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MATHEMATICAL NOTES. MATHEMATICAL NOTES. 

621. [K. 1. c.] Morley's Theorem. 
ABC being any triangle with all its angles trisected: if the two trisectors 

of angle BAC intersect the adjacent trisectors of angles ABC, BCA in R and Q 
respectively, and if BR, CQ be produced to intersect in L, then 

RL =QL. 
For RL = BL - BR 

BCr sin IC sin C. sin A ] 
Lsin (B + C) sin Asin (600 - IC)J 

BC r sin iC . sin C. sin (60? + C) - 

Lsin (B + C) sin (60 - . sin (60 + IA)J 

_BC. sin IC [ cos 4C sin (60 + C) 
sin (B +C) Lcos (B +C) sin (60? +(B +C)) 

BC. sin C . sin IB 
sin i(B +C). sin(600 + (B + C)) 

=QL, by symmetry. 
This equality (RL=QL) affords immediate proof of Prof. John Morley's 

theorem that " the 3 points of intersection of the adjacent trisectors of the 
angles of any triangle form an Equilateral Triangle." 

For, if-in accompanying figure-P be the third point of intersection, 
obviously, in the triangle BLC, PL will bisect the angle BLC, and the triangles 

A 

RLP, LP will thus be equalin all respects, so that PR and similarly 
RLP, QLP will thus be equal in all respects, so that PR =PQ; and similarly 
it can be shown that RQ =PR or PQ. C. H. CHEPMELL. 

85 Wilbury Crescent, Hove, Sussex, 13th February, 1922. 

622. [K. 1. c.] Geometrical View of Morley's Theorem. 
Let a + P + y = 60. Along the circumference of any arbitrarily drawn circle 

set off an arc Z Y whose chord Z Y subtends an acute angle of a degrees at the 
circumference. 

This arc may be briefly designated by a. 
Draw FE, WU, QP parallel chords to ZY, so that the intercepted arcs 

YE, EU, UP are designated by a, P +y -a, a respectively; and divide the 
arc PQ(p + y) in A so that AP = , AQ =y. 

Then the angles W UY, UWZ standing on arcs of a + +y are each 60; 
and if UY, WZ are produced to meet in X, then XYZ and XUW are equi- 
lateral triangles. 

Moreover, since arc WQAU =2a + +y = WFZYE, therefore 
WE = WU = UF. 

Produce AF, UZ to meet in B; and AE, WY to meet in C. Then the 
angle ABZ=AZU - FAZ=(a + P) -a=3. Similarly ACY=y. 
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