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Abstract 
Background 
Longitudinal studies have an important role in telomere epidemiology. In analysing effects of 
exposures on change in leukocyte telomere length (LTL), it is common to control for baseline LTL. 
However, collider bias arising from measurement error could cause overestimation of the difference 
in LTL attrition between groups with different exposures. We evaluated this using smoking as a test 
case. 
Methods 
We simulated LTL data to ask whether controlling for baseline LTL biases estimates of the difference 
in LTL attrition between smokers and non-smokers. We tested predictions from our simulation in a 
meta-analysis of previously-published longitudinal cohorts.  
Results 
Our simulations show that if baseline LTL is shorter in smokers and LTL measurement error is non-
zero, then controlling for baseline LTL overestimates the difference in LTL attrition between smokers 
and non-smokers. The size of this bias increases synergistically with increasing baseline difference 
and increasing LTL measurement error. Supporting these simulation results, the estimated 
difference in LTL attrition between smokers and non-smokers in empirical data is greater when 
models control for baseline LTL and the size of this discrepancy is positively correlated with LTL 
measurement error. 
Conclusions 
The false-positive error rate for reports of effects of smoking on telomere attrition is likely to exceed 
5%. The bias responsible is not specific to smoking and will affect all exposures for which baseline 
differences in LTL exist. To avoid bias, models of LTL attrition should not control for baseline LTL. 
Many claims of accelerated LTL attrition in individuals exposed to adversity need to be re-assessed. 
 

Key words: telomere length, telomere attrition, longitudinal, measurement error, regression to the 
mean, collider bias 
 
 
 

Key messages 
• Analysis of longitudinal changes in leukocyte telomere length (LTL)—a widely studied 

biomarker of human health—is emerging as a common method for establishing whether 
exposure to toxins, disease, stress or other forms of adversity causes accelerated LTL 
attrition. 

• We show that the common strategy of statistically controlling for baseline LTL in analyses of 
LTL change introduces bias and is likely to yield false-positive results. 

• Based on our findings, we recommend that models of LTL change should not control for 
baseline LTL. 

• Many previous claims of accelerated LTL attrition in individuals exposed to toxins, disease, 
stress or adversity may be false positive results and consequently need to be re-assessed. 
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Introduction 
Leukocyte telomere length (LTL)—the mean number of TTAGGG sequence repeats at the end of 
leukocyte chromosomes—is emerging as a widely studied biomarker of human health. Many cross-
sectional studies of LTL demonstrate that mean LTL is shorter in individuals that have been exposed 
to diverse forms of adversity.1 Recent meta-analyses show that LTL tends to be shorter in individuals 
who are smokers,2,3 are more sedentary,4,5 are obese,6 were subjected to childhood trauma7 or 
psycho-social stress,8 suffer from schizophrenia,9,10 post-traumatic stress disorder,11 anxiety or 
depression12,13 or have higher perceived stress.14 These studies have been widely assumed to 
support the hypothesis that the exposure increases the rate of LTL attrition. However, a cross-
sectional association between an exposure and LTL does not necessarily imply a causal link between 
the exposure and telomere attrition: further evidence for causation is required.15 A common source 
of evidence used to support the hypothesis that an exposure causes increased telomere attrition 
comes from studies demonstrating that the same exposures associated with shorter LTL cross-
sectionally are also associated with faster LTL attrition within individuals over time. To obtain such 
evidence, telomere attrition is estimated from longitudinal datasets in which LTL is measured at least 
twice in each individual, first at baseline (LTLb) and again at follow-up (LTLfu; see Box 1 for a list 
abbreviations). The best estimate of the change in telomere length for a given individual is then 
simply the difference between the baseline and follow-up measurements (ΔLTL; where negative 
values indicate telomere attrition). Multiple regression approaches are typically used to estimate the 
associations between exposure variables and the rate of telomere attrition.16–22 In the current paper 
we address the question of how these statistical models should be constructed in order to obtain 
unbiased estimates. As we explain below, there are strong theoretical reasons to predict that the 
current practice of controlling statistically for LTLb biases estimates of the difference in ΔLTL 
between groups of individuals with different exposures and increases the probability of false-
positive results. While our discussion is relevant to all of the exposures listed above (and also other 
factors implicated in accelerated telomere attrition including age16,18,19,23 and male sex24), here we 
use the comparison of smokers and non-smokers to illustrate the impact of different analytic 
strategies. 

Box 1: List of abbreviations 
LTL Leukocyte telomere length. 
LTLb True LTL at the baseline timepoint. Units are bp (base pairs). 
LTLfu True LTL at a follow-up timepoint. Units are bp. 
ΔLTL True change in LTL between baseline and follow-up (calculated as LTLfu-LTLb); telomere attrition is 

thus a negative value of ΔLTL. Units are bp.year-1. 
mLTLb Measured LTL at the baseline timepoint. Units are bp. 
mLTLfu Measured LTL at a follow-up timepoint. Units are bp. 
mΔLTL Measured change in LTL between baseline and follow-up (calculated as mLTLfu-mLTLb). Units are 

bp.year-1. 
errorb LTL measurement error at baseline. 
errorfu LTL measurement error at follow-up. 
CV Coefficient of variation (standard deviation/mean) of measurement error. Expressed as %. 
 
 
Researchers often have a strong intuition that it is important to control for baseline variation in the 
outcome variable of interest in analyses of change. In the current context, this implies including LTLb 
as a covariate (i.e. a continuous predictor variable for which a regression coefficient is estimated) in 
analyses of the association between smoking and ΔLTL (models 2 and 3 in Table 1). We have found 
eleven studies that report the association between smoking and ΔLTL and all of these control for 
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LTLb in their multiple regression models by including it as a covariate.16–21,23,25–28 What are the 
arguments in favour of controlling for LTLb in this way? 

