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W HEN a nmnber (n )o[  isoperiodic vibrations of unit 
amplitude are combined, the resultant depends upon 

the values assigned to the individual phases. When the 
phases are at random, the resultant amplitude is indeter- 
minate, and all that can be said relates to the probability o{' 
various amplitudes (r), or more strictly to the probability 
that the amplitude lies within the limits r and r~dr .  The 
important case where n is very great ~ considered a long 
time ago ~" with the conclusion that the probability in question 
is simply 

2-e-~/~rdr . . . . . . . .  ( i )  
n 

The phase (8) of tile resultant is of course indeterminate, and 
all values are equally probable. 

The method then followed began with the supposition that 
the phases of the unit components were limited to 0 ~ and 
180 ~ taken at, random, so that the points (r, 0), representative 
of the vibrations, lie on the axis 0 = 0 ,  and indifferently on 
both sides of the origin. The resultant x, beil)g the difference 

* Communicated by the Author. 
t Phil. Mag. vol. x. p. 73 (t880) ; Scientific Papers, vol. i. p. 491. 
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322 Lord Rayleigh : Problem qf Random Vibrations, 

between the number of positive and negative components, is 
found from Bernoulli's theorem to have the probability 

1 e-~2/2"dx . . . . . .  (2)* 
q'f27r,) 

The next step was to admit also phases of 90 ~  270 ~ 
the choice between these two being again at random. If  
we suppose 22n components at r~mdom along +__x, and {n also 
at random along + y, the chance of the representative point 
vf the resultant lyTng within the area dx dy is evidently 

-l~e-(~:+u2)/"dxdy, . . . .  (3) 
7rrt, 

or in terms of r, O, 

1__ e-~2/,~ r dr dO . . . . . .  (4) 
, 'wn  

Thus all phases are equally probable, and the chance that 
the resultant amplitude lies between r and r + dr is 

2 . . . . . . .  (1) 
n 

This is the same as was before stated, but at present the con- 
ditions are limited to a distribution of precisely {n components 
along ,,,' and a like number alongy, i t  concerns us to remove 
this restriction, and to show that the result is the same when 
the distribution is perfectly arbitrary in respect to all four 
directions. 

For this purpose let us suppose that �89 n + m are distributed 
along --4-x and { n - - m  along _+y, and inquire how far the 
result is influenced by the value of m. The chance of the 
representative point lying in r dr d8 is now expressed by 

1 
~r ~ / ( n  2 - -  4m ~) e -  "rV(n~-4m2) e-2'~'2 oos ~Ol(n2-4,~a) r dr dO. 

Since r is of order r and m/n is small, the exponential 
containing 0 may be expanded. Retaining the first four 
terms, we have on integration with respect to 8, 

a/ . (~m,)e-nr ' l (nZ-a '~2){1  + m2r4 ( + " ' } ,  

as the chance of the amplitude lying between r and r+  dr. 
Now if the distribution be entirely at random along the four 

* See below. 



and Random Fl ights  in one, two, or three Dimensions. 323 

<lirections, all the values of m of which there is a finite pro- 
bability are of order not higher than V n ,  n being treated as 

'infinite. But if m is of this order, the above expression 
becomes the same as if  m were zero ; and thus it makes no 
difference whether the number of components along _ x  and 
along •  are limited to be equal, or not. The previous 
result is accordingly applicable to a thoroughly arbitrary 
distribution along the four rectangular directions. 

The next point to notice is that the result is symmetrical 
and independent of the directions of the rectangular axes, 
~from whic'b we may conclude that it has a still higher 
generality. It' a total of n components, ~0 be distriSuted 
along one set of rectangular axes, be divided into any number 
of large grotlps, it makes no difference whether we first 
obtain the t~robabilities of various resultants of the groups 
separately and afterwards of the final resultants, or whether 
we regard the whole n as one group. But the probability 
.in each group is the same, notwithstanding a change in the 
system of rectangular axes; so that the probabilities of 
various resultants are unaltered, whether we suppose the 
whole number of components restricted to one set of rect- 
angular axes or divided in any manner between any number 
of sets of axes. This last state of things is equivalent to no 
restriction at all ; and we conclude that if n unit vibrations 
of equal pitch and o[ thoroughly arbitrary phrases be corn- 
,pounded, then when n is very gr~at the probability of various 
~'esultant amplitudes is given by (1). 

I f  the amplitude of each component be l, instead of unity, 
as we have hitherto supposed for brevity, the prob~bility of 
a resultant amplitude between r and r +  dr is 

2-#e-r2/'~Z2rd ' �9 . . . . .  (5) I". 

In 'Theory of Sound,' 2nd edition, w 42a (1894), I indi- 
cated another method depending upon a transition from an 
eqnation in finite differences to a partial differential equation 
and the use o[ a Fourier solution. This method has the 
advantage of bringing out an important analogy between 
the present problems and those of gaseous diffusion, but the 
demonstration, though somewhat improved later ~, was in. 
complete, especiaI]y in respect to the determination of a 
constant multiplier. At  the present time it is hardly 
worth while to pursue it further, in view of the important 
improvements effected by Kluyver and Pearson. The latter 

~* Phil. Mag. vol. xlvii, p. 246 (1899) ; Scientific Papers, vol. v. p. 370. 
2 A 2  



324 Lord Rayleigh : Problem of  Random Vibrations, 

was interested in the " Problem of the Random Walk,"  whiel~ 
he thus formulated : - - " A  man starts from a point 0 and 
walks l yards in a straight line; he then turns through any 
angle whatever and walks another 1 ya rds  in a second straight  
line. H e  repeats this process n times. I require the pro- 
bability that after these n stretches he is at a distance between 
r and r + dr from his starting point 0 . "  

" T h e  problem is one of considerable interest, hut I have 
only succeeded in obtaining an integrated solution for two 
stretches. I think, however, that a solution ought to be 
found, if only in the form of a series in powers of 1/n, when 
n is l a r g e " ' .  In  response, I pointed out that this questionis 
mathematically identical with that of the unit vibrations with 
phases at random, of which I had already given the solution 
for the case of n infinitef, the identity depending of course 
upon the vector character of the components. 

