
Some problems of Diophantine approximation: 
The lattice-points of a right-angled triangle. 

(Second memoir.) 

By G. H. HARDY in Oxford and J. E. LITTLEW00D in Cambridge. 

1. Introduction. 

1.1. This memoir is a sequel to one published recently in the Pro- 
ceedings of  the London Mathematical Societyl). It contains the proofs of 
a number of theorems enunciated in an appendix to our former memoir, 
together with a considerable amount of additional matter. 

The problems which we consider have occupied us at intervals 
since 1912, when we referred to them briefly in a communication to the 
Cambridge Congress~), and indicated certain questions which we were 
then unable to answer. In the meantime they have attracted the attention 
of Herr HECKE 8) and Herr OSTR0WSKI4), who have dealt with them in 
two very beautiful memoirs published recently in this journal, and to 
whom we are indebted for this opportunity of publishing our own. 

The very remarkable analysis of HECKE is mainly transcendental, 
while OSTROWSK!'S is entirely elementary, and we use both elementary 
and transcendental methods. Our transcendental method is entirely unlike 
HECKE's, and little need be said as regards the relations between his 
results and ours. The relations of our elementary work to OSTR0WSKI'S 

are a good deal closer. Our method, depending as it does on formulae 
like those of SYLVESTER and LERCH5), is fundamentally different, but 
the results are to a considerable extent the same. A detailed analysis 

1) G. H. HARDY and J .E.  LITTLEWOOD, "Some problems of Diophantine ap- 
proximation: The lattice-points of a right-angled triangle", Proc. London Math. Soc. (2), 
20 (1921), 15--36. We refer to this memoir as 1. 

2) G. H. HARDY and J. E. LITTLEWOOD, "Some problems of Diophantine ap- 
proximation", Proceedings of the fifth international congress of mathematicians, 1912, l, 
223--229. 

s) E. HECKE, "Uber analytische Funktionen und die Verteilung yon Zahlen rood. 
Eins", Hamburg. Math. Abh. 1 (1921), 54--76. We refer to this as H. 

4) A. 0STROWSKI, "Bemerkungen zurTheorie der Diophantischen Approximationen", 
ibid., 77--98. We refer to this as O. 

5) See 3.1. 
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of the points of resemblance and difference would occupy a good deal 
of space and seems to us unnecessary, though we indicate the theorems 
which have been proved by 0STR0WSKI as they occur. We should add 
one word, however, as to the relative advantages of 0STR0WSKI'S method 
and our own. In some parts of the theory the advantage of 0STROWSKI's 
method seems to us incontestable; in others there is little between them; 
and in others the advantage seems to lie with ours. I t  seems to us 
desirable to develop the whole theory systematically from our own point 
of view; but where OSTR0WSKI's method is clearly simpler, we content 
ourselves with an outline of our demonstrations, suppressing the algebraical 
details of our work and condensing our argument to the limit of intelligi- 
bility. In particular we have followed this course in 3.4. 

1.2. All our theorems involve an irrational number 0, which we 
generally suppose positive, less than 1, and expressed as a simple con- 
tinued fraction 

1 1 1 
th + a~-f- as-~- . . . .  

(1.21) 

We write 
1 1 

(1.22) 0 -  at+O-----~' O t -  as-FO------~' 

and denote the convergents to (1.21) by 

P l  1 p z  a~ 

. o . . ,  

(1.23) 

More generally 

(1.231) 

We shall make continual use of the two lemmas which follow, 
which are trivial, but very useful, and which seem to have escaped 
attention. 

I.emma 1. We have 
1 

0~.0~. +1 -< --~- . 

1 
Or Or+l . . . .  Or+s-t  < - - ,  

Us 

where Us is the s-th term o f  FIBOI~ACCFs series 1, 2, 3, 5, 8, 13, . . . .  
We deduce this from 
Lemma 2. We have 

1 1 
( 1 . 2 4 . )  2001 . . .  O r - z  ~ q r <  001 .. �9 O r - z  ' 

For 
qr - l  ~-O~- lqr-2  qr +Or q~-i  ---- (a~ +O~) q ~ - l +  q~-~ ---- 

Or-t  

(21 ~ ' qg at  as-kl  ' . . . .  
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and so 
1 

qr+Orqr-1-- - - -  OO1 . . . .  O r - i  ' 

which proves the lemma. 
To deduce Lemma 1 we observe that (1.24) gives 

1 
001 . . . .  08--1 < - - ,  

qs 

and that, for given s, qs is a minimum when al ~ a2 ~ . . .  ----- as ~ 1, in 
which case qs ~ us. Taking now Or for 0 we obtain the desired result. 

| .3. We write, as usual, [x] for the integral part of x, and 

1 
(1.31) (x) = x - -  [x], {x} = x - -  [x] 2 " 

Thus {x} is the arithmetical function denoted, by HECKE and OSTR0WSKI, 
1 

by R ( x )  2 "  Further we write 

(1.32) ~ == x - - X  

1 
where X is the integer nearest to x. If x is of the form n-{- ~- ,  we take 

1 
X ~ - ,  

Throughout our argument the letter A (or occasionally B, C , . . . )  
denotes a positive constant. This constant may be absolute, or may depend 
upon the parameters involved in the theorem in question; it will not 
generally be the same constant in successive inequalities. The O's and o's 
which occur involve constants implicitly. It  will generally be obvious on 
what, if any, parameters these constants depend. 