In a highly-cited paper, Vickers & Altman29 consider the best analytic approach for controlled trials of 
an intervention with baseline and follow-up measurement. They show that analysis of covariance 
(which controls for baseline measurement in an analysis of change) yields the largest estimate (of 
the models they compared) for the effect of the intervention on the measured outcome variable. 
They argue that analysis of covariance is generally the most powerful analytic approach, and that the 
efficiency gains from controlling for baseline will be greatest when the correlation between baseline 
and follow-up measurements is low. This paper is cited as the justification for controlling for LTLb in 
at least one study of the factors associated with ΔLTL.28 In studies of telomere dynamics, the 
correlation between baseline and follow-up telomere measurements is often low (for example, 
Bendix et al.16 report a Pearson correlation of only 0.38), apparently providing a strong argument for 
controlling for LTLb in analyses of ΔLTL.  

However, although controlling for differences in LTLb can increase regression coefficients and hence 
improve statistical power, there is an established epidemiological literature showing that this 
practice can yield biased estimates and hence spurious, false-positive results. One scenario in which 
bias occurs is when the outcome variable is measured with error.30 For example, Glymour et al.31 
examined the consequences of controlling for baseline cognitive function in asking whether 
educational attainment affects change in cognitive function in old age. They showed that baseline 
control induces a spurious statistical association between education and change in cognitive 
function because of measurement error. More generally, they conclude that when exposures are 
associated with baseline health status, an estimation bias arises if there is measurement error in 
health status.  

In the case of LTL, two meta-analyses have confirmed that smokers have shorter LTL than non-
smokers in  cross-sectional datasets.2,3 Thus, longitudinal datasets are likely to show a baseline 
association between smoking and LTL. It is also well established that measurement error is a major 
problem in telomere epidemiology. In large-scale studies, LTL is most commonly measured via a 
quantitative PCR-based method32 and less frequently via a more expensive Southern blot-based 
method33. Both methods involve error, and while the magnitude of this error varies between 
studies, evidence suggests that the Southern blot method is typically more precise, with one 
comparison estimating the inter-assay coefficient of variation (CV) as 6.45% for qPCR and 1.74% for 
Southern blot34. Much higher reported inter-assay CVs for both methods are not uncommon (e.g. 
9.3% for qPCR21 and 2.8% for Southern blot35). Therefore, controlling for LTLb in analysis of the 
association between smoking and ΔLTL appears to meet the criteria for bias identified by Glymour et 
al.31 

In order to formally establish whether an analysis is likely to be biased, epidemiologists advocate 
construction of a directed acyclic graph. This is a diagram representing the causal relationships 
among a set of variables that can be used to identify the correct analytic strategy.30,31,36 We used this 
approach to represent one possible hypothesis for the relationships among smoking, LTLb and ΔLTL. 
Figure 1 represents the null hypothesis that smoking does not affect ΔLTL; we assumed instead, that 
the association between smoking and LTLb is brought about by both variables being caused by 
exposure to a third variable. We assumed that this third variable is exposure to early-life adversity,15 
but it could equally be a genetic difference. To reflect the presence of error in the measurement of 
LTL we distinguish between true and measured values of LTL and ΔLTL; measured values are 
indicated with a prefix of m. Although we are ultimately interested in true LTL and ΔLTL, these are 
latent variables that are not directly accessible. Any analysis must therefore use mLTL and mΔLTL. 
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We assume that mLTLb is positively related to true LTLb and baseline measurement error (errorb), 
and that mΔLTL is positively related to ΔLTL and follow-up measurement error (errorfu). However, 
mΔLTL must also be negatively related to errorb (see the Supplementary Material for a proof of why 
this follows). This is due to regression to the mean: the phenomenon whereby subjects measured 
with an extreme error, negative or positive, at baseline will on average tend to be measured with a 
less extreme error at follow-up, generating the negative correlation between mLTLb and mΔLTL that 
is commonly observed in longitudinal telomere datasets.37 

In Figure 1, a path connects smoking with mLTLb via early-life adversity and LTLb. Early-life adversity 
is assumed to cause both smoking and LTLb (in a directed acyclic graph, a path is a series of lines 
connecting two variables, regardless of arrow direction). Thus, as long as early-life adversity is not 
controlled for, a negative association will be present between smoking and mLTLb. A path also 
connects smoking with mΔLTL via early-life adversity, LTLb, mLTLb and errorb . On this path, mLTLb is 
caused by both LTLb and errorb and is therefore what is termed a ‘collider’, a common effect of our 
outcome and predictor variables (mΔLTL and smoking respectively). In the parlance of directed 
acyclic graphs, a collider blocks a path, meaning that smoking is independent of mΔLTL under our 
null hypothesis. However, controlling statistically for mLTLb unblocks the path between smoking and 
mΔLTL and hence introduces a spurious association between smoking and mΔLTL. This latter 
phenomenon is known as ‘collider bias’.38,39 In summary, it follows from the assumptions embodied 
in Figure 1 that controlling for mLTLb should inflate estimates of the association between smoking 
and mΔLTL via collider bias. The size of this bias should depend on both the presence of an 
association between smoking and LTLb and the size of the LTL measurement error. 

In the remainder of this paper we test above predictions with two complementary approaches. First, 
we use a simulation model to show numerically that controlling for mLTLb biases estimates of the 
association between smoking and mΔLTL and that the size of the bias depends on size of the LTL 
measurement error. By using realistic values in our simulation we determine the likely importance of 
any bias. Second, we use meta-analysis of seven previously-published empirical datasets to test the 
major assumptions and predictions of our simulation model in real LTL data. 

Simulation model 
The advantage of a simulation approach is that it is possible to generate datasets for which the true 
values of latent variables (in this case LTLb and ΔLTL) are known. We can then verify how adding 
different magnitudes of measurement error and using different statistical analysis strategies affect 
estimates of the difference in ΔLTL between smokers and non-smokers. We simulated longitudinal 
LTL datasets in which we set the true differences between smokers and non-smokers in LTLb, ΔLTL 
and the LTL measurement error (errorb and errorfu) based on realistic values obtained from the 
literature. We then used these simulated datasets to calculate the size of biases in the estimates for 
the difference in ΔLTL between smokers and non-smokers obtained from different statistical models 
in which we varied whether we controlled for LTLb.  