In  the present paper I propose to consider ttle question 
further with extension to three dimensions, and with a com- 
parison of results for one, two, and three dimensions~. The 
last case has no application to random vibrations but only to~ 
random j~iqhts. 

One Dimension. 

In  this ease the required information for any finite n is, 
afforded by Bernoulli 's theorem. There are n + l  possible 
resultants, and if we suppose the component amplitudes, o r  
stretches, to be unity, they proceed by intervals of two from 
+ n  to - -n ,  values which are the largest possible. The pro- 
babilities of the various resultants are expressed by the cor- 
responding terms in the expansion of (�89 ~)". For  instance 
the probabilities of the extreme v-'dues - -n  are (1/2) ~'. And 
the probability of a combination of a positive and b negative 
components is 

(1. .  ~'! ~) j , % ~ ,  . . . . . .  (6) 

in which a + b = n ,  making the resultant a - b .  The largest 
values of (6) occur in the middle of the series, and here a 
distinction arises according as n is even or odd. In the 

' Nature,' vol. lxxii, p. 294 (1905). 
' Nature,' vol. Ixxii. p. 318 (1905) ; Scientific Papers, vol. v. p. 9,56. 

+++It will be understood that we have nothing here to do with the 
direction in which the vibrations take place, or are supposed to take 
place. If that is variable, there must first be a resolution in fixed 
direetions~ and it is only after this operation that our present problems 
arise. 
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~ormer alternative there is a unique middle term when 
,a=b=X~n; but in ~he latter a and b cannot be equated, an~t 

- - I  there are two equal middle terms corresponding to a--  :z n + ~, 
_ _ 1  2 .  . . b--~n--~,  and to a- - - -~n-} ,b=}nq-{ .  The values of the 

second fraction in (6) tire the series of integers in what is 
known as the "ari thmetical  triangle." 

We have now to consider the values of 

n~ 
a ! b !  . . . . . . . .  (7) 

to be found in the neighbourhood of the middle of the series. 
I f  n be even, the value of the term counted s onwards from the 
unique maximum is 

n ! 
( ~ , , ~ _ , )  ! ( ,~ ,~+ , )  ~ . . . . . .  ( 8 )  

] f  n be odd, we have to choose between 1he two middle 
germs. Taking for instance, a = � 8 9  b-={n - j ~  the sth 
term onwards is 

n l  
t�89 (s--�89 ~ {�89 (s---~)}!" O)  

The expressions (8) and (9) are brought into the same form 
when we replace s by the resultant amplitude x. When n is 
even, x = - - 2 s  ; when s is odd, a: is - - 2 ( s - { ) ,  so that in both 
eases we have on restoration of the factor (�89 

n!  
2,~. ( ~ - ~ x )  ! (~,~+ �89 !" (10) 

The difference is that when n is even, x has the ( n + l ) v a l u e s  

0, _+2, 3-4, - t - 6 , . . . .  •  ; 

and when n is odd, the (n+ 1) values 

+1 ,  __+3, + 5 , . . . .  _+m 

The expression (10) may be regarded as affording the 
complete solution of the problem proposed; it expresses 
the probability of any one of the possible resultants, but for 
practical purposes it requires transformation when we con- 
template a very great n. 

The necessary transformation can be obtained after Laplace 
with the aid of Stirling's theorem. The process is detailed 
in Todhunter's 'His tory  of the Theory of Probability,' 
p. 548, but the corrections to the principal term there exhi- 
bi ted (of the first order in x) do not appear here where the 
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probabilities of the p l u s  and m i n u s  alternatives are equal. Oa, 
account of the symmetry, no odd powers of x can occur.. 
I have calculated the resulting expression with retention o[  
the terms which are of the order l [ n  "2 in comparison with 
the principal term. The resultant x itself xnay be considered 
to be of order not higher than ~/n. 

By Stirling's theorem 

n !--- ~ / ( 2 7 r ) n ~ + ~ - e - ' C , ,  . . . . (11) 

i 1 
where C,,=I + ~ n  + ~ +  .... (12) 

with similar expressions tbr (�89189 ! ,,nd (�89 + �89 ! For  
the moment we omit the correcting factors C. Thus 

1 e .  [ n \ - . - l /  2 -p,-~- ' tz  

(�89 (~,~+ ~.~)!-~ ~ )  ( ,~ - ,V  t l  +.~l~] " 

For the logarithm of the product of the two last factora, 
we have 

n + l { x2 x4 x 6 } :c2 .q~ x 6 
2 n :  + 2 n  ~ + 3~i ~ + " "  - - - ~  - - : ~ n  '~ 5 ~  - ' " "  

= - -  2~--~ + 2 ,  2 4 n  3 \ 3  - -  n - 6'n 5 \ 5  - - - " ' "  

and for the produe~ itself 

~-~"'~ ~)+~,~,,,,~ 5,,~+~5,)} �9 (~3> 
The principal t ,rm in (10) is 

�9 /(2~r).n"+te - "  e" I n \  - n - a  -~ :n .  ! / ~  

There are still the factors C to be considered. We have 

C ' 

i +  I i -: 1 ~ -~ 
6 ( n _ x ) + 7 2 ( ~ _ x ~ } ,  {1"+ I 

1 1 {1 32x:] = z -  + . - ~ . , .  _ 
~ n /  . . . . . . . . .  5 Z n ' \  
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Finally we obtain 

1 2x~ x ' ) 
V \ n T r l  , n 

1 ( 44.. 2 38x 4 12x 6 z s ) )  
+ ~  1 - ~ +  3.,: 5 :  + ~  ' (15) 

as the probability when n is large of the resultant ampli- 
tude x. I t  is to be remembered that x is limited to a series 
of discrete values with a common difference equal to 2, and 
that our approximation has proceeded upon the suppositiorr 
that  x is not of higher order than v/n. 

I f  the component amplitudes or s~retches be l, in place of 
unity, we have merely to write x/l in place of x. 

The special wllue of the series (15) is realized only when~ 
n is very great. But it affords a closer approximaLion to 
the true value than might be expected when n is only 
moderate. I have calculated the case of n =  10, both directly 
from the exact expression ([0) and from the series (15) for 
all the admissible values of x. 

TABLE I. 

n=10 .  

