "— {1_4n(2 - )

. (6—9i+9~’°4 "6)

T 9n? $ 4¢?  8s?
4872 187'4 26 78
24— 4 -
J‘) ( 8 + 16s*
et 1 20 gt 1 67°
=3 {1“ w2+ e) r a5

157 T8 3.8
+ 432 _ESE + 12834)} 3 - . . . . . (45)

in agreement (so far as it goes) with Pearson, whose o2 is
equal to our s. The leading term is that given in 1880.

Phil. Mag. 8. 6. Vol. 37. No. 220. Aprii 1919. 2 B
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Thyree Dimensions.

We may now pass on to the corresponding problem when
flights take place in three dimensions, where we shall find, as.
might have been expected, that the mathematics are simpler..
And first for two flights of length I, and l,. If u be the
cosine of the angle between /; and I, and » the resultant,

=0+ 17— 2l p,
gving rdr=—Ulydu. . . . . . . (46)

The chance of » lying between # and r+dr is the same as
the chance of x lving between u and u+ du, that is —1dp,
since all directions in space are to be treated as equally
probable. Accordingly the chance of a resultant between
»and r-+dris

rdr
20,0, (47)

The corresponding volume is 47r?dr, so that in the former

notation

1 -
bo(rs D=g—p» - - - - . (48)

Iy and I, being supposed equal. It will be seen that this is
simpler than (21). It applies, of course, only when r<2L.
When r> 21, ¢,=0.

In like manner when I, and I, differ, the chance of a
resultant less than » is zero, when # falls short of the
difference between I, and [}, say l;—1;,. Between l,—1; and
l;+ 1, the chance is

ordr e (b—b) |
.szg_h?lllz_ ari; o (49).
When » has its greatest value (l,+1,), (49) becomes
2 —]\2
e+ 13—, =1 ey

400,

The *“ chance ”” is then a certainty, as also when >, +7,.

In proceeding to the general value of n, we may con-
veniently follow the analogy of the two-dimensional investi-
gation of Kluyver, for which purpose we require a function
that shall-be unity when s<r, and zero when s>». Such a
function is

™

2 (" . sin s sin re—re cos re
dx ; (51)
0 sz &
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for it may be written

2r(*™ . sin 72 2 sin ra
- sin szd =— cos sxdx
7s ), o X

re m

_ }_f“’ sin(s+r)z—sin (s—r)e
0

dz =1 or 0,
™ Z

according as s is less or greater than r.

In like manner for a second lemma, corresponding with
(25), we may reason again from the triangle GFE (fig. 1).
Jo(9) is replaced by sin g/g, a potential function symmetrical
in three dimensions about I and satisfying everywhere
V2+1=0. It may be expanded about G in Legendre’s

series ¥
sine sine cose
AOT +A1,U'( e - P )+---:

p being written for cos G, and accordingly

1 sin 4/ (€% + [ —2efu) _A sin e
a2 FTVE@E A=) T e
When E and F are interchanged, the same integral is

seen to be proportional to sinf/f, and may therefore be
equated to

-

;8in e sin f
e [
where Ay is now an absolute constant, whose value is deter-

mined to be unity by putling e, or f, equal to zero, We
may therefore wriie

PR 2. g cine sin / »
i T sin «/ge +f ei/Q= sin e qm‘,]‘. . (52)
-1 V(e 2efp) e J
As in the case of two dimensions, similar reasoning shows
that

A

X 1+1d cos /(e +1?—2efp) _sine cosf
A

provided e< f.

With appropriate changes, we may now follow Kluyver’s
argument for two dimensions. The same diagram (fig. 2)
wil serve, only the successive triangles are no longer
limited to lie in one plane. Instead of the angles 8, we have
now to deal with their cosines, of which all values are to be

# ¢ Theory of Sound,’ § 330,
2B2

(53)
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regarded as equally probable. The probability that these
cosines shall lie within the interval u; and p; +du,, pe and
Motdpty, ..., M, yand p,  +dp,  is

1
Fd/.bldll’g-...dﬂn_l, N 23]

which is now to be integrated under the condition that the
nth radius s, shall be less than ».