We compared the four statistical models given in Table 1. Model 1 is the basic model in which mΔLTL 
is predicted by smoking status with no statistical control for mLTLb. Model 1 is rarely found in the 
telomere epidemiology literature, but is sometimes seen in the analysis of randomised controlled 
trials of interventions such as physical exercise.e.g. 40 Model 2 includes control for mLTLb by adding 
mLTLb as a covariate. Model 2 represents the approach recommended by Vickers & Altman29 and 
most commonly adopted in the current telomere epidemiology literature.e.g. 17–23,25–27 Model 3 is a 
less common variant of model 2 in which the outcome variable is mLTLfu as opposed to mΔLTL.e.g. 
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16,28,41,42 Model 4 is a repeated-measures equivalent of model 1 in which the outcome variable is 
mLTL and timepoint (baseline versus follow-up) is entered as a categorical predictor;e.g. 43 in this 
model inclusion of the interaction between timepoint and smoking is necessary to test the 
hypothesis that mΔLTL differs between smokers and non-smokers. Note that models 1 and 4 contain 
no control for mLTLb, in that mLTLb is not included on the right-hand side of the model equation, 
whereas models 2 and 3 control for mLTLb by including it as a covariate and estimating its regression 
coefficient. 

Methods 
We simulated LTL datasets under four different scenarios for the true differences in LTLb and ΔLTL 
between smokers and non-smokers: (A) No difference in LTLb and no difference in ΔLTL; (B) No 
difference in LTLb, but a true difference in ΔLTL; (C) A true difference in LTLb, but no difference in 
ΔLTL; and (D) A true difference in LTLb and a true difference in ΔLTL (Table 2). The parameter values 
used in each scenario were taken from Aviv et al.,26 who report a small, but significant, difference in 
mLTLb between smokers and non-smokers of 141 bp and a non-significant mΔLTL between smokers 
and non-smokers of -2 bp.year-1. We chose this study because LTL was measured using Southern blot 
and the reported inter-assay CV is only 1.4%. Thus, the LTL measurements are likely to be reasonable 
estimates of the true values. 

The simulation of LTL values was implemented in the statistical computing language R (script 
available at the following DOI: 10.5281/zenodo.1009086). In each replicate simulation, values of LTLb 
were generated for 2000 participants (1000 non-smokers and 1000 smokers) by drawing 
independent random samples from normal distributions with means and standard deviations given 
in Table 2. Each participant was then assigned a value of ΔLTL.year-1 by again drawing an 
independent random sample from normal distributions for ΔLTL with means and standard deviations 
given in Table 2. This rate of change was applied for 10 years starting with the true LTLb to yield a 
true LTLfu for each participant. We assumed that each participant experienced a constant value of 
ΔLTL over the follow-up interval. Measurement error was introduced into both LTLb and LTLfu by 
assuming that mLTL was an independent random sample from a normal distribution with the mean 
equal to the true LTL and the standard deviation equal to the true LTL*CV/100 where CV is the 
coefficient of variation of the measurement error expressed as a percentage. Measured ΔLTL for 
each participant was calculated as the difference between mLTLb and mLTLfu. We assumed values of 
CV of 0, 1, 2, 4, 8, and 16%, and generated 1000 replicate data sets for each value of CV in each of 
the four scenarios (A, B, C and D). Note that while these CV values describe various levels of 
measurement error within our simulations, these specific CV values cannot be straightforwardly 
compared to the CVs from laboratory measures reported in empirical papers due to varying zero-
points (see44 for discussion of the comparability of CVs).  

We modelled the dataset from each replicate with the four different models summarised in Table 1. 
Models 1, 2 and 3 are variants of the general linear model and were fitted using the ‘lm’ function in 
the R base package, whereas model 4 is a general linear mixed-effects model and was fitted using 
the ‘lmer’ function in the R package ‘lme4’.45 
 
To compare the estimates of the difference in mΔLTL between smokers and non-smokers produced 
by the different models we extracted the β coefficients for the ‘Smoking’ variable produced by 
models 1, 2 and 3 and the ‘Time point×Smoking’ variable for model 4. To analyse type 1 errors (the 
probability of incorrectly rejecting the null hypothesis of no difference in ΔLTL between smokers and 
non-smokers in scenarios where there was no true difference) and statistical power (the probability 
of correctly rejecting the null hypothesis of no difference in ΔLTL in scenarios where there was a true 

https://doi.org/10.5281/zenodo.1009086
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difference) we additionally recorded whether the β coefficient was significantly different from zero 
(at p < 0.05 as widely employed) in each analysis. Summarised output from one run of the simulation 
is available at the following DOI: 10.5281/zenodo.1009086. These data were used to create Figures 
2, 3 and S1. 

To test the sensitivity of our results to various assumptions, we conducted the following additional 
simulations. First, to examine sensitivity to the size of the difference in LTLb between smokers and 
non-smokers in scenarios C and D, we re-ran the simulation with differences of: 0, 100, 200, 400, 800 
and 1600 bp. (Our rationale for including differences up to 1600 bp was that assuming age-related 
attrition of 40 bp.year-1 a 1600-bp difference would be expected between 20 and 60-year olds, 
meaning that for analyses of the effect of age on ΔLTL.year-1 this value would be realistic). Second, to 
examine sensitivity to the size of the study, we re-ran the simulation with the following numbers of 
participants (half smokers and half non-smokers): 200, 400, 800, 1600, 3200 and 6400. Third, to 
examine sensitivity to the true difference in ΔLTL between smokers and non-smokers in scenarios B 
and D we re-ran the simulation with a true difference of -20 bp.year-1 (ΔLTL of -50 bp.year-1 in 
smokers and -30 bp.year-1 in non-smokers). Finally, to examine sensitivity to the assumption that LTL 
measurement error is proportional to LTL, we re-ran the simulation with non-proportional 
measurement error. We used the following standard deviation values to calculate the measurement 
error: 0, 70, 140, 280, 560 and 1120 bp. 