We shall frequently be concerned with conditions of the type 

(1.331) n h l s i n n O u l  :> A ( n ~  1), 
or  
(1.332) nh l s i nnOrc  ] < A (n ~ n)), 

where h ~ 1, and the notation implies that the second inequality is satis- 
fied for an infinite sequence nl, n~, . . . ,  nj of values of n. These con- 
ditions are obviously equivalent to the corresponding conditions in which 
sin n 0 n is replaced by n 0. Further, (1.331) and (1.332) are equivalent to 

(1.341) qr+l ~ Aq h (r ~ 1), 

(1.342) qr+l  ~ Aq~ ' (r = r~), 
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and these again, by Lemma 2, to 

1 A 
(1.351) 0--~ < (0 01 . . . .  0 r - - l )  h - 1  (r ~ 1), 

1 A 
(1.352) e-~ ~ 2h(e • . . . .  0~-,) h-~ (r = rj). 

It  is well-known that  a condition of the type (1.331) is satisfied by every 
algebraical 0. 

The A's of these inequalities may be absolute or may depend on 0 
and h. If absolute in (1.331) and (1.332), they are absolute in the other 
inequalities. 

2. The analytic treatment of the triangle problem. 
2.1. In this section we continue the study of the "triangle" problem 

(Problem A of 1) by analytic methods. We denote by N(~) the number 
of lattice-points inside the triangle whose sides are 

x ~ O, y ~ O, w x  + w' y -~- ~ ~ O, 

where w and w' are two positive numbers whose ratio 8 ~ ~ is irrational. 

We proved in 1 that  

(2.11) N(~) = R(O + U(O ---- R(~) + O( 0 + .r 
where 

(2.111) R(~) = 2 w w '  2 w  2 w '  ' 

(2.112) w ~ + f '  ~ ~ - f '  

1 1 
(2.113) 0(~)  = - ~ f  + y Of(1 - - f ) ,  

(2.114) s(~) =z~{~o--f'}. 

Our problem is the study of U(~), or, since 0 ( ~ ) ~  0(1), of 8(~). 
We proved in 1, (a) that  
(2.12) u(~) ---- o (0 

for every fiTational 0, (b) that  this result is the most that  is universally 
true, (c) that  
(2.13) U(~) = 0 (log~) 
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when 0 has bounded quotients, ( d ) t h a t  there are O's, with bounded 
quotients, for which each of the inequalities 

(2.14) U(,]) ~ A log~, U ( 0 - <  - -  A log~/ 

is satisfied for arbitrarily large values of ~, and (e) that  

(2.15) UO/) = 0(~/"), 

where a ~ a ( 0 ) <  1, whenever 0 satisfies an inequality of the type (1.331), 
and in particular whenever 0 is algebraic. Of these results (a)--(d) were 
proved by elementary reasoning, and (e) analytically. Our immediate 
object is to prove more precise results in place of (e). 

We  denote by ~ (s) ~ ~ (s, a, w, w') the analytic function defined, 
when the real par t  a of s = a + i t  is greater  than 2, by the series 

oo oo 1 

m~--~0 n ~ O  p 

where a is positive and l~ s has its principal value. This function is 
a degenerate case of the "double Zeta-function" of BARNESt). I ts  
principal properties, so far as they are relevant to our investigations, 
are summarised in 1. 

In this section the A's, B's,  . . . .  are in general not absolute but 
functions of the parameters 0, h, . . . . .  

2.2. Lemma3. I f  h >_ k > l and 

(2 .21)  nh]sinn 0 ~ I k ~ A 
then 

m 1 
(2.22) X-1 

0 (logm) ~. 
-~-f'~ nhl s inn 07r I k 

I t  is plain that  neither hypothesis nor conclusion is affected if 
we replace sin n 0 z  by n-O. 

(2.231) 
and, if we define hn by 
(2.232) 

we have h,  < h. 

(2.224) 

We have therefore 

nh]nO[k> BS), 

nh"lnOlk= B, 
Consider now the sum 

2 m  
2~ 1 - - 2 : u n .  

T i n =  na] n-~ }k m 

t) E. W. BARNES, "A memoir on the double Gamma-fmlction", Phil. Trans. I~oy. 
Soc. (h), 196 (1901), 265--387. 

2) B is thc same constant throughout this sub-section. 
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The terms of T,,  for which h~-< h -  1 contribute 

0 = 0 (1). 

We classify the remaining terms as follows. 
integer 7, write 

and call a typical term un of T,, a term of class r if ~r <__ hn-~ ~r + x. 
un is of class r, 

l~-~lk< B n - ~ .  
But 

if 

(2.25) 

and then 

[sOl x>  Bs  - h >  2kBn -~" 

~T h 

O < s ~ C n  ~ 

We choose a positive 

(r ~- O, 1, 2, . . . ,  ~--1) 

If  

U, , - - - -~  1 (~=jT  ) 
1 n a l ~ - o l ~  - -  0 ( 1 ) + 0  _ ~  

(2, ;) = 0 ( 1 ) + 0  log --~ O(logm)', 

which is equivalent to (2.22). 
As a corollary we have 

I(n +s)OIk~ Bn-~r>  B(n + s) -~r 

for all values of s which satisfy (2.25). Henc~ no term un+s corresponding 
to such a value of s is a term of class as high as r. 

I / 

The number of terms of class r is therefore 0 (m 1-  h~,  and their 
contribution to T,~ is 

0 (m 1- K -  h i  ~,+ 1 

since 

I t  follows tha t  
1 

(~.26) T~ = O/~m~l = O(logm), 

since we may take ~-~-[logm].  

If  now we define v by D'< m < 21), we have 2 Y ~  
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Lemma 4. I f  (2.21) /s satisfied, the series 

~_~ 1 
na+~]sinnOz~[ k 

is convergent for every positive e. 
The ease of most importance is that  in which k = 1, when (2.21) 

reduces to (1.331). 
2.31. We proceed to establish an analytieal formula for the sum 

(2.311) Wk(~) - - - ~  ~ ( . ~ - -  lp) k. 
z,a~ 

The k here has n o  connection with that  of 2.2. 
In order to abbreviate our formulae we adopt the following 

convention. We are often concerned with associated pairs of series, 
of the forms ~_~O(m, w, w') and ~_~O(m, w', w); and we write generally 

(2.312) X(w, w').g~ O(m, w, w') -}-X(w', w ) ~  O(m, w', w) -~- 

(X(w, a (m, w, w'))*. 