We begin with two stretches Z; and ;. Then, in the same
notation as before, we have

Py(rs by, &) =4du,

the integration being within such limits as make s, >7,
where
822:-'112"'122—211[2“-

Hence, by introduction of the discontinuous function (51),

1{+ ® _ sin s, sin r&—rz cos rx
Po(r; 4, )=~ d da 2 .
2 1 L2 14
w1 0 894

r z
But by (52)
Lf“d sin s,z _ sin L@ sin L
2) P T Lz La
and thus
2(*, sinre~rzcosrz sinlz sin .
Py(rs by by=2 | @O nhesinbe (g

A simpler form is available for dP,/dr, since

d . g
M (sin r& —ra cos rz) =ra’ sin ra.

Thus
dP2 _ 27' *© d.Z' . . .
= Wlllzyo — sinrzsin Lasinle, . . (56)

in which we replace the product of sines by means of
4 sin r2 sin b sin La=sin (r+L,—1)z
+ sin(r—L+l)z— sin r+ L+ L) —sin(r—1,—1))2.

If #, b, I, are sides of a real triangle, any twe of them
together are in general greater than the third, and thus
when the integration is effected by the formula

- s
sin
du=}m,
o U
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we obtain three positive and one negative term. Finally

ar, _ r

dr - 2l112 ’
in agreement with (47). The expression is applicable only
when the triangle is possible. In the contrary case we find
dP/dr equal to zero when r is less thun the difference and
greater than the sum of [, and /,.

This argument must appear very roundabout, if the object
were merely to obtain the resalt for n=2. The advantage
is that it admits of easy extension to the general value of n.
To this end we take the last stretch /, and the immediately
preceding radius s,_; in place of 1, and I, respectively, and
then repeat the operation with I, ), s,—5 and so on, until
wo reach [y and s; (=/{). The result is evidently

2" , sinre—racosrz
Pir; 1,0, .. 0)==) de—"——" =
'n'u o &
sin & sin La sin l,x (57)
e lw Lm0 - OT

or if we suppose, as for the future we shall do, that the I’s
are all equal,

Py(rs )= %L dSin rz'—;'m cos 7z s1;1wlm) . (59)

This is the chance that the resultant is less than ». For
the chance that the resultant lies between » and 7#4dr, we
have, as the coeflicient of dr,

ar, _ 2»r “” da

. sinrzsin®le . . . (B9)

el e
dr — mwi*), 2*
Let us now consider the particular case of n=3, when
dP; 20 {"du . .
3= Zsinrasindle. . . . . (60)
dr 31, 2 ’
o

In this we have
sin ra sin’® le=4{3 cos (r—{ja—3 cos (r+ 1)
— cos (r—3la+ cos (r+ 3l x}.
And ® dx
j‘ ' F{cos (r—1{)e— cos (»+ )}

[

o dr [ (et De g (r—0a
_25; yimn ) sin 5 }

=im{r+l—ir—1};

and in like manner for the second pair of cosines.
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Thus
P, . !
fTr. 8”;3{_.7 3 =14+ |r=31|}. . . (61)

expresses the complete solution. When
r<l, dPs/dr=7?/20,
B>r>l, dAPyfdr=(3lr—1) /4B,
r>3l, dPs/dr=0.
It will be observed that dPg/dr is itself continuous ; but
the next. derivative changes suddenly at »=1and »=3! from

one finite value to another.
Next take n=4. From (59)

dP, 2r {“dx . -
——=—=\| - sinraesintiz,
i), @

dr
and
- ,£<} ap, —i“ 22 Sin ra sint Iz
ar\r dr) " wl), @
=~1—-‘w fdi’{sin(r+4l)x+sin(r—4l)x
8wlt), «
—4 sin(r-i— 2)ae—4sin(r—20)z+ 6 sinra}
16l4{1+1 4F4+6)}= 1614{5+1+4},
the alternatives depending upon the signs of »—4/and »—21.
When <2, 16Z4d— ! C—l}i) =6,
r dr
AL>r>20, —1607 (1 dP*) -2,
r dr

and when » > 4/, the value is zero. In no case can the value
be infinite, from which we may infer that

1dP, 1 dP,
d’r( d’r) and r dr

must be continuous throughout.