0 . . . . . . . . .  

, )  

4 . . . . . . . . .  

6 . . . . . . . . .  

i 8 . . . . . . . . .  
!1o ......... 

F r o m ( 1 0 ) .  F r o m ( 1 5 ) .  

�9 24609  "24608 

"20508 "20509 

�9 11719 "11722 

�9 04394  "04392 

"OO977 "OO975 

�9 00098  "00102 

The values for x = 0  and twice those belonging to higher 
values of x should total unity. Those above from (10) give 
1"00001 and those from (15) give 1"00008. I t  will be seen 
that except in the extreme case of x = 1 0 ,  the agreement, 
between the two formu]~ is verydose.  But, even for much 
higher values of n, the actual calculation is simpler from the 
exact formula (10). 

When l is very small, while n is very great, we may be 
able for some purposes to disregard the discontinuous- 
character of the probability as a function of x, replacing the 
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isolated points t)y a continuous representative curve. The 
difference between the abscissm of consecutive isolated points 
is 21 ; so that if dx be a large multiple of l, we may ,ake 

~r e-~V~"~dx/1, . . . .  (16) 

as the approximate expression of the probability that the 
resultant amplitude lies between x and x § dx. 

Two Dimensions. 
I f  there is but one stretch of length l, the only possible 

value o~ r is of course l. 
When there are two stretches of lengths la and l:, r may 

vary from 12--ll to l:+lj ,  and then if 0 be the angle between 
them 

r~=ll~d -12~-2lxl2cosS, . . . . (17) 

and sin OdO=rdr/lll~ . . . . . .  (18) 

Since all angles 0 between 0 and 7r are deemed equally 
probable, the chance of an angle between 0 and P-t-d0 is 
dolor. Accordingly the chance that the resultant r lies 
between r and r 4  dr is 

rdr  
~rll/: sin O' . . . . . .  (19) 

or if with Prof. Pearson * we refer tile probability to unit of 
area in the plane of representation, 

1 

1 
=Tr~C{2rO(11,+122)_r,_(l ~_12,)2}, . (20) 

~b~(r'O)dA denoting the chance of the representative point 
]ying in a small area dA at distance r from the origin. 

I f  the stretches ll and l~ are equal, (20) reduces to 

1 
V . . . .  ( z l )  

Prof. Pearson's expression, applicable when r ( 2 l .  When 
r>2Z, ~( ,~)  =O. 

When there are three equal stretches (n=3) ,  r ~) is 

* Drapers' Company Research Memoirs, Biometric Series l I I .  London, 
906. 
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-expressible by elliptic functions * with a diseontlnuity in 
form as r passes through l. 

For  values of n from 4 to 7 inclusive, Pearson's ~ork is 
founded upon the general functional relation t 

7 r ~ O  

Put t ing  r = 0 ,  he deduces the special conclusion that 

~,,(, ), (23) l . . . . .  

as  is indeed evident a priori. 
From (22) the successive forms are determined graphically. 

For  values of n higher than 7 an analytical expression 
proceeding by powers of 1/n is available, and will be fur ther  
referred to later. 

A remarkable advance in the theory of random vibrations 
an d  of flights in two dimensions, when the number (n) is 
finite, is due to J.  C. Kluyver  $, who has discovered an 
expression for the probability of various resultants in the 
form of a definite integral involving Bessel's functions. 
l:Iis exposition is rather concise, and I think I shall be doing" 
a service in reproducing it with some developments and slight 
changes of notation. I~ depends upon the use of a discon- 
tinuous integral evaluated by Weber,  viz. 

y ~ , (  bx)Jo(ax)dx=u (say). 

To examine this we substitute fi'om 

~r. Jl(bx) = 2 cos 0 sin (bx cos O)dO w 

and  take first the integration with respeet to x. We have II 

o dx sin (bx cos O)Jo(ax) = O, if a 2 > b 2 cos ~ O, 

.or = (b.~ cos ~ O_a ~) -I, if  b ~ cos 2 0 >a  ~, 

b >a-,  Thus, if a~>b ~, u = 0 .  I f  ~ ~ 

2, '_  dO cos tq 2 b sinO 
= ~-gsin -1 U - - - -  

r  cos  t -a 2 ) v ' ( : ; - ' -  a 

�9 Pearson (l. e.) attributes this evaluation to G. T. Bennett. 
t , ~  9 t Compare Theory of Sound, w 42 a. 

~ msterdam Proceedings, vol. viii. p. 341 (1905). 
Gray and Matthews~ ' Bessel's Functions,' p. 18, equation (46). 

[[ G. and M. p. 73. 
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The lower limit for O is 0, and the upper limit is given by 
eos~ O~--a2/b ~. Hel~ce u=l /b ,  and thus 

o r  - -  0,  ( a  ~ > b ~) 

A second ]emma required is included in Neumann's 
theorem, and may be very simply arrived at. In fig. 1,. 

Fig. 1. 

f 

6 f ~" 

G and E being/~xed points, ~he function a~ F denoted by 

J0(g), or Jo~/ (e~+f l ,2e fcosG) ,  

is a potential satisfying everywhere the equation ~7~+ 1 = 0,. 
and accordingly may be expanded round G in the Fourier 
series 

AoJo(e) + AiJl(e) cos G + A2J~ (e) cos 2G + . . . ,  

the coefficients A being independent of e and G. Thus 

27r!o Jo */(e ~ + j ~ -  2efcos G)dG = AoJo(e). 

By parity of reasoning when E and F are interchanged,. 
the same integral is proportional to J0(f), and m~ly Lherefore 
be equated to A0'Jo(e)Jo(f), where A0' is now an absolute 
constant, whose wdue is at once determined to be unity by 
making e, orf i  vanish. The lemma 

Jov'(e~+i~--2efcos G)dG=2~rJo(e)Jo(r (25), 
�9 0 

is thus established * 

�9 Similar reasoning shows that if Do(g) represent a symmetrical 
purely divergent wave, 

o 2,r Do~ (e2 +.f~_ 2ef cos G )dG= 27rJo(e)Do(.f), 

provided thatf•e. 
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We are now prepared to investigate the probability 

1)-( r ; 4 ,  4 . . . .  l . )  
that after n stretches ll, 12 . . . .  1, taken in directions at random 
the distance from the starting-point O (fig. 2), shall be less 

Fig. 2. 