Such associated pairs of series have been considered by various writers, 
and in particular by LERCH~). We shall also sometimes use a similar 
notation when there is no summation. 

We recall the formula ~) 

~, (s, a, w, w') [ 1  ~ sint 2mTr(l ' ( - ~ , ~ - w - a , +  I l ( 1 - - s ) ~ ) )  T 

(2.313) (2 z0s_lF(X__ s) = ( ~ g  ~__ 1 m,_Ssin mw,~r 
W 

This formula is valid whenever 0 ~ a <= w q-w' and the two series on 
the right are absolutely convergent. 

2.32. Theorem 1. Suppose that (1.331)/s satisfied and that k > h - -  1. 
Then 
(2.321) Wk (~.) = Vk (~_)-- 

(2 7~)--k--1/~(]~-Jl-1) (Wk~_ 1 ' ~  ( l W ' q -  "~-- O(~k + l--q), 
= mk+ 1 sin mw'= 

where 

(2.3211) Vk (~) ~ 2 Cu ~k+ :-u,  

1) See, for example, M. LERCH, "Sur une s6rie analogue aux fonetions modulaires", 
Comptes Rendus, 18 April 1904; G. H. HARDY, "On certain series of discontinuous functions 
connected with the modular functions", Quarterly Journal (1904), 93--123; and writings 
of RIEMANN and H. J. S. SMITH there referred to. 

2) (6.221) of 1. 
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the C's being constants, o f  which 

1 
(2.3212) Co = (k~-l)(k-4-2)ww'  ' c, - -  

w ~ - w ' - - 2 a  
2 ( k + l )  ww' ' 

and q is the integer such that k +  1 < q < k-4- 2. 

We suppose for the present that k ~ h - - - ~ - .  Since k > 0, we have ~) 

c+ioo 

(2.322) 

if c ~ 2 .  

1 
~ ' - -  2 

(2.323) 

and 

W~(~) - -  1 P , , F(k + l) F(s) 
- J~s ( s )  F ( k + l + s )  ~'k+Sds' 2zt i  

1 1 �89 
We choose ~ so t h a t - 2 - < - - ~ - + r  1, k ~ h - -  -4-~, and 

k +  ~ is not an integer. We have then 

1 
2 k ~ y ~ l - - h  

/ ~ 1 

(2.324)  ~,(s) = 0 ~lt[ -~-r) = 0( [  t[ k) 

uniformly for a > r ~). 
We may therefore apply CnucrtY's Theorem to the strip r_<-- a ~  c, 

and we obtain 
r + i ~  

' F(k ~- 1) F ( s )  1 ~ ~ (s) ~k+~ ds, (2.325) Wk(.~) : U~(_~)+ ~(~i  d r (k  + 1 +s) 

where r -  i 

(2.326) Uk(.~)= Co.~k+~-l-C~.~k+~+~.~ ( - 1 ) y ~ ( - v )  r(k-4-1) ~k-~, 
~=o v! r ( k  + 1--~,) 

p being the largest integer such that - - p  >7.  We may write 

(2.327) U~ (.~) =~;~ C~ .~k+2-g, 
/ z = 0  

1 3 
where r - - p + 2  is the integer such that k + - ~ - - ~ r < k +  ~ - - ( ~ .  

1 + ~ and 3 The index of the last power in Uk(~) lies between ~- ~ - +  ~, 

whereas that in Vk(.~) lies between 0 (inclusive) and 1; the form of the 
two sums is otherwise the same. 

1) G. H. HARDY and lg. RIESZ, "The general theory of Diriehlet's series", Camb. 
Math. Tracts, 18 (1915), 51 (Theorem 40). 

2) See 1, Lemmas fl, & The series which occur in (2.313) (or (6.221) of l) are 
absolutely convergent for r  in virtue of ('2.323) and Lemma 4; and the conclusion 
then follows from Lemma & 
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2.33. In (2.325) we substitute for ~ (s) from the formula (2.313), valid 
since 1 - -  r > h, and integrate term-by-term. This term-by-term integration 
is legitimate because 

(2 ~)~-1 r ( l  - -  s) - ~ 
m 1 - s  sill m : ' ~  

~ 0 t ] -~-r  m l - r  sin mw'~ 
W 

oo 1 
and 

are convergent. We thus obtain 

i x L)* m t - r  sin m: '=  

(2.331) Wk(~.) = Uk(~)+ J~ + , + J; + J~,, 
where 

2 m ~ i  1 , 

~ k F ( k + l ) ~ e  w (u  q)(2m_~i~)  
(2.3311) J1 - -  ~ " 1 m sin mw'____~ ~ w ' 

tO 

J~ is conjugate to J1, J'l and J'~ are obtained from J1 and J~ by exchanging 
w and w', 

~*+ioo 
1 [ '  7~ ( - - u )  s 

(2.3312) q)(u)= 2 ~ i  j s insg r ( k  T l ~-s) ds, 

and ( ~ u ) '  has its principal value, real when u is negative. 
The function O(u) is one of a type whose asymptotic expansions 

have been considered by various writers. We have 
U--p--i 

(2.332) O(u) - -  r ( k - - p )  + O(lui-P-U)--u-ke"+O(lu-~-~e"l) 

01-}- Os-}- Os + 04, 
say, with similar formulae for the derivatives of O(u), which may be 
written down by formal differentiationS). 