Results 
In scenario A, in which there is no difference in either LTLb or ΔLTL between smokers and non-
smokers, all models correctly estimate the true difference in ΔLTL as zero (Figure 2A). However, in 
scenario C, in which there is a difference in LTLb, but no difference in mΔLTL, while models 1 and 4 
correctly estimate the difference in ΔLTL as zero, models 2 and 3 overestimate it at non-zero values 
of measurement error, and this overestimation increases as LTL measurement error increases 
(Figure 2C).  In scenario B, in which there is no difference in LTLb, but a true difference in ΔLTL, all 
models correctly estimate the difference in ΔLTL at around -2 bp.year-1 (Figure 2C). However, in 
scenario D, in which there is a difference in LTLb and a true difference in ΔLTL of -2 bp.year-1, while 
models 1 and 4 correctly estimate the difference in ΔLTL, models 2 and 3 overestimate it at non-zero 
values of measurement error, and this overestimation increases as measurement error increases 
(Figure 2D). The magnitude of the bias produced by models 2 and 3 in scenarios C and D is the same, 
and is hence independent of the presence of a true difference in ΔLTL. 

In scenario A, the probability of type 1 errors based on a sample size of 2000 is around 0.05 for all 
models (Figure 3A). However, in scenario C, the type 1 error rates for models 2 and 3 are greater 
than 0.05 and rise as CV increases, reflecting the exaggerated estimates of difference in ΔLTL seen in 
Figure 2C (Figure 3C).  

In scenario B, the power to correctly reject the null hypothesis of no difference in ΔLTL based on a 
sample size of 2000 is approximately the same for all models and decreases with increasing CV 
(Figure S1B). The low power reflects the small true effect size of only -2 bp.year-1. In scenario D, the 
power of models 1 and 4 decreases with increasing CV, but the power of models 2 and 3 increases 
with increasing CV, reflecting the exaggerated estimates of difference in ΔLTL seen in Figure 2D 
(Figure S1D). 

In terms of both accuracy of parameter estimates (Figure 2) and precision of parameter estimates 
(Figures 3 and S1), models 1 and 4 were identical to each other and different from models 2 and 3 
which were identical to each other. Thus, the models fell into two groups determined by whether or 

https://doi.org/10.5281/zenodo.1009086
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not they control for mLTLb. Since models 3 and 4 are redundant, henceforth, we only describe results 
for models 1 (no control for LTLb) and 2 (control for LTLb). 

Varying the difference in LTLb in scenarios C and D confirmed that there is a synergistic interaction 
between difference in LTLb and CV on the size of the bias arising from model 2 (Figure 4A). At high, 
but realistic, values of the difference in LTLb and CV, the bias led to near-certain type 1 errors in 
scenario C (Figure 4B). 

Varying the numbers of participants in the simulation had no impact on the accuracy of the 
parameter estimates: biases in scenarios C and D were identical to those seen in Figure 2 at all study 
sizes (Figure S2). There was no impact on the probability of type 1 errors in scenario A, but an 
increased probability of type 1 errors produced by model 2 in scenario C (Figure S3). Increasing the 
number of participants increased the power to reject the null hypothesis in scenarios B and D, but 
this increase was greater with model 2 in scenario D due to the exaggerated parameter estimates 
(Figure S4). 

Increasing the true difference in ΔLTL from -2 to -20 bp.year-1 in scenarios B and D had no impact on 
the size of the biases observed: the difference between the parameter estimates for models 1 and 2 
was the same as that seen in Figure 2 (Figure S5). Concomitantly, there was no impact on the 
probability of type 1 errors (Figure S6). Model 1 correctly estimates the difference in ΔLTL at around 
-20 bp.year-1 in scenarios B and D (Figure S5). The larger true effect size results in a huge increase in 
power in scenarios B and D compared to that seen in Figure S1 (Figure S7). 

Changing the way in which we implemented measurement error from error that was proportional to 
LTL to non-proportional error had no impact on the size of the biases observed in scenarios C and D 
(Figure S8), the probability of type 1 errors in scenarios A and C (Figure S9) or power in scenarios B 
and D (Figure S10). 

Discussion 
As long as there was no true difference in baseline LTLb between smokers and non-smokers, then all 
of the statistical models that we applied accurately estimated the difference in ΔLTL between 
smokers and non-smokers. However, if there was even a small difference in LTLb between smokers 
and non-smokers and LTL measurement error was non-zero, then controlling for LTLb biased 
estimates of the difference in ΔLTL between smokers and non-smokers. Specifically, the difference in 
ΔLTL was overestimated and the size of this overestimation increased synergistically with increases 
in the difference in LTLb and in LTL measurement error. This bias translated into a type 1 (i.e. false-
positive) error rate of above the usually-accepted 5% level when there was no true difference in 
ΔLTL. This rise in the false-positive error rate was exacerbated in studies with larger numbers of 
participants. The apparent improvement in power provided by models 2 and 3 in scenario D, seen in 
Figures S1, S4, S7 and S10, and noted by Vickers & Altmanm,29 is an artefact of biased parameter 
estimates. 

It is worth pointing out that scenario B is unlikely to be very common, unless LTLb is measured early 
in life, before the participants have started smoking. Likewise, scenario A is not typical, given the 
abundant cross-sectional evidence that smokers have shorter telomeres than non-smokers.2,3 Thus, 
the scenarios likely to be empirically widespread are exactly those (C and D) where bias will occur if 
LTLb is controlled for.   

We parameterised our simulation for a comparison of smokers and non-smokers. However, for 
variables where the difference in LTLb is larger than 141 bp, as could be the case for a comparison of 
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different ages or races, our simulations suggest that false-positive error rates for associations with 
ΔLTL could approach 100% if LTLb is controlled for (Figure 4). 