~ A z  

7 
/ /  ' _ 2  

than an assigned magnitude r. The direction of the first 
stretch 11 is plainly a matter of indifference. On the other 
hand the probability that the angles 8 lie within the limits 
81 and 81+d81, 83 and 8~+d8~, ... 8,-1 and ~?~-1+d8.-1 is 

1 
(271.)n_ 1 d01 d0~ . . . . .  d0n- t, (26) 

which is now to be integrated under the condition that the 
nth radius vector s, shall be less than r. 

Let us commence with the case of two stretches li and 4. 
Then 

i 

P : ( r  ; ll, 4 ) =  ~ d01, 

the integration being taken within such limits that s~<r, 
where 

s2 ~ = l l  2 + 12 ~ - 2114 cos 01. 
The required condition as to the limits can be secured by 

the introduction of the discontinuous function afforded by 
Weber's integral. For 

rfo ~ J1 J0(s~r) dx (rx) 

vanishes when s~ >r,  and is equal to unity when s~< r. After 
the introduction of this factor, the integration with respect 
to 0I may be taken over the complete range from 0 to 2~. 
Thus 

e : ( r ;  11, 4)= ~ o  dOlCe dxJ~(rx)Jo(s,x). 
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Taking first the integration with respect to 01, we have 

by (25) 

.F~.) ~ d• 

and thus P~(r; 11, l~)=r dxJl(rx)Jo(l~x)Jo(1,x). (27) 
,~0 

The method can be extended to any number (n) of stretches. 
Beginning with the integration with respect to 0,~-1 in (26), 
we have as before 

0 ~ - i = - - |  dO,,_~ dxJl(rx)Jo(s~x) 
2%~o Jo 

= --r~ '~ dx J~ (r.~)J o(l.x)Zo(s,- ~x). 
, /  0 

The next integration gives 

( dO,,_,dO~_l=r J~(,'X)Jo(l,,x)Jo(ln_lx)Jo(s~_2x)dx, 
0 

and so on. Finally 

! _ i ' i "  P,,(r ; 1,, l~, ... l,~)= ( , _ , j , )  . . .dOldO~.. .dO,_~ 

- - ~ ,  J ~ ( r ~ ) J 0 ( z i x ) , J 0 ( t ~ . ~ , )  . . .  Zo(Z.~)ax, (28) 
. , 0  

~ t h e  expression for P~ discovered by Kluyver. 
It  will be observed that (28) is symmetrical with respect 

to the l's ; the order in which they are taken is immaterial. 
When all the l's are equal, 

P , ( r ;  l)=r J~(rx){Jo(lx)}"dx. (29) 
,do 

If in (29) we suppose r = l, 

P , ( / ;  / ) =  - {Jo( lx )}"dJo( lx )  
. 0  

_ { J o ( / X ) }  -+1 | 1 ( 3 0 )  
o =n+---] -; 

so that after n equal components have been combined the 
chance that the resultant shall be less than one of the com- 
ponents is 1 / ( n + l ) ,  an interesting result due to Kluyver. 
The same author notices some of the discontinuities which 
present themselves, but it will be more convenient to consider 
this in a modified form of the problem. 
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The modification consists in dealing, not with the chance 
of a resultant less than r, but with the chance that it lies 
between r and r + d r .  I t  may seem easy to pass from the 
one to the other, as it involves merely a differentiation with 
respect to r. We have 

d 
dr  {ral(rx) } = -- d {r Jo'(rx) } 

---- - Jo'(rx) -- ~'x Jo" (rx) = rx Jo(rx), 
in virtue of the differential equation satisfied by Jo. Thus, 
if the difierentiation under the integral sign is legitimate, 

 Zo- f ;  U,,; 
,dO 

and, if all the l's are equal, 

.2~!:| r  ~) = }", (3~) 

the form employed by Pearson, whose investigation is by a 
different method. I f  we pul; n----1 in (32), 

c~(r ~) = ~ | xdxJo(rx)ao(lx), (33) 
�9 .dO 

and this is in fact the equation 6om which Pearson star~s. 
But it should be remarked that the integral (33), as it stands, 
is not convergent. For when z is very great, 

2 1 

so that (r:/=O) 

lj'  !_ i 
2~r xd:eao(rx)Jo(lx)= 2qr~V(rl)j dx 

{ si. (r+ l),~,+ cos@-/),~.}, 
and this is not convergent when x = ~ .  

The criticism does not apply to (29) itself when n = l ,  but 
it leads back to the question of differentiation under the 
sign of intagration. It, appears at any rate that any number 
of sneh operations can be justified, provided th , t  the integrals, 
resulting from these and the next following open~tlon, are 
finite for the values of r in question. But  this eondition is 
not satisfied in the differentiation under the integral sign 
of (29) when n = l .  For  the next operation upon (32) then 
yields 

~o x"~ dxJ,( rx)Jo(1,v). 
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When we substitute for J0(/x) from (34:)and for J~(rx) 

froIn 

we get 

f xdx 3~r 

which becomes infinite with x, even for general values of 
r and 1. 

So much by way of explanation ; but of course we do not 
really need to discuss the cases n----l, n=2, or even n- -3 ,  
for which exact solutions can be expressed in terms of 
functions which may be regarded as known. 

For higher values of n it  would be of interest to know 
how. many differentiations with respect to r may be made 
under the sign of integration. I t  may be remarked that  
since all J ' s  and their derivatives to any order are less than 
unity,  the integral can become infinite only in virtue of 
that part of the range where x is very great, and that there 
we may introduce the asymptotic values. 

We have thus to consider 

(_~,r = ~1 fo| (35) 

For the leading term when z is very great, we have 

2 / 
= ( ~ r - -  . (36) % / / ( ~ ) c o s  1 1 , z -  -~ pTr ) , 

(i ) { J ~  w ~ /  cos,, ~ - ~  , . . . . .  (37)  

so that with omission of constant factors our integral becomes 

y dx'z'+�89189 (1 12prr) , 1 oos  

In this cos~(�88 can be expanded in a series of cosines 
of multiples of (�88 commencing with cosn[�88 
and ending when n is odd with cos (�88 and wimn n is 
even with a constant term. The various products of cosines 
are then to be replaced by cosines of sums and differences. 
The most unfavourable case occurs when this operation 
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leaves a constant term, which can happen only for values 
o f  r which are multiples of l. We are then left with 

The integral is thus finite or infinite according as 

p <  or > ~ ( ~ - 3 ) .  