') The function may be expressed in the form 
oo - - X  i$m--P 

,~=o r ( k + l ~ - - p )  ; 

herep is the integer such that - - p - - 1 < 7 < - -  P. As regards the asymptotic expansions 
of such functions, see, for example, E.W. BARNES, "0n functions defined by simple 
types of hypergeometrie series", Trans. Camb. Phil. Soc., 20 (1906), 253--279. The 
actual result required here is easily proved in a variety of ways. 
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We denote by ~,~, . . . .  the results of replacing O, in J~, . . . .  by 
q)w}- O2; by J~,2, . . . .  the results of replacing q) by O ~  O~: so that  we 
have four equations of the type 

Consider first the sums J~.~, . . . .  with 1 as second suffix. If we 
substitute O1 for �9 in J~, . . . .  and combine the results, we obtain, after 
a straightforward calculation, 

(--  1)p+x (2 ~)-~-2 F(k-b 1) }k-#-I 
r(k--p) 

( ): �9 12~" (yw - - a ) +  l(p~_ 2)g) w ~ + l ~  sln , ~  

m~+2 sin m: '~  

which is equal, by (2.313), to 

( - - 1 ) P + l ~ 2 ( - - p - - 1 )  F ( k - ~ l )  .~k-p-1. 
(p + 1)! r (k--p) 

This is of the same form as the general term in (2.326), and the con- 
tribution of O1 may be accounted for by replacing p, in (2.326), by p ~ 1. 

t If we do this, the last index in Uk(D will lie between - - - ~ - ~  ~ and 

1 
-~--~d, and Uk(~) may become identical with Vk(~) or may contain one 

extra term; it is in any case of the form Vk(~_)-}-O(~k+l--q). 
There is also 02 to be considered, but (/)2 is of lower order than 

O1 to the extent of a f a c t o r - ~ ,  and its contribution is accordingly trivial. 

We therefore obtain 

(2.334) U~(~-)~-~,l~ff2,i-}-J~,l~-J~,l~ Vk(~_)~O(~.k+l--q). 

Next we consider the sums J1,2, . . . . .  Substituting first 08 for O, 
we obtain, after reduction, 

- -  (2 ~)-  k- 1 r (k -}- 1 ) (w ~ ,  
COS 

mk+ l s i  n m:'r ]- 

And as 04 is of lower order than q)s, 

tribution is 0 ( 1 / - -  - O(~k+t-q). Thus 

1 
by a factor m ~ '  its con- 
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(2.335) J1,2-F J2,2 ~ J~,2 ~- J~.2 ~ S t  0 (~k + l-q), 

where S is the second term on the right of (2.321). 
Collecting our results from (2.331), (2.333), (2.334), and (2.335), 

we obtain the result of Theorem 1. At present, however, the theorem 
4 

is proved only when k ~ h---~- ,  and it is necessary to extend this 

range to k > h - -  1. 
1 

2.34. Suppose then that k ~ h -F ~ > h > h - -  -~-, so that (2.321) is 

proved; and let us differentiate formally with respect to .~, and divide 
by k. We have 

1 dWk 
and k d~ ~ Wk-z, 

l dVk 
- -  - -  Vk-I  A- 0(~ k+l-q) = rk-iA-O(~k-q'),  

k d~ 

where q' : q - -  1 is the integer such that k < q ' <  k-{- 1. Finally the 
same process, applied to the infinite series, yields the corresponding 
series for k - - 1 ,  a series which is, by Lemma 4, absolutely and uniformly 
convergent. It  appears then that we are led back to our original 
formula, with k - - 1  in place of k, and this is just what we require. 
The proof is however insufficient, since we are not entitled to differentiate 
the error term O(~k+l-q). 

There is no difficulty of principle in completing the proof, but it 
is necessary to go back to (2.331). We differentiate this equation, and 
substitute for q)(u) and its derivative q)'(u) the approximations given 
by (2.332) and the corresponding derived equation. The result is 
an absolutely and uniformly convergent series, and the term-by-term 
differentiation is thereby justified. We have then only to repeat our 
previous calculations, in a slightly more complicated form, the formulae 
which we use being in substance the formal derivatives of those which 
we have used already. The final result is the same as before, except 
that k is replaced by k - - 1 ,  and that the result holds whenever 
k - -  1 : h - -  1 -F ~/> h - -  1. When we restore k in the place of k - -  1, 
the proof of Theorem 1 is completed. 

2.4. From Theorem 1 we can deduce a proof of the equation 
numbered (2) in the appendix to our memoir 1. This equation is not quite 
so precise as one which we shall obtain later in an elementary manner, 
but it is of some interest to show how it follows from the analytic theory. 

Theorem 2. I f  (1.331) is satisfied then 

(2.41) U(~) = 0(~ i-~--~-e) 
for every positive e. 
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Suppose, in (2.321), that k is the integer such that k ~ h < k §  
The q of Theorem 1 is now k§  and 

(2.42) 0o c o s , - ~ - ( ~ w  + ~ -  ~ ) 
~(~.) = V~,(~)--A d' 

mk+Z sin m :  

(') ---- v~(_~)§ ~-  

say. If now we suppose 0 ~ ~ < 1, and write generally. 

IbX 

we have 

We consider first J S .  Since 

J c o s  

we have 

(2.441) 

Next 

and so 
(2.442) 
Finally 
(2.443) 
where 

- ~ , ,  ~ -  + . ~ -  = 

) ( ~s=o(s~.  1row, = r ~ m~+i]sin 
\ n , , ~ l  m s in  w 

[ k[ 1 Ih--1-'~-e~ -- - -  

j = 

,t Wk(~_) ----- k' f d~l f d~.,. . . f W(~.Dd~.k, 

k!3kW(~_) < AWk(~_) <= k!3kW(~. +k3).  

�9 ~Vk(~) = 8k V(kk)(~) + 0 (~+ 1 ~_) = k! 3 k V(~.) + O(sk+ ~ ~), 

~.~ w+w' - -2a  
(2.4431) V(~_) - 2ww' + 2ww' ~ + M, 

M being a constant. 
From (2.43), (2.441), (2.442), (2.443), and (2.4431) we deduce, in 

the first place, 

(2.45) w(~) < v ( ~ ) + o ( ~ ) + o  ~ -  + o  
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1 
In (2.45) we take 3 ~ -~ h, and we obtain 

(2.46) W(.~)< V(~)+ 0 (.~--~+~). 
Similarly we have 

/ 
(2.47) W(~_ +k~)~V(~)+Ol~  n I, 

or, on replacing .~+k~ by 

(2 s) 

Finally, from (2.46) and (2.48) we deduce 

(2.49) 

Attributing to a the special value w + w '  and replacing ~ by q, we 
obtain (2.41)1). 