—~ From these data we can determine the form of dP,/dr,
working backwards from the large value of », where ull
derivatives vanish.

4 dP4 B
@>r>2) —160% (7 dq) —2(r—41),
1dP,

b . 4
(21>7) 161d =5

) 6(r—20) + 4i=6r—8l,
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giving continuity at r=47 and r=2I. Again

(4> r>20) —1(-;14117 ‘g‘* =— (¥ —162)+ 8I(r—4)
= —(r—4{)%,
(20>7r) ——1614% %24 = 3(r7 — 412) = 8I(r— 20) — 412
= 3r?— 87rl.
Finally
dP . 72 (81— 3 . 1
A=ty (s )= g 2or<2)
)
r(dl—r)? oy f (62)
or = T (ﬁLZ> 7’>_Z) J

and vanishes, of course, when »> 41,

From (61), (64) we may verify Pearson’s velation,
$4(0) =s(0).

From these examples the procedure will be understood.
When n is even, we differentiate (59) (n—2) times, thus
-obtaining
L(ql %%)::Tj dw sin rx sin® e, (63)

drm=2 "o @

in whieh sin® lz is replaced by the series containing cos nlw,
cos (n—2)lx,....and ending with a constant term. When
this is multipliedl by sinra, we get sines of (r+nl)r,
{r+(n—2)}a,....sinre, and the integration can be etfected.
Over the various ranges of 2/the values are constant, but
they change discontinaously when # is an even multiple of I
The actual lorms for dP,[dr can then be found, us already
exemplified, by working backwards from »>n/, where all
derivatives vanish, and so determining the constants of
integration as to maintain continuity throughout. These
forms are in all cases algebraic. ’

When n is 0odd, we differentiate (n~—3) times, thus obtaining
a form similar to (60) where »=3. A similar procedure
then shows that the result assumes constait values over
finite ranges with discontinuities when » is an odd multiple
of I.  On integration the forms for dP,/dr are again
algebraic.

I have carried out the detailed calculation for n=6. It
will suffice to record the prinecipal results, For the values of

_osp & (1 dPs)

dr’\r dr
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we find for the various ranges :
(r<2l), —20; (2i<r<4l), +10;
(4l<r<6l), —2; (6l<r), 0.
And on integration for

./1dP
—261«(; 3;6), L (B
R
(0—20) —‘%’+4lr3—1613r,
3
(2—40)  + 7 — 6134 30292 — 567+ 200,

12

4
(4l—61) — 75 +20° — 1807 + T2 —1081,
(r>60) 0.

We may now seek the form approximated to when nis
very great. Setting for brevity /=1 in (59), we have

sin 2\" a?
log( T) =n{—’0'7' +h4.’b4+]lsu’l:'6+},
1

1
— i85’ "= 35,81’

where
o=

(65)

and

1 o\ 2 P
(Sl; ‘@,) = ¢ "1 4 nhyat + nhoat + In?hlat+ .},

2{” . —
1dPb, _ 1{ zdx sinrae ™" {1+ nhat +nhgat
+ 3022+ ..} (66)

The expression for the principal term is a known definite.
integral, and we obtain for it

dP, 3,/6.7% —3r3/2n
Fr*:\/—{r.?/ze ... (67)

which may be regarded as the approximate value when 13
very large. To restore /, we have merely to write rfl for r
throughout.

In pursuing the approximation we have to consider the
relative order of the various terms. Taking na? as standard,
so that #* is regarded as of the order 1/n, na® is of order n=2
and is omitted. Butn22®is of order n~* and is retained. The
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terms written down in (66) thus suffice for an approximation
to the order n~* inclusive.

The evaluation of the auxiliary terms in (66) can be
effected by differentiating the principal term with respect
to n. Each such differentiation brings in —?/6 as a factor,
and thus four operations suffice for the inclusion of the term
containing 2®. We get

‘LP'%—“\/" r’ [\*+ nh, 6%
dr
3
—nhg . 63 ((lj—\I+1n"]L4 64d\ , (68)
where N=p =0k . (69)
Finally
dPy _3y/6.p%” ™% [ 3, 10 3t
ar = NZ R 20n (0 n? h%“)

1 (29 69 981 134L° 8L ) (70
T30\ 7 Tl T 1000 T 350 T 200 }

Here dP,[dr . dr is the chance that the resultant of a large
number n of flights shall lie between r and r+dr. In
Pearson’s notation,

dmrip,=dP,[dr.