In conclusion, given that LTL measurement error is never zero, our simulations suggest that models 
of types 2 and 3, which control for LTLb, should be avoided in the analysis of factors associated with 
ΔLTL. In contrast, models 1 and 4 yield accurate parameter estimates. Models 1 and 4 yield 
equivalent results with two telomere measurements, but model 4 will be the preferred option if 
more than two telomere measurements are available. 

Meta-analysis of empirical datasets 
On the basis of our simulations we predict that in real longitudinal datasets, estimates of the 
difference in ∆LTL between smokers and non-smokers will depend on both the size of the 
measurement error and the modelling strategy adopted. Specifically, we predict that estimates of 
the difference in ∆LTL between smokers and non-smokers will be larger when they are derived from 
models controlling for mLTLb, and that the size of this effect of modelling strategy will increase as 
measurement error increases.  

Here we test these predictions using real data from seven published longitudinal cohorts. Our 
specific aims were as follows. First, we set out to confirm that there is substantial variation in LTL 
measurement error among the seven cohorts. Second, we tested whether the estimated association 
between smoking and m∆LTL is greater when the association is derived from a model controlling for 
LTLb (model 2; see Table 1) compared with a model without control for LTLb (model 1), and whether 
any discrepancy is explained by differences in LTL measurement error among cohorts.  

Methods 
We used data from participants in seven longitudinal cohorts whose LTL had been measured at least 
twice and for which data on smoking status were also available (Table 3). We restricted our analyses 
to those participants who were either current or never smokers at the time of the baseline LTL 
measurement (designated ‘smokers’ and ‘non-smokers’ respectively); those who had quit smoking 
at some point prior to the baseline measurement were excluded.  

The first telomere measurement for each participant was designated as mLTLb and the second, or 
last where more than two were available (both the Lothian cohorts), as mLTLfu. For each participant 
∆LTL.year-1 was calculated as (mLTLfu-mLTLb)/(agefu-ageb) so that negative values indicate telomere 
attrition.  

To characterise the LTL measurement error present in each cohort we did not use the CVs reported 
for the cohorts, because CV values are often incomparable across studies.44 Instead, we used 
signatures of measurement error that can be directly calculated from the telomere measurements 
themselves, namely the correlation between mLTLb and mLTLfu and the correlation between mLTLb 
and m∆LTL.46 All else being equal, the correlation between mLTLb and mLTLfu will be weaker the 
higher the measurement error, and the correlation between mLTLb and m∆LTL will be more negative 
the higher the measurement error.37,47 

For each cohort, we modelled the difference in m∆LTL.year-1 between smokers and non-smokers 
using models 1 and 2 (Table 1). These models yielded estimates of the standardised β coefficient for 
the association between smoking and m∆LTL.year-1. To compare the difference in the estimates of 
this parameter between models 1 and 2 we calculated the difference in association (∆β = βmodel 2-
βmodel 1). A more negative association between smoking and m∆LTL.year-1 in model 2 compared to 
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model 1 will therefore be indicated by a more negative value of ∆β. To compare the results obtained 
across the seven cohorts we used meta-regression, fitting linear regression models to the values 
obtained for each cohort weighting data points by the number of participants in each cohort. 

Results 
Descriptive statistics 
The combined dataset included data from 1,768 adults, comprising 550 current smokers and 1,218 
never-smokers at the baseline measurement. The mean age at baseline of the cohorts was 65.9±8.5 
years (mean±sd; range: 53.4-80.2) and the mean follow-up interval was 8.5±1.2 years (mean±sd; 
range: 6.0-9.5).  

Five cohorts measured LTL using the qPCR method and two used the Southern blot method. For all 
cohorts, the slope of the regression of mLTLfu on mLTLb is less than one (Figure 5A). However, the 
strength of the relationship differs markedly between cohorts, with Pearson correlation coefficients 
ranging from -0.01 to 0.97 (Table 3). For all cohorts, the slope of the regression of mΔLTL.year-1 on 
mLTLb is negative (Figure 5B). There is a positive association between the correlation coefficient 
arising from the association between mLTLb and mLTLfu and the correlation coefficient arising from 
the association between mLTLb and m∆LTL.year-1 (weighted linear regression: β±se = 0.76±0.18, t = 
4.17, p = 0.0088; Figure 5C).  

Effects of modelling strategy 
We compared estimates (standardised β coefficients) of the difference in mΔLTL.year-1 between 
smokers and non-smokers derived from models 1 and 2 (Table 3). Coefficients from models 1 and 2 
are strongly positively correlated, but not identical (Figure 6A; weighted linear regression: β±se = 
0.89±0.11, t = 8.15, p = 0.0005). There is a tendency for the coefficients from model 2 to be more 
negative, indicating a bigger estimated difference in mΔLTL.year-1 compared to model 1 (paired t-
test: t(6) = 1.87, p = 0.1106). This difference is greater if the comparison is restricted to the five 
cohorts measured with qPCR (paired t-test: t(4) = 3.87, p = 0.0180). There is a positive relationship 
between the correlation coefficient arising from the association between mLTLb and mLTLfu (a proxy 
for measurement error in the cohort) and ∆β (a measure of likely bias; weighted linear regression 
β±se = 0.11±0.04, t = 2.91, p = 0.0336; Figure 6B). 