1 
2.51. We next prove a theorem which shows that the index 1 - - ~ -  

of Theorem 2 is the "correct" one. 
Theorem 3. I f  h 7 1  and (1.332) is satisfied for an infinity of values 

of n, then each of the inequalities 

1 1 
(2.511) U(~) >A~ h, U ( ~ ) < - - A ~  z--~ 

is satisfied for arbitrarily large values of ~. 
Let f(x) be the function defined, when ~ ( x ) ~ 0 ,  by the equations 

(2.512) f ( x )  = ~ , ~ e  -x(mw+nw')  = ~ e  -x l "  = e-X(W+W') 
' m,n=i p=i ( 1 - - e  -~w) (i--e - x ~ ' )  " 

We have 
1 

(2.513) f ( x ) - -  ww,x ~ 

when x is small. 
Suppose next that 

(2.514) 

w + w '  w ~ + 3 w w ' + w  '~ 
2ww'x  ~ 12ww' +O(x), 

x - -  2 n z i  + 0  
W t 

where ~ is small and positive, and n has one of the values for which 
(1.332) is true. Then 

[e-(W+w')xl> A , [1--e-W'~]<=Ad, 

1) The proof of the theorem is modelled on the argument used by LANDAU, ,,t?ber 
Diriehlets Teiler-Problem", Mi~nchener Sitzungsberichte, 1915, 317--328. 
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and 

[1 --e-W~ I ----- V ( 1 - - e - ' C a ) s +  4 e - ~ s i n S n ~ 8  ~ A V d2+ n -~h, 

so that 
A 

(2.515) If(x) I ~ ~ V  ~' + n -~h" 

On the other hand, we have 

oO oO Zp-I- 1 

(2.516) f (x)  =/.2~e -~ p xe-XUdu 
1 

O0 

= x~N(u)  e- xu d u, 

since N(u) is the number of /'s which do not exceed u; or 

(2.517) f (x)  - -  1 w + w '  
w w '  x ~ 2 w w '  x + O(x), 

where 
o0 

(2.5171) �9 (x) = x S U(u) e- ~ '  du. 
0 

Comparing with (2.513), we see that 

(2.518) O(x )~  M ~ w~+ 3ww'-}- w'~ 
12ww r 

when x ~ O ,  and in particular if x = ~ and ~ 0 .  
2.52. Now suppose that a > 0 and 

(2.521) X(u) = U(u) + Bur 0 i) 

for all sufficiently large values of u, say for u ~ Uo. It  follows from 
(2.521), (2.5171), and (2.518) that 

oo oo 

(2.522) fX(u)e-'~Udu~BfuC'e-eUdu= B r ( l + . ) O - ' - "  = C ~ - 1 - 5  
0 0 

say, when ~ 0 .  On the other hand, if x is given by (2.514), we have, 
by (2.5171) and (2.521), 

O(X) ---- x f x (u)e- :eUdu--Bx  f uC'e-XUdu 
0 0 

oo 

~-- x f ~(u)e-~" du + O(1), 
0 

~) B and C (unlike A) retain the same values throughout the argument which 
follows. 
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(2.523) ]q) (x) l<Ix  ] X(u)e-XUdu + X(u)e--~"du + 0 ( 1 )  

<1 1 +o(1) +o(1) 

2 n z  
< 2  . . . .  C~-x-~ < A Cn~ -~-~' 

W t 

by (2.522). Comparing (2.515), (2.517) and (2.523), we see that 

A 
ACn ~ - 1 - ~  ~ V ~ + n _ 2 h  , C~nS(~+n-2h):~ A~2% 

Taking in particular ~ ~ n -h, we have 

(2.524) C=~ An  (1-~) h--1. 

(2.524) it follows that a __> l - - h ;  andif we take a---~ l - - h ,  then From 

C > A  or B >A.  Unless these conditions are satisfied, (2.521) cannot be 
true for all sufficiently large values of u; and therefore the second of 
the inequalities (2.511) must be true for arbitrarily large values of 
and some value of B. The first inequality can naturally be proved in 
a similar manner. 

We have supposed h >1 ,  so that the critical value of a is positive. 
In this case a less precise form of (2.518), viz. q)(x) ~ o ( x - %  would 
have been sufficient for our argument. When h ~ 1, the critical value 
of a is zero. In this case the value of M becomes relevant to the 
argument. We must take X(u) ~ U(u) + M-~B,  and the final conclusion 
is that B >A,  i. e. that each of 

U(~) > M + A ,  U(~)< M - - A  

is true for arbitrarily large values of ~. The conclusion is not entirely 
trivial, but it is certainly much less interesting, and is no longer in any 
sense a best possible result. 

2.61. We proceed next to the proof of the exact formula for N(~) 
enunciated at the end of our former memoir1). This is the analogue of 
VORON0~'s formula for the number of lattice-points in the area x >0,  
y'~O, x y  ~ ~. 

It is now necessary to consider the exact definition of N(~) when 
is of the form p w + q w '  and there is a lattice-point on the boundary 
of the triangle. We a~'ee that such a point is to be counted as one, half. 

1) 1, p. 35, formula (5). 
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Lemma 5. I f  Z is positive and ~, real, then the integral 
Oo 

f s invx dx 
(2.611) (cosh w 2 - -  cos wx) (cosh w' i t - -  cosw'x) x 

0 

is convergent; and it may be evaluated by expanding the subject of integration 
as a double 9ower-series in e -w~ and e -w'~, and integrating term-by-term. 