If, however, there arise no constant term, we have to 
,consider 

Xs $ ~ ~ s--1 sin -~x, d x x  s c o s  ~ l x  ~ ~ ( t ~ x  

where m is finite ; and this is finite if s, that isp+• 
.he negative. The differentiations are then valid, if 

We may now consider more especially the cases n = 4 ,  &c. 
When n = 4 ,  s=p + �89  
I f  p = l ,  s = - - ~ ,  and the cosine factors in (38) become 

cos (~:~+,~,) cos ~ (k~--Z~) ,  
yielding finally 

c o s ( ~  +r.v--4lx), cos( !3:--rx--4lx),  

c o s ~  +rx--21x), c o s ( 4 - - r x - 2 1 x ) ,  c o s ( ~  + r x ) ,  

so that there is no constant term unless r---41, or 21. With 
these exceptions, the original differentiation under the 
integral sign is justified. 

We fall back upon ~b~ itself by putting p = 0 ,  m'&ing 
s-----~.  The integral is then finite in all cases ( r~0) ,  in 
agreement with Pearson' s curve. 

~Text for n=5, s=p--2. 
When p = l ,  s = - - l ,  and we find that the cosine factors 

yield a constant term only when r=31. Pearson's curve 
does not suggest anything special at r----3/; it may be 
remarked that the integral with p----1 is there only logarith- 
mically infinite. 

I f  n----5, p----O, s=--2;  and the integral for ~b5 is finite 
for all values of r. 

When n----6, s=p--2}. In  this case, whether p----i, or 0, 
no question can arise. The integrals are finite for all values 
~ f  r .  

A fortiorl is this so, when n > 6. 
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I f  we suppose p = 2 ,  s----~(5--n). Tiros n = 7  make~ 
s = - - l ,  and infinities might occur for special values of r.  
But if n > 7 ,  s<~ ,  and intlnities are excluded whatever may 
be the value of r. 

Similarly i fp  =3~ infinities are excluded if n > 9, and so on. 
Our discussion has not yielded all that could be wished; 

the subject may be commended to those better versed in. 
pure mathematics. Probably what is required is a better 
criterion as to the differentiation under the integral sign. 

We may now pass on to consider what becomes of" 
Kluyver 's  integral when n is made infinite. As already 
remarked, Pearson has developed for it a series proceeding 
by powers of 1/n, and it may be convenient to give a version 
of his derivation, without, however, carrying the process 
so far. 

The evaluation of the principal term depends upon a 
formula due, I think, to Weber ~, viz. 

, _ r  e . . . .  i (39) 
' - I o  , 

making t 

d-=C lj'o  dr Jo Jo'(rx)e p x~dx= .ffp~ Jo'(rx)xde - ~ :  

-~ +~o| -4-rXJo'(rx) }dx 

~ 0  T / ", -p~x 2 ~ ~--. - -  r ~ oo(j~,'t')e ,%'a~c-~ - -  ~ ' a .  

Hence u ~  ~ e -~2/4p~. 

To determine C we have merely to make ~'----0. Thus 

do 

by which (39) is established. 
Unless lx is small, the factor {J0(lx)}" in (32) diminishes 

rapidly as n increases, inasmuch as Jo(lx) is less than unity 
for any finite lx. Thus when n is very great, the important 
part of the range of integration corresponds to a small lx. 

* Gray and Matthews, loe. eit. p. 77. 
? I apprehend that there can be no difficulty here as to the differ- 

entiation, the situation being dominated by the exponential factor. 
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Writing s for ~nl 2, we have 

. / .  $X 2 8224 83~ 6 \ 

log J0( /x)= l o g ( l - -  2n  + 16n 2 288n 3 + " "  ) 
8 2  2 8224 83X 6 

2n 

~o that 
16n 2 72n ~ {- .. .;  

82X 4 88326 
16n 72n 2 

337 

2~'r e-~/~' ( ( ) i-- 1 2 2r ~ r 4 
s }~n ~ -+  ~ 

1 6 re 
9nn2( - 9~a + 9r4 s 4s "~ 8s 3 ) 

1 ( 48r 2 18r 4 2r 6 , , s ) )  
+ 9  24-- - + s2 S3-+l~s4 $ 

e-r'/2' ( 1 (2_ 2r2 r4)  1 (i 6r'~ 
= -. i - -  - - +  + 

15,, 7r~ 3"8 ~ l  (45) 
4 4s ~ 12s 3 + 1 9 ~ P J J  ' . . . . . .  

in  agreement (so far as it goes) with Pearson, whoso cr 2 is 
�9 equal to our s. The leading term is that given in 1880. 

Phil.  Mag. S. 6. Vol. 37. No. 220. Apr i l  1919. 2 B 

Thus 

S4t~8 

naaking 

~ ( r ' 9 =  ~d.~Jo(r,~)e - '~" s ~ '  s ~  ~ ~'x~ 
Jo 16n 72n 2 512n2]" 

Calling the four integrals on the right I1, I:, I3, and I o 
Cvo have by (39) 

j '| 1 -r:/2~ (41) I1= xdxJo(rx)e - i '~2= - e  , 
0 S 

s 2 d~I1 s: d ~ {1  -r'-/2,\ 
- I . -  ~,, ds~ - ~ , , , 7 ~ U  e ) '  (r 

P dill  s ~ d s [1 -,.2/2,\ 
I~ = 9,,~ ds ~ --  9,d ds ~ U e ) ,  (43)  

8 4 r 8 4 d 4 [ 1  --~'~/2,"~ (~:~) 
I ,= 32n~ dP -- ~2~7-d~s 4 \ s e ]" 
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T[tree Dimensions. 