Discussion 
Two proxies for LTL measurement error varied among the seven cohorts: there was variation in both 
the correlation between mLTLb and mLTLfu and the correlation between mLTLb and m∆LTL. 
Furthermore, these two proxies were correlated with each other as would be expected if they both 
reflect measurement error. When we estimated the difference in ∆LTL between smokers and non-
smokers using two modelling strategies, model 1 (no baseline control) and model 2 (baseline 
control) produced different results: estimates derived from model 2 showed a more negative effect 
of smoking than those derived from model 1. Since there can only be one true difference in ∆LTL, the 
estimates derived from either model 1 or model 2 (or both) must be incorrect. The fact that 
controlling for LTLb increases estimates of the effect of smoking rather than decreasing them 
suggests that LTLb is not a proxy for positive confounders of the difference in ∆LTL between smokers 
and non-smokers, but instead introduces a bias. Indeed, the directed acyclic graph and simulation 
analyses both argue that controlling for LTLb (model 2) yields biased estimates. Thus, it seems likely 
that model 2 is biased. This conclusion is strengthened by our finding that the size of the discrepancy 
between the estimates derived from models 1 and 2 is predicted by a proxy for the magnitude of the 
LTL measurement error present in the cohort.  
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We do not report the statistical significance of the associations in Table 3. Our rationale was that the 
cohorts are small (47-539 participants) and the majority of the differences were therefore not 
significant. However, for the cohorts with indications of high measurement error, the likely bias 
arising from model 2 is sufficient to cause concerns over inference, especially if the studies were 
larger. For example, in the Hertfordshire Ageing Study, which has a baseline difference of -0.19 
standard deviations and massive measurement error, the β coefficients for the difference in attrition 
from model 2 (likely biased) is more than double what it is for model 1 (unbiased). 

In the Supplementary Material (Table S1 and Figure S11), we show, using the same datasets, that the 
above results for smoking generalise to two other variables, sex and body mass index, that are also 
associated with LTL in cross-sectional studies and have been suggested to cause differences in LTL 
attrition. 6,24 

 

General Discussion 
We have used three separate lines of evidence to argue that controlling for LTLb in analyses of ∆LTL 
biases estimates of the effects of exposures such as smoking. First, we used directed acyclic graphs 
to show that under a realistic set of assumptions, LTLb is likely to be a collider on the path linking 
smoking and ∆LTL. Controlling for LTLb is therefore predicted to introduce collider bias in the form of 
an overestimation of the true difference in ∆LTL between smokers and non-smokers. Second, we 
used a simple simulation model to confirm, again under a realistic set of assumptions, that 
controlling for LTLb does indeed inflate estimates of the true difference in ∆LTL between smokers 
and non-smokers, but only when a true difference in LTL is present at baseline. The magnitude of 
this bias is positively related to the magnitude of TL measurement error. Third, we analysed data 
from seven longitudinal human cohorts and showed that, in line with our predictions, estimates of 
the difference in telomere attrition between smokers and non-smokers tended to be greater when 
LTLb was included in statistical models as a covariate. Furthermore, the magnitude of this latter 
difference was predicted by LTL measurement error, as would be expected if the difference arises 
from collider bias.  

We initially found it difficult to obtain an intuitive understanding of why controlling for LTLb is 
problematic. Figure 7 is an attempt to provide a graphical explanation based on simulated data. The 
dark grey triangles and pale grey circles indicate LTL measurements for smokers and non-smokers 
respectively; the black triangles and circles are the means of the data for smokers and non-smokers 
respectively. All four panels depict LTL measurements from a scenario in which there is a true 
difference in LTLb between smokers and non-smokers, but no true difference in ΔLTL (i.e. scenario C 
in our simulations). The left-hand two panels (A and C) show LTL measurements made without error 
(CV = 0%), whereas the right-hand two panels (B and D) show the same true LTL values depicted on 
the left, but now measured with error (CV = 6%). All four panels plot LTLb on the x-axis, hence in all 
panels the mean LTLb for smokers (black triangle) is to the left of the mean LTLb for non-smokers 
(black circle). Panels A and B plot ΔLTL as the outcome variable and thus relate to a model 2-type 
analysis, whereas panels C and D plot LTLfu as the outcome variable and thus relate to a model 3-
type analysis.  

Panels A and B of Figure 7 show the association between LTLb and ΔLTL as a solid black regression 
line. When there is no measurement error (panel A), there is no relationship between LTLb and ΔLTL 
(the slope is zero). However, when LTL measurement error is introduced (panel B), a negative 
relationship between LTLb and ΔLTL occurs as a result of regression to the mean. Controlling for LTLb 
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in an analysis of the association between smoking and ΔLTL means asking what the difference in 
ΔLTL between smokers and non-smokers is for a given value of LTLb; this is conceptually equivalent 
to comparing the residuals from the regression of ΔLTL on LTLb for smokers and non-smokers (the 
black line). In panel A, the residuals of the data from the regression line are identical for smokers 
and non-smokers, because the means for smokers and non-smokers lie on the line. However, in 
panel B the mean for smokers lies below the line, whereas the mean for non-smokers lies above the 
line. Hence in panel B residuals are on average negative for smokers and positive for non-smokers 
creating a spurious difference in the residual ΔLTL between smokers and non-smokers. This bias only 
occurs because the smokers have a mean LTLb that is lower than that of non-smokers; it would not 
occur if there was no difference in LTLb, because the black triangle and circle would then be in the 
same place. Panels C and D show the association between LTLb and LTLfu as a solid black regression 
line. When there is no measurement error (panel C), the slope of the relationship between LTLb and 
LTLfu is one. However, when LTL measurement error is introduced (panel D), a flatter relationship 
between LTLb and LTLfu results. Controlling for baseline LTLb in an analysis of the association between 
smoking and LTLfu causes a spurious difference in LTLfu between smokers and non-smokers in panel 
D via an exactly analogous mechanism to that described for panel B.  

Given first, that there are robust differences in LTLb between smokers and non-smokers,2,3 second, 
that LTL measurement error is often substantial34 and Figure 5 and third, that most published analyses of 
the effect of smoking on ΔLTL or LTLfu control for LTLb, we suggest that the difference in ΔLTL 
between smokers and non-smokers is likely to have been overestimated in the literature. Reports of 
significantly accelerated LTL attrition in smokers compared to non-smokers should therefore be 
interpreted with caution.e.g. 16,18,28 In a recent meta-analysis in which we re-analysed LTL data from 18 
longitudinal cohorts without control for LTLb, we found no evidence to support accelerated LTL 
attrition in adult smokers.3 It is therefore likely that there is in fact no true difference in ΔLTL 
between smokers and non-smokers and that an alternative explanation needs to be sought for the 
robust difference reported in LTLb.15 