The formal result of this process is 
o o  

(2"612) 4 ~ f s i n v x c ~ 1 7 6  
sinh wZ sinh w'~ ~rq e--~(Pw+qw') lo, q~0 X 

0 

1 
where ~p - -  ~- (9 ----- 0), ~----1 (9 >0) .  There is at most one term for 

which v 4 - p w 4 - q w ' =  O. This term, if it exists, we remove from the 
double series and consider independently, and we denote the modified series 
by~.~'. Since term-by-term integration is certainly permissible over any 
finite range (0, X), it is sufficient to show that 

oo 

(2.613) ~_~' ep eq e -~ (p,o+q~')J- 
x 

is convergent and tends to zero when X ~ ~ ;  and this will be so if 

(2.614) 

where 
(2.615) 

a ~ _ ~ e p e q e  -'t(pw+qw') ~ sinqxx dx <~, 

Q ~ j ,d-pw4-qw'  , 

is less than ~ for every positive r and sufficiently large values of X. 
We write 

(2.616) a = ~ ' =  ~ + ~ =al+as, 
bolX>-H IPlX<H 

say, where H ~ 0 .  Since 

we have 

(2.617) 

fo:  i 
x si X d x  :l~--ay, Y ~ M i n  ~ , A ,  

A ~ ~ _ _  ~ e_~(pw+qw, ) -~ A 1 

if H is sufficiently large. I t  is therefore sufficient for our purpose to 
prove that  when H is fixed we can so choose Xo that 
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(2.618) A ~ e _ ~ w + q w , )  < 1 (x >=Xo), 

the summation extending over those values o f  p and q for which 

H H <u-4 -pw-4 -qw '<- -~ .  (2.619) X --  --  

2.62. We divide the terms in question into four blocks corresponding 
to the four choices of sign, and establish a corresponding conclusion 

for each of them, with ~---~ in place of-~-e. If the signs attached 
" t  

to P 

and q are the same, there is nothing to prove; for, as u is not of the 
form p w ~ - q w '  or - - p w - - q w ' ,  there is no term which satisfies (2.619) 
when X is sufficiently large. It  is therefore sufficient to consider the 
case in which, for example, Q = u - - p w + q w  r. But the inequalities 

_H__ X < ~ , - - p w T q w ' <  H 
X '  

where H is fixed, are only possible when p ~ ~, q ~  ~, where ~-~ 
when X ~  oo, and the number of values of q, corresponding to a given p, 
is 1 at most. Hence the sum extended over such values of p and q 
does not exceed 

~ e  - a p  ~ Ae -a~,  
p,$ 

which tends to zero when X-~ ~ .  This establishes our conclusion and 
completes the proof of the lemma. 

2.63. I.emma 6. I f  ~ is positive and ~ real, then the integrals 

i~+~ - i~+~  

( 2 . 6 3 1 )  . 1 - -  - - ,  
w x s i n l w , x l  x ~ 1  �9 1 �9 1 , ' ia sin-~ - i~ \ s m - ~ w x s m ~ w  x /  x 

in which the path o f  integration is a line parallel to the real axis, are 
convergent; and their values may be calculated by expanding the cosecants 
in powers of  e -w2 and e -w'~, and integrating term by term. 

The series to be used are different in the two integrals; for 

~ { ~  1 . ~ { ~  ~ { ~  i . 1 
1 

= - -  2 i~ ' e  V'+~lw'z = - -  2 i~__~'e V+Tlw'$-k'+-s 
�9 1 s m ~ -  w x  o o 

o r  

�9 1 
sin ~- w x 

r162 1 . 

= 

0 

- -  2 
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according as x = .~ + iX or x ~ ~- -  iX. Apart from this, the argument 
is the same for the two integrals, and it will be sufficient to consider 
the second. 

Consider first the analogous integral in which ! is replaced by 
X 

1 1 
The method of evaluation contemplated is certainly 

x x + i Z "  
legitimate for this integral, since 

1 1 
is convergent. We may therefore replace - - b y -  and then 

x x + i X  
dx  d~ . 

- -  is real. 
x + i X  

Next 
( e:iX ) . r e~iSs in lw(~+i) , )  1 ' sin ~- w (~ + i / t )  

1 - -  1 , = ,~e :J(coshwX--coswD(coshw'X--cosw'D" sin ~- w x sin ~- w x 

Wprking out the imaginary part of the numerator, we find that it is ( 1)  
a sum of constant multiples of terms of the type sin ~ ~ w +  -ffw ~. 

Thus Lemma 6 is reduced to Lemma 5. 
2.64. We define a sequence(R j) as a sequence of valuesR~ of / /which 

tends to infinity and all of whose members differ, by more than A, from 
2 m ~  2 n ~  

any of the numbers w ' w ~ ( m , n ~ 0 , 1 , 2 , . . . ) .  

Theorem 4. I f  ~ w + w '  (so that N(~)~O),  then 

N(O = R ( O +  1 2 w w '  2~ msm mw'~ 
w 

The sign o f  summation is to be interpreted as follows: we form the sum 
w R  w ' R  

o f  all those terms of  the two associated series for  which m <  -~-~, n < 2 

respectively, and then make R tend to infinity through a sequence (Rj). 
t 

= ~ - -  2 (w + w') and We write 

( I f e~'X--I d x )  (2.642) J ( R j ) =  ~ ~ . 1 . 1 , 
sm~- w x  sm ~-w x x 

I f ( e~'~--I d x )  
- - 2 ~  ~ �9 1 . 1  , 

Sln-~- w x  s l n ~ - w  x x ' 
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the contour of integration being the rectangle (--iX, R~--iX, Rj-~ iX, iX), 
where X ~ 0 ,  except that the origin is excluded by a small semi-circle 
of radius e, described about it as centre. We make j - ~  ~ ,  e ~ 0. 