We may now pass on to the corresponding problem whe• 
flights takg place in three dimensions, where We shall find, as  
might have been expected, that the mathematics are simpler.. 
And first for two flights of length li and 12. I f  ~ be the  
cosine of the angle betmeen/1 and 12 and r the resultant, 

r~ = ll 2 + l~ ~  21112tz, 

giving rdr - - - ' l l l2d l~  . . . . . . .  (46) 

The chance of r lying between r and r + d r  is the same as 
the chance of/~ lying between/~ and/~+d/~, that is --�89 
since all directions in space are to be treated as equally 
probable. Accordingly the chance of a resultant between. 
r and r + d r  is 

rdr  
. . . . . . . .  ( 4 7 )  

The corresponding volmne is 4Trr:dr, so that in the former 
notation 

1 
r ; 0 = 8~l.~r . . . . . .  (48) 

11 and 12 being supposed equal. I t  will be seen that this is 
simpler than (21). I t  applies, of course, only when r <  21. 
When r > 2 l ,  (~2-----0. 

In like manner when ll and l~ differ, the chance of a 
resultant less than r is zero, When r falls short of the  
difference between l o and ll, say 12--11. Between l~--ll  and 
l~+ll the chance is 

j '~ r dr : r 2 -  ( l~ -  ll) ~ 

When r has its greatest value (l,2 + 11), (49) becomes 

(l: + ll) o ,  (1~ -/1) ~ 
= 1 . . . . .  ( 5 0 )  4111~ 

The " c h a n c e "  is then a certainty, as also when r >ll + l~. 
In proceeding to the general wdue of n, we may con- 

veniently follow the analogy of the two-dimensional investi- 
gation of Kluyver,  for which purpose we require a function 
that shall.be unity when s<r ,  and zero when s>r .  Such a 
function is 

"2 1 "~ sin sx sin r x - - rx  cos r x  
dx  ! (51) 

' B ' J  0 8X ,V 
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for it  may be written 

' 

- C05 S~ dX 
7rsdo " 7rdo x 

= ~.~o ~ sln(s+r)X--x sin (s--r)x dx ----- 1 or 0, 

according as s is less or greater than r. 
In like manner for a second lemma, corresponding with 

(25), we may reason again from the triangle G F E  (fig. 1). 
Jo(Y) is replaced by sin g/g, a potential function symmetrical 
in three dimensions about E and satisfying ever~jwhere 
V 2 q - l = 0 .  It may be expanded about G in Legendre's 
serges * 

A~ + AI/~/sin\ --e" e coSe)e + ' " '  

/~ being written for cos Cr, and accordingly 

�89  sin ~/(e ~ -kf~--2ef~) - - A  sin e 

When E and F are interchanged, tile same integral is 
seen to be proportional to sin f /f ,  and may therefore be 
equated to 

A0' sin e s in f  
e , f  

where A o' is now an absolute constant, whose value is deter- 
mined to be unity by putting e, or J~ equal to zero. We 
may therefore write 

1 I"+~ sin V'(ee+f2--2e//z) sin e sin./' 
e / (Se) 

As in the ease of two dimensions, similar reasoning shows 
that  

j ~'+1 d cos ~/(eZ+je--2e.ft ~) sine cos f  (53) 

provided e<~f. 
�9 With  appropriafe changes, we may now follow Kluyver 's 

argnment fbr two dimeJ,sions. The same diagram (fi~. 2) 
wid serve, only the successive triangles are no longer 
limited to lie in one plane. Instead of the angles 0, we have 
now to deal with their cosines, of which all values are to be 

�9 ~ Theory of Sound,' w 330. 
2 B 2  
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regarded as equally probable. The probability that these 
cosines shall lie within the interval/~1 and/~l+dpl , /~  and 
#2+d/~, �9 . . . .  P,~-I and/~ _l+dp._1 is 

1 

which is now to be integrated under the condition that the 
nth radius s. shall be less than r. 

We begin with two stretches/1 and ~. Then, in the same 
notation as before, we have 

P.(,- ; z,, z~)= �89  

the integration being within such limits as make s~ > r ,  
where 

s2 ~ = 11 ~ + 122 - -  2111,a. 

Hence, by introduction of the discontinuous function (51), 

f%;~ P,(r  ; l l , / , )= ~ dxSin s~x sin r x - - r x e o s  rx  
~'d-1 do s,x x 

But by (52) 
�89 d sinssx sin/ix sinlsx 

1 ~ ~ - ~ 1~-7~ ' 
and thus �9 

P2(r;  l~, l~)-- dx  s m r x - r x c ~  (55) 
x llx l:x " 

A simpler form is available for dP2/dr, since 

d ( s i n  r x - - r x  cos rx) rx.  sin 

Thus 

a t ,  - r (56)  
dr -- ~rlll2,)o 

in which we replace the product of sines by means of 

4 sin r~ sin l lx  sin/,x----sin (r + l~-- l l )x  
+ sin ( r - - l ~ + I t ) x - -  sin (r+12+ll )x- -s in(r- -1 , - - la)a~.  

I f  r, l~, /i are sides of a real triangle, any two of them 
together are in gener.ll greater than the third, and ~hns 
when the integration is effeeted by the formula 

f o  du = �89 sin u 
U 
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we obtain three positive and one negative term. Finally 

dP:__ r 
dr 2lll~' 

in agreement with (47). The expression is applicable only 
when the triangle is possible. In the Contrary case we find 
dP/dr  equal to zero when r is less than the difference and 
greater than the sum of tl and l~. 

This argument must appea very round'tbout, if the object 
were merely to obtain r the re.alt  for n = 2 .  The advantage 
is that it admits of easy extension to the general value of n. 
To this end we take the last stretch l, and the immediately 
preceding radius sn-~ in place of 12 and l~ respectively, and 
then repaat the operation with l,,-a, s.~_~, and so on, until 
we reach l: and h (----/1)- The result is evidently 

2 f^~ dxSin r x - - r x  cos rx 
P,~(r ; l~, 12, . . . .  /~') = ~r  ~ x 

sin/ix sin 12x sin 1,,x . . . .  (57} 
llx l~x . . . .  l~x ' 

or if we suppose, as for the future we shall do, that the l 's 
are all equal, 

2 f o ~ d ~ c s i n r x - - r x e ~  (58) 
e,,(~; z )=  ~ . u ~ . - - ~ - 1 .  