The maximum value of the principal term (67) occurs
when r/l=./(2n/3).

It is some check upon the formula to compare the exact
results for n==6 in (64) with those derived for the case of n
great in (70), although with such a moderate value of n no
precise agreement could be expected. The following T'able
gives the numerical results for {dPg/dr in the two cases :—

A From (64). From (70).
0......... *2600 /1% "2483 7212
Do 05900 05886
1. 2005 *2007
2. 4167 4169
L +2930 *2922
4. ‘0833 1055
S I 00652 00716
6......... 00000 | L
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So far as the principal term in (70) is concerned, the
maximum value occurs when r/l=2.

It will be seen that the agreement of the two formule is
in fact very good, so long as »// does not much exceed /n.
As the maximum value of r// for which the true result
differs from zero, is approached, the agreement necessarily
falls off. Beyond r/l=n, when the true value is zero, (70)
yields finite, though small, values.

Terling Place, Witham,
January 24th, 1919.

P.S. March 3rd.

In (45) we have the expression for the probability of a
resultant (r) when a large number (n) of isoperiodic vibra-
tions are combined, whose representative points are distri-
buted at random along the circumferencs of a circle of
radius [/, so that the component amplitudes are all equal.
It is of interest to extend the investigation to cover the case
of a number of groups in which the amplitudes are different,
say a group ol p; components of amplitude /;, a group
containing p, of amplitude /5, and so on to any number of
groups, but always under the restriction that every p is
very large. The total number (3p) may still be denoted
by n. The result will be applied to a case where the number
of groups is infinite, the representative points of the com-
ponents being distributed at random over the area of a circle
of radius L. We start from (31), now taking the form

2w¢n<r2)=f:xdeo(rw){Jo(zlw)}m{Joazm)}Pe..,, . (@)

The derivation of the limiting form proceeds as before,
where only omne ! was considered. Writing s;=4pl\?%,
Sp=2p.ls%, &c., we have

log [{Jo(lix)}or {Jo(La)fPe. . ... ]
22 & o R
== 520-553(5) = 732(3):
and thus
2m ‘]Sn(ﬂ);-:jv wdm'TO(rx)e—ézzz(s) [1_ s
0

RN e

=os
M
~~~
%
S
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As before, the leading term on the right is
1 12050
L= e ™30 . . (13
=56) (73)
and the other integrals can be derived from it by differ-
entiations with respect to 3(s). So fur as the first two
terms inclusive, we find
—$r%3@) - 2/,
2 a(r%) = ¢ 1= 2 (2
() L 4 \{Zs)}*

24 L -

— <+ os G A

S Or 4{2@)}4)} ’ ()

from which we may fall back upon (43) by dropping the X

and making p=n. IngeneralZ(p)=n. The approximation
could be pursued.

Let us now suppose that the representative points are
distributed over the area of a circle of radius L, all infini-
tesimal equal areas being equally probable. Of the total n
t}u number (p) which fall between ! and [4dl should be

. (21dl/1?), and thus

S(s)=13(pl*)= U‘ Zdl——"—L .. (1)

S(#fp)=1S(plt) = )’I‘J Bdl= ’fL. .. (76)
Introducing these values in k74) we get

—2r2/nL2
. bE 2
277' ¢>n(7"’) s 11] P {1 311 _2 + *‘2*'*4)} . (77)*

A similar extension may be made in the problem where
the component vectors are drawn in three dimensions.

XXXII. On the Fundamental Law of Electrical Action. By
MeGE NAD SaRa, 3.Se., Reseavch Scholar in Mathematical
Physics, Sir 1. N. Palit College of Science, Calcuttat.

IN the present paper an attempt has been made to
determine the law of attraction between two moving
electrons, with the aid of the New Electrodynamics as
modified by the Principle of Relativity. The problem is a

* The applicability of the second term (in 1/2) to the case of an
entirely random distribution over the area of the circle L is not over

secure.
+ Communicated by Prof, D. N. Mallilk,