The integrals along the imaginary axis vanish identically. The 
integral along the side parallel to the imaginary axis tends to zero. That 
along the semi-circle tends to the limit 

W W I " 

The integrals along the sides parallel to the real axis also tend to limits, 
by Lemma 6. It  follows that the sum of the real parts of the residues 
of the integrand, at poles within the contour, tends to a limit S; and 
we have 

= = , (2.643) S ~R - - ~  -~ ww' ww' 
--i,t i~ 

say. 
We evaluate J~ by integration term-by-term, which is shown to be 

legitimate by Lemma 6; and we obtain 

(2.644) 

where 

(2.6441) 

J. 
p,q=l 

--i2 

and S2----pw+qw'. We may add tojp,  q the corresponding integral 
along the line (0, --iX), since this vanishes identically, and we may then 
deform the path of integration into the real axis. This gives 

j~ ,q~  ~2 s in(~--  ~ )x  + sin ~ w +2 w'  x x ' 

0 

which is zero if $-) ~ ~ and - -  2 if P- < 7. Thus we obtain from (2.644) 

(2.645) Jz = - -  2 ~ 1  = - -  2 N(~). 

This equation still holds when ,/ is of the form pw+ q w', if we adopt 
the convention stated in 2.61. 

Similarly we obtain a series for J~, in which the typical term 
involves the integral 
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Oo 

sin(~ + $ ] - - w - - w ' ) x - - s i n  $2 w + w '  2 x 
o 

Thus 
(2.646) J~ = 0, 

= 0 .  

as is evident a priori, since the value of the integral is independent of 
and tends to 0 when X -~ oo. 

From (2.643), (2.645), and (2.646) we deduce 

(2.647) 

(7 1 - - - ~ w - - l w ' ) 2 1  
N(~) = 2ww' ~ S .  

A straightforward calculation shows that 

 zl~ w + 1 .  
(2.648) 8 = : ~  ~ + 

rosin m w'~ m sin m w' ~ 
r W 

But 1) (-1)-,),= w'+w'S __w~+ 3 w w ' + w  ' '  (w+w')  ~ 
24ww' 12ww' 8ww' 

Thus we obtain the result of the theorem. 

3. The stun s(n,o). 

3.1. In this section we use elementary methods. We are concerned 
primarily with what, in our former memoir, we called Problem B, that 
of the order of magnitude of the sum 

n 

(3.11) s(n, O) ~-~_~{m 0}, 

though sometimes we return to Problem A. 
LemmaT. I f  0 is _positive and irrational, x>O,  y----Ox, and 

f(O) = g(O) = O, then 
(3.12) 
l~,_x ([mO])(g(m)-'q(m-1)) laa~-u( O ) 1)) 

1) This is easily proved directly by contour integration. See the second memoir 
quoted in 2.31. 
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The sum with respect to m is 

~ . j (n )  ~ (g(m)--g(m--1)) - - f ( [y])  . ~  ( g ( m ) ~ g ( m - - 1 ) )  
n~O [raO]=n [raO]=[y],m>x 

and the fu'st term here is 

[ 1  n 

which gives the result. 
In (3.12) take f ( u ) - ~  g ( u ) ~  u, and write 

(3 .14 )  ~ ---- [x], ~, ---= b]  = [ o x ] ,  0 = o ~ _ ~  = o [x] - -  [o x] .  

We obtain 
,u y 

(3.15) 
1 i t -  (7 -J 

or, on expressing [m0] and I n l  in terms of a,n and ~ ,  and reducing, 

x Ox 
~ T ~  v ~  •  ~ ~ ( 1 - - ~ )  (3.16) 
i i 2 20 

i.emma 8. 
! 

I f  n, nl, n~ are positive or zero integers such that 

(3.17) nO=- - - -n~d~n~- -~e ,  O . < d ~ l ,  - - l < e - < 0 ,  
then 

(3.18) s(n,O)~s(n~, 0~)-- d d(1 - -d )  
2 20 ' 

, e e (1 - -  e) [ _ ~ ]  
(3.19) s(n, O ) ~ s ( n ,  Oi) ---- 2 20 - " 

The first of these formulae is the special form of (3.16) obtained 
by supposing that  x is an integer n. The second is a simple variant. 
Since n'l ~ n~-~ 1, the left hand sides of (3.18) and (3.19) differ only by 
{n'101}, and (3.19) follows from (3.18) by simple algebra. 

The formula (3.18) is that  which, in our former memoir, we attributed 
to LERCHi). I-Ierr 0STR0WSKI has pointed out to us that  it had (in substance 

1) See 1, p. 20. 
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at  any rate) been found before by SYLVESTER~). SYLVESTER's formula 
is indeed equivalent to the more general formulae (3.15) and (3.16). 
General formulae of the type (3.12) appear to originate with DIRICttLET, 
and the actual formula (3.12) was given, in the special case in which x 
is an integer, by HACKSS). 

With  these formulae should be associated the formula (3.24) of our 
memoir 1. 

3.2. Theorem 5. I f  0 satisfies (1.331), and h ~ 1, then 

1 1 

o) = o (. 
This theorem is due to OSTROWSKIS). In the less precise form in 

1 1 
which 1 - -  -~- is replaced by 1 - -  -h  + e, it is included in Theorem 2, which 

was enunciated without  proof in our memoir 1~). The reading of 
OSTROWSKI'S memoir suggested to us the following theorem, in which 
Theorem 5 is includedS). 

Theorem 6. Zf  0 satisfies (1.331), and h ~ 1, then 

1 1 

(3.22) u(,7) ---- o - x ) .  

This theorem includes both Theorem 5 and Theorem 2. I t  is 
easily proved by a combination of Lemma 2 with formulae taken from 1. 

If  (1.331) is true, (1.341) is also true. As in 1, we choose r 
so tha t  

(3.23) ~001 . . . .  O~--lO,r < 1 < _~OOx . . . .  Or-x, 

where ~ -  w~,. We have then 6) 

(1 1 ~ ~1 ~r-1 1 ) (3.24) U(,/)-~ 0 ~-+- - ; - -{ -  . . .  + 7  nt- 0(~00~ . . . .  Or-l). 