Our findings are likely to have much broader implications than the specific case of the effect of 
smoking on ΔLTL, analysed here. The bias we describe is relevant to estimating the effect of any 
factor that is associated with a true difference in TL at the time of baseline measurement on the rate 
of subsequent TL attrition. Indeed, our own analyses suggest that published analyses of the effects 
of sex and body mass index on ΔLTL are likely to be biased (see Supplementary Material).  There is a 
growing literature based predominantly on cross-sectional data claiming that exposure to various 
forms of stress and adversity accelerates TL attrition.1,48–57 While cross-sectional associations 
between exposure to stress and short TL do not prove that stress causes TL attrition,15 longitudinal 
studies have started to emerge that appear to support a causal relationship.20,22,42 Unfortunately, 
just as in the literature on effects of smoking, it is typical for analyses to control for TLb in these latter 
studies, meaning that the results should be treated with caution. Re-analyses of these datasets is 
required to establish whether the claimed differences in TL attrition are in due to bias. We predict 
that removing TLb as a control variable from the models used to analyse these data will not just 
increase the standard error of the estimates (as would be true if TLb was an innocuous incidental 
variable that needs to be controlled for to increase power), but will systematically shift the 
parameter estimates for the effect of the exposure on TL attrition towards zero. Our findings are 
also relevant to areas of epidemiology outside of telomere biology and apply to the analysis of any 
similarly structured observational studies in which changes over time in imperfectly measured 
variables are examined. While this problem is understood by some epidemiologists,e.g. 31 we hope 
that the current paper raises awareness of measurement error-induced collider bias more widely.   
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Conclusions 
Controlling statistically for baseline telomere length incorrectly inflates estimates of the difference in 
telomere attrition between smokers and non-smokers, and the size of this bias is positively related 
to the size of telomere measurement error. This bias is not restricted to smoking and will occur for 
any factor that, like smoking, is associated with shorter telomeres at the time of the baseline 
measurement. On the basis of our analyses we recommend that models of telomere attrition should 
not control for baseline telomere length by including it as a covariate. Given that the majority of 
previous analyses of factors affecting telomere attrition control for baseline telomere length in this 
way, many claims of accelerated telomere attrition in individuals that are older, fatter or exposed to 
various forms of adversity could be false-positive results that need to be re-assessed. 

 

Supplementary Data 
Supplementary Material accompanies this article. 
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 Table 1: The four statistical models compared. 
 

No. Model 
 Outcome 

variable 
Fixed predictor variable(s)1 Equivalent statistical test 

1 mΔLTL Smoking Two-sample t-test (or multiple 
regression2) 

2 mΔLTL  mLTLb + Smoking Analysis of covariance or multiple 
regression2 

3 mLTLfu mLTLb + Smoking Analysis of covariance or multiple 
regression2 

4 mLTL Timepoint + Smoking + 
Timepoint×Smoking3 

Repeated-measures analysis of 
variance or mixed-effects model 

 

Notes: 1Smoking and timepoint are categorical variables with two levels each (smoker/non-smoker 
and baseline/follow-up respectively) and mLTLb is a continuous variable. 
2Multiple regression is appropriate if additional control variables are included (e.g. age, sex, race 
etc.) 
3Model 4 additionally contains a random effect (intercept) of participant to account for repeated 
measures on individuals. 
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Table 2. Parameter values used in the simulations. 
 

 Scenario 

A B C D 

No diff. in LTLb True diff. in LTLb 

 Parameter No diff. in 
ΔLTL 

True diff. in 
ΔLTL 

No diff. in 
ΔLTL 

True diff. in 
ΔLTL 

Non-
smokers 

LTLb (bp;  
mean±sd*) 

7430±777 7430±777 7500±777 7500±777 

ΔLTL (bp.year-1; 
mean±sd*) 

-40.7±46 -40±46 -40.7±46 -40±46 

Smokers LTLb (bp;  
mean±sd*) 

7430±777 7430±777 7359±777 7359±777 

ΔLTL (bp.year-1; 
mean±sd*) 

-40.7±46 -42±46 -40.7±46 -42±46 

 
*Note that these standard deviations of LTLb and annual attrition are likely to be overestimates of 
the true values, since both true variation and measurement error contribute to the measured values. 
However, in the absence of error-free measurements we used these published standard deviations 
as the best estimates available. 
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Table 3. Summary of the datasets analysed. 
 

Cohort (acronym) Country Mean age 
at 
baseline 
(years) 

Mean 
follow-up 
interval 
(years) 

LTL 
measurement 
method 

Number of 
participants by 
baseline smoking 
statusa 

Diff. in LTLb 
between 
smokers and 
never-
smokers 
(Cohen’s d)b 

Signatures of LTL measurement 
error (data from smokers and 
never-smokers pooled) 

Diff. in ∆LTL.year-1 
between smokers and 
never-smokers 
(standardised β 
[s.e.])d 

Reference 
for cohort 

     Current 
smokers 

Never-
smokers 

 Correlation 
between LTLb 
and LTLfu (r) 

Correlation 
between LTLb 
and ∆LTL (r)c 

Model 1e Model 2  

ADELAHYDE 
(ADE) 

France 68.1 8.3 Southern blot 5 42 -0.99 0.93 -0.09 0.49 
[0.47] 

0.49 
[0.50] 

58 

Caerphilly Cohort 
Study (CCS) 

Wales, 
UK 

64.2 8.0 qPCR 207 169 -0.12 0.03 -0.81 0.22 
[0.10] 

0.12 
[0.06] 

59 

Evolution de la 
Rigidité Artérielle 
(ERA) 

France 58.6 9.5 Southern blot 27 86 0.19 0.96 -0.32 -0.30 
[0.22] 

-0.24 
[0.21] 

27 

Hertfordshire 
Ageing Study 
(HAS) 

England, 
UK 

67.0 9.2 qPCR 29 93 -0.19 -0.10 -0.75 -0.12 
[0.21] 

-0.27 
[0.14] 

59 

Lothian Birth 
Cohort 1921 
(LBC1921) 