This is the chance that the resultant is less than ~. F o r  
the chance that the resultant lies between r and r-i-dr, we 
hava~ as the coefficient of dr~ 

d P ,  "2r ~| dx 
- d r  = ~ i . )  o x 7=1 sin rx  sin" lx . (59), 

Let  us now consider the particular ease of n = 3 ,  when 

dP 3 ~ .  | ax  . 
dr  -- ~:i3~o ~ s m , ' x s i , ?  lx . . . . .  (60)i 

In this we have 

sin rx sin '~ lx=Zs{3 cos (r-- l)a'--3 cos ( r + / ) x  
- cos (r--3l) :v+ cos ( r+  3l)x}. 

And y ~  d ~ { c o s ( r _ l ) x _  cos (~+l )x}  

yo | dx  , ~ . o(~+l).c 2 l ) x ~  = 2  ~ ~sm-- ~ sin: (r 

= ~ r { ~ * l - - ~ r - - l l  } ; 
and in like manner for tl,e second pair of cosines. 
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Thus 

,it:,_ r ,,,~ "; r--Zi+l, '--3Zl}. (61) 

expresses the complete solution. When 

r<l, dP3/dr=rV213, 
31>r>l, dP3/dr---- (31r-r~)/4P, 

~'> 3/, dPjdr=O. 

I t  will be observed that dPs]dr is itself cont inuous;  but 
the next derivative changes suddenly at r----l and r=3l  from 
one finite value to another. 

Next take n = 4 .  From (59) 

d r 4 _  2r ( ~  dx . 
dr -- ~rP~o x~ sm rx sin 4 lx, 

and 

---- ~ | - -  sin rx sin 4 lx 
dr2\r ~-~r ] vrt Jo x 

- -  4 sin (r + 21)x -- 4 sin ( r - -  2l) x + 6 sin rx} 
I , +  _ 

_ 1 { l + l _ ~ T 4 + 6 } = T 6 ~ { 3 _ l + 4 }  ' - y6/~ - 

t h e  alternatives depending upon the signs of r - - 4 l a n d  r--21. 

dP4~ 
When r .. ~ / = 6 ,  

4l>r>21, -- d r ~ r  ~ r  ] = --2, 

and when r > 4/, the value is zero. In  no case can the value 
be infinite, from which we nmy infer that 

d { l d P 4 ~  and l d P 4  
dr I,r dr ] r dr 

must be continuous throughout. 
From these data we can determine the form of dPa/dr, 

working backwards from the large value of r, where all 
.derivatives vanish. 

( 4 z > r > ~ 0  - - 1 6 1 ' ~ { ~ ' ~ V ' ~ = - - ' ~ ( r - - 4 0 ,  
dr \ r  dr ] 

16P d {1 dV4~ =6(r--21) + 41=6r--Sl, (2z> r) - ~ Lg-JV/ 
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:giving continuity at r = 4 / a n d  ~'----2/. Again 

(4 t> , '>  2l) -- 1(;l'} @ = -- ( , , 2  16F) + 81(,'--4l) 

= 

(21>r) - - 16 l ' }  - dP4 =3(,0_41=)_81(,,_21) ~ 4 ~  2 

dP 
= 3 r  = -  8rl. 

Finally 

dP4 =4~rr2~bdr " 1) -  ro'(81--a,,.) ( , .<2/)  "~ 
dr ' 16 /4  I >, 

r(41--r)~ (41>r>21)  1 or = 1 6 / '  

and vanishes, of course, when ~' > 4l. 
From (61), (64) we may verify Pearson's relation, 

Cd0)  = ~ ( 1 ) .  
From these examples tile procedure will be understood. 

When n is even, we differentiate (59) (n- -2)  times, thus 
,obtaining 

t l  qY';  ', (6a) 
,l',"~-=\~ �9 ,:t,r ] = 7rl~.Jo 

in which sin ~ lx is replaced by the series containing cos n/x, 
c o s ( n - - 2 ) / , , . . . ,  and ending with a constant term. When 
,this is multiplied by sinrx, we got sines of (r+nl)x ,  
{r +_ (n--2)l}x,  . . . .  sin rx, and the integration can be effeeted. 
Over the various ranges of 21 the values are constant, but 
they change discontinuously when ~" is an even multiple of l. 
The actual lorms for dP,,]dr can then be found, as already 
~xemplified, by working backwards from ~'>nl, where all 
derivatives vanish, and so determining the constants of 
integration as to maintain continuity throughout. These 
forms are in all cases algebraic. 

When n is odd, we differentiate (n - -a )  times, thus obtaining 
a form similar to (60) where n = 3 .  A similar procedure 
then shows that the result assumes constailt values over 
finite ranges with discontinuities when s is an odd lnultip]e 
of  l. On integration the forms for dP,~/dr are again 
algebraic. 

I have carried out the detailed calculation for n = 6 .  I t  
will suffice to record the principal results. For the values of 

" dr4\r dr ] 



344 Lord Rayleigh : P r o b l e m  o f  R a n d o m  Vibrations,  

we find for the various ranges : 

(r,~20, --2o; (21<r<4t), +10; 
( 4 l < r < 6 1 ) ,  - - 2 ;  (61<r) ,  O. 

And on integration for 

dr  ] . . . . .  

5 r  a 
(0 - -21)  6 t-4lr3--161~r' 

5r  4 
(2l--4l)  + ~ --61r ~+ 30/~rZ--561:~r+ 2014, 

~4 
(4l--6l)  --  ~ + 21r3--181~r~ + 721~r--108l  ", 

(r > 6/) 0. 

We may now seek the form approximated to when n is 
very  great.  Setting for brevity l = l  in (59), we have 

where 

h4 = 1 h s = - -  1 (65) 
180 '  3 5 . 8 1 '  

al ld 

so that 

1 dP,, 2 f |  xdxs inrxe_~V6{ l_ l_nh4 ,v4+nh~x~  
r 7 ;  =~'Jo 

+ �89 +.. .  }. (66) 

The expression for the principal term is a known definite 
integral, and we obtain for it 

dP~ 3 v / 6 .  r 2 -3,.~/~,~ (67)  
dr  - - , v / ~ r . n  ~/~e , �9 �9 �9 �9 

which may be regarded as the approximate v.'due when n is 
very large. To restore l, we have merely to write r]l for r 
throughout.  