Scotland, 
UK 

80.2 9.2 qPCR 3 78 -0.40 0.35 -0.23 0.10 
[0.59] 

0.06 
[0.59] 

59 

Lothian Birth 
Cohort 1936 
(LBC1936) 

Scotland, 
UK 

69.6 6.0 qPCR 75 415 -0.16 0.54 -0.31 -0.10 
[0.13] 

-0.15 
[0.12] 

60 

MRC National 
Survey of Health 
and 
Development 
(NSHD) 

England, 
UK 

53.4 9.3 qPCR 204 335 -0.06 0.08 -0.80 0.03 
[0.09] 

-0.02 
[0.05] 

59 

aThese numbers are smaller than the numbers given in the original reference for the cohort because we only included participants for whom there was telomere length and age at both baseline 
and follow-up and smoking status at baseline; furthermore, participants who had quit smoking prior to baseline were excluded. bNegative numbers indicate that LTLb is shorter in smokers. 
cNegative numbers indicate that longer LTLb is associated with greater telomere loss. dNegative numbers indicate greater telomere loss in smokers. eModels 1 and 2 correspond to models 1 and 
2 in Table 1. 
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Figure 1. Directed acyclic graph summarising the assumed causal relations between smoking, mLTLb 
and mΔLTL. The graph additionally includes the following unmeasured/latent variables: exposure to 
early-life adversity, true LTLb, baseline measurement error (errorb), true telomere change (ΔLTL) and 
follow-up measurement error (errorfu). Errorb and errorfu are uncorrelated and independent of LTL 
and ∆LTL. Causal relationships are indicated by arrows. This diagram is analogous to that presented 
in Glymour et al (29; Figure 3) and Glymour and Greenland (30; Figure 12-14) and can thus be 
subjected to an identical analysis. See text for further details. 
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Figure 2. Controlling for LTLb exaggerates estimates of the difference in ∆LTL between smokers and 
non-smokers when there is a difference in LTLb. The estimated difference in m∆LTL between 
smokers and non-smokers as a function of measurement error (CV). The β estimates were obtained 
by fitting four alternative models to data simulated given four sets of assumptions regarding the true 
differences between smokers and non-smokers (scenarios A-D in Table 2). The dashed lines indicate 
no difference in m∆LTL between smokers and non-smokers. Data points are the mean ± 95% 
confidence intervals obtained from modelling the data from 1000 replicate simulations. The four 
scenarios were as follows: (A) no difference in LTLb and no difference in ∆LTL; (B) no difference in 
LTLb but a true difference in ∆LTL; (C) a true difference in LTLb but no difference in ∆LTL; and (D) A 
true difference in LTLb and a true difference in ∆LTL. The true difference in LTLb between smokers 
and non-smokers in scenarios C and D was LTLb 141 bp shorter in smokers. The true difference in 
∆LTL between smokers and non-smokers in scenarios B and D was ∆LTL -2 bp.year-1 greater in 
smokers.  

  



23 
 

 

 

Figure 3. Controlling for LTLb increases the probability of false-positive errors when there is a 
difference in LTLb. Probability of a type 1 error as a function of measurement error (CV) for the four 
models under consideration. Data points represent the proportion of simulations yielding a p-value 
below 0.05 in 1000 replicate simulations. The left and right panels show the probability of type 1 
errors in scenarios A and C respectively (corresponding with Figure 2). The difference in LTLb 
between smokers and non-smokers in scenario C was LTLb 141 bp shorter in smokers. 
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Figure 4. The bias caused by controlling for LTLb is a synergistic interaction between difference in 
LTLb and measurement error. The data in this figure come from a simulation of scenario C only (a 
true difference in LTLb, but no difference in ∆LTL). Panel A shows the estimated difference in m∆LTL 
between smokers and non-smokers as a function of the difference in LTLb and CV for models 1 and 2. 
Data points are the mean ± 95% confidence intervals obtained from modelling the data from 1000 
replicate simulations. Panel B shows the probability of a type 1 error as a function of the difference 
in LTLb and CV for models 1 and 2. Data points represent the proportion of simulations yielding a p-
value below 0.05 in 1000 replicate simulations. 
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Figure 5. Signatures of measurement error 
differ between cohorts. A: The relationship 
between mLTLb and mLTLfu for each of the 
seven cohorts. The lines were obtained 
from simple linear regression. The dashed 
line shows the expectation if there is no 
change in mLTL between baseline and 
follow-up. Most of the data fall below the 
dashed line, indicating that in most 
participants, mLTL shortened between 
baseline and follow-up. Slopes closer to one 
indicate lower measurement error. B: The 
relationship between mLTLb and 
m∆LTL.year-1 for each of the seven cohorts. 
The lines were obtained from simple linear 
regression. The dashed line shows the 
expectation if there is no measurement 
error. Flatter slopes indicate lower 
measurement error. C: Meta-regression 
between the correlation coefficients 
derived from the associations shown in 
panels A and B. The size of the point 
representing each cohort is proportional 
the number of participants. The solid black 
line was derived from a linear regression in 
which the points were weighted by the 
number of participants in each cohort and 
the grey ribbon shows the 95% confidence 
interval for this line. More positive values 
on both axes correspond to lower 
measurement error. 
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Figure 6. The biasing effect of controlling for LTLb. A: The relationship between the β coefficients for 
smoking derived from models 1 (no control for LTLb) and 2 (control for LTLb). The dotted line shows 
the expectation if the coefficients were identical. B: The correlation between a signature of LTL 
measurement error (the correlation between LTLb and LTLfu; larger values indicate lower 
measurement error) and the difference between the β coefficients derived from models 1 and 2. In 
both panels, the solid black line was derived from a linear regression in which the points were 
weighted by the number of participants in each cohort and the grey ribbon shows the 95% 
confidence interval for this line. 
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Figure 7. Graphical illustration of the biasing effect of controlling for LTLb in analyses of ΔLTL and 
LTLfu. This figure is based on simulated data and exaggerates the true difference in LTL between 
smokers and non-smokers. See text for explanation. 
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