In  pursuing the approximation we have to consider the 
relative order of the various terms. Taking nx ~ as standard, 
so that x 2 is regarded as of the order l [ n ,  n x  s is of order n -~ 
and is omitted. Butn~xais of order n -~ and is retained. T h ,  
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terms written down in (66) thus suffice for an approximation 
to the order n -~ inclusive. 

The evaluation of the auxiliary terms in (66) can be 
effccted by differentiating the principal term with respect 
to n. Each such differentiation l,rings in --x2]6 as a factor~ 
and thus four operations suffice for the inclusion of the term 

We get containing x s. 

dP~, 
dr 

_ ~ " r" 62d*N 
v/qr . t" L dn ~ 

-- nh6 . 63 d3N + �89176 * -4 d*Nn .fi ; b , ' J '  (68) 

where N=n-3/~e-3*:/~'"t~, . . . . .  (69) 
Finally 

dP .  3v/6 . r~e -3~;2'a2 f . . . . . . . .  1-- 3 [ _lOr 2+3r4 
dr v /~r .P .n~/2  ~ ' fOnk5 - ~ n~l 4] 

_ 1 _ [ 2 9  69r: 981r 4 1341r 6 81r 8 \ } 
+ 4 + + �9 (7o) 

Here dP~/dr ,  dr is the chance that the resultant of a large~ 
number n of flights shall lie between r and r + d r .  In  
Pearson's notation, 

4wr2~b,,= dP~/& �9 . 

The m,tximum value of the principal term (67) occurs 
when r / l = x / ( 2 n [ 3 ) .  

I t  is some check upon the formulse to compare the exact 
results for n = 6  in (64:) with those derived for the case of n 
great in (70), altimugh with such a moderate value of n no 
precise agreement could be expected. The following Table 
gives the numerical results for ldPr in the two cases : - -  

r l l .  

i ......... 
0 . . . . . . . . .  

1 

3 , . . .  . . . . .  

4 . . . . . . . . .  

5 . .  

6:..iii::: 

F rom (64). From (70). 

�9 2500 r'-'/1 ~ 

"05900 

"2005 

"4167 

"2930 

'0853 

"0O652 

"00000 

"2483 r2/1 *" 

"O5886 

"2007 

"4169 

"2922 

"1055 

"0O716 



346 Lord Rayleigh:  Problem of Random Vibrations. 

So fat" as the principal term in (70) is concerned, the 
maximum value occurs when r/ l=2.  

I t  will be seen that the agreement of the two formulm is 
in fact very good, so long as r/l does not much exceed v/n" 
As the maximum value of r/1 for which the true result 
,differs from zero, is approached, the agreement necessarily 
falls off. Beyond r/l=n, when the true value is zero, (70) 
yields finite, though small, values. 

Terling Place, Witham~ 
January 24th, 1919. 

P.S.  March 3rd. 

In (45) we have the expression for the probability of a 
resultant (r) when a large number (n) o[ isoperiodic vibra- 
tions are combined, whose representative points are distri- 
buted at random along the circumference of a circle of 
radius l, so that the component amplitudes are all equal. 
I t  is of interest to extend the investigation to cover the case 
~)f a number of groups in which the amplitudes are different, 
say a group or" 2h components of amplitude 11, a group 
containing p~ of amplitude 12, and so on to any number of 
groups, but  always under the restriction that every p is 
V r cry large. The total nmnber (Zp) may still be denoted 
by n. The result will be applied to a case where the number 
of  groups is infinite, the representative points of the com- 
ponents being distributed at random over the area of a circle 
of radius L. We start frmn (31), now taking the form 

2~r~(r2) - -- xdxJo(rx){Jo(l~x)}p,{Jo(l~,v)}p ..... (71) 

The derivation of the limiting form proceeds as before, 
where only one 1 was considered. Writ ing sl---~plll ~, 
s2-=.�89 2, t~c., we have 

log [{ Jo(l,x)}P' {Jo(l:x)}~ ...... ] 

= -  

and thus 
o , - ~ x ~ ( s )  27rdp,(r.)=:~oXdXJo(rx)e ~ [ix 416 ~ ( ~ )  s' 

(72) 
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As before, the leading term on the right is 

1 _~,,.~ ~_(~) (73) I , = ~ : ( ~ ) e -  , . . . . .  

:and the other integrals can be derived from it br differ- 
entiations with respect to Z(s). So far as the first t~(, 
4erms inclusive, we find 

~ , ~) 

f rom which we may fall back upon (45) by dropping the 
and  making p----n. In g e n e r a l ~ ( p ) = n .  The approximation 
could be pursued. 

Let  us now suppose that the representative points are 
,distributed over the area of a circle of radius L, all infini- 
tesimal equal areas being equally probable. Of the total n 
the number (p )wh ich  fall between l and l + d l  should be 
a,. (21dl/L~), and thus 

Y(~)=~z~@l=) = ~ j 0  Z~ =''L" _~,  (7.~) 

n ~'r~ a ,zL' (7(;) 

Introducing these values in (74), we get 

o 4~ -'~',''" { e I- 4''~ 2 ?  ~ \  
,,rr ~b.(r') -- nL ~ _ 1 - -  3 i z \ l - -  ~ + ,dL*y_J" (77)* 

A similar extension may 1)e made in the problem whera 
,the component reefers  are drawn in three dimensions. 

X X X I I .  On the Fundamental Law " ~" " " o/ J~lectrwal Act:on. B y  
MEGE NAD SAn& J/.8~'., Research Scholar in Mathematiral 
Physics, Sir T. ~.'. _Palit College of Science, Calcutta t .  

I ~T the present paper an aftempt has been made to 
determine ~lle law of attraction between two moving 

.electrons, with the aid of the New Electrodynamies as 
modified by the Principle of Relativity, The problem is a 

* The applicability of the second term (in 1/n) to the case of an 
~entirely random distribution over the area of the circle L i~ not over 
s e c u r e .  

"]" Communicated by Prof. D. N. Mallik. 