') J.J. SYLYESTER, "Sur la fonction E(x)", Comptes Rendus, 50 (1860), 732--734 
(Collected math. papers, 2, 179--180). See also pp. 176, 177, 179 of the same volume of 
the collected papers. 

2) ,,Uber Summen yon grSBten Ganzen", Acta Mathematica, 10 (1887), 1--52. 8ee 
also J. W. L. GLAISHER, "On certain transformations of Lejeune-Dirichlet's in the theory 
of numbers, and similar theorems", Quarterly Journal, 43 (1912), 123--142. 

~) l. c. p. 82. 
') 1. c. p. 35, equation (2). 
~) Generally, an "0" theorem relating to Problem B is included in the corresponding 

theorem relating to Problem A, as is explained in 1. An "~2" theorem, that is to say, 
a theorem which, like Theorem 3, tends in the opposite direction, is on the other hand 
more difficult than the corresponding theorem concerning Problem A. 

6) p. 22, equation (4.151). 
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Write now 
(3.25) 00i . . .  0r - i  ~ ~-J,  

where 0 ~ j  <: 1. Then, by (1.351), ~-- (h- -1) j  < A0r, and so 

~ l - - h j  : ~ l - - j -  (h--1)j < A ~ 0 0~ . . .  0r-~ 0r < A. 

. > 1  
It  follows that 3 =-~-, and 

(3.26) _~00~. Or--1 : ~ l - - j  : 0 ( ~  1 -  1 1 

Again, if 1 <_ s _< r, we have 

] 
~ 0 8 . . .  O r - - i ,  

0 0 z  . .  �9 ( ~ s - z - -  

by (3.23). Using (1.351), we obtain 

1 

(3.27) oj_~ " ~ - 1  < A ~ 0 , . . .  o r - l ,  

From (3.27) it follows that 

(3.28) 
1 

Or-i 

1- I 
~ A ( ~ 0 8  �9 �9 �9 0 r - l )  �9 

08-1 

___el_A_+..  1 (1+ olr-_~+(o~_~o,_2-~+... o,-2 . + ~ < A ~ I _  ~ 1 1 ) 

1 oO 1 < A ~ I  1 1__1 
< A ~ l - ~ 2 - k ( 1 - ~ )  h <A~ h, 

k----0 

by Lemma 1. Finally, from (3.24), (3.26), and (3.28) the theorem follows. 
The constants of the argument are not absolute: the theorem is 

not true uniformly in h. 

3.31. Theorem 7. I f  h ~  l and (1.332) is true, then 
1 

(3.311) Is(n, 0)[ ~ A n  1-~  

for an infinity of values of n. 
It should be observed that this theorem has different interpretations, 

according as the A's of (1.332) and (3.311) depend upon 0 and h or are 
absolute constants. It  is true on either interpretation, but is a little 
harder to prove on the second. 

Taking the second interpretation, we may restate what we have 
to prove as follows : - - I f  h > l  and 

(3.3121) limnh[sinn 0 ~1 ~ B 
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then 
1 

(3.3122) Is (n, 0)] ~ Cn 1-~,  

where C depends only on B. In what follows A's denote absolute 
constants, C's constants depending only on B; the O's are absolute. 

Let H be the upper bound of the numbers x for which 

(3.313) lira n~ I sin n 0 ~1 ~ B, 

Clearly we have H ~  h. We proceed to show that there exists 
an ]h ~ h such that 
(3.3141) limnh'lsinnO~] "< B 
and 

(1 1 ~_ 1 ) 
(3.3142) l im(O01. . .O._l)  ~,-~ - ~ - ~ - - ~ - . . .  ~ ~ 0  

when n ~ ~ .  We must distinguish two cases. 
Case (i): H >  2. In this case we have only to take 

hi ~ Max(h, 2). 

For, since (3.313) holds both when x ~ h and when x -~- 2 < H, (3.3141) 
is satisfied. Also 

1 1 

1 +  + O ~ _ l ) ~ A n e _ A n = o ( 1 ) "  

Case (ii): H~_ 2. We begin the discussion of this case by showing 
that numbers h~ and //1 exist for which 

(3.315) 

(3.316) 

(3.317) 

h<~h~ <_H<H1,  

K1 = (h~ - -  1)(H~-- 1)--  (Hl--h~) > 0, 

lim n h, ]sin n 0 z I ~ B, 

(3.318) limn~,lsinn07~l -~- ~ .  

The last of these is an immediate consequence of H < H 1 ,  and we need 
only consider the first three. If h ~ H we choose hi ~ - h ,  and //1 
greater than H by so little that (3.316) is satisfied. If h < H we 
choose hi and H1 on either side of H, and differing from it by so little 
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that  h < h l  and (3.316) is satisfied. I t  is clear that  (3.317), or (3.3141), 
is satisfied in either case. 

3.32. We denote by K ' s  positive constants depending only on B, h~ 
and //1. I t  follows from (1.352) and (3.317) tha t  

1 C 
(3.321) 

- ~y  > 2h1(001  . . . .  0 y - - l )  h l - l '  

for an infinity of values of ~; and from (1.351) and (3.318) that  

1 K 
(3.322) - -  < 

On ( 0 0 1  �9 . �9 0 n - - l )  H ' - I '  

for all values of n. 
we have 
(3.323) 

(0 01. �9 �9 O n - l )  h ' - I  ~ K e _ K ( , , _ r )  ( 0 0 t  �9 �9 �9 Or) h ' - I  

Or Or 

(3.324) 
(0  0 1 .  �9 �9 0~-) a ' - I  

Or 

Hence, observing that  h~ <__ 2, and using Lemma 1, 

(0 ~ r <_ n - - l ) ,  

= ((001 �9 �9 �9 0 r - i ) H ' - l )  ~ - ~  
Or " (0 01 . . .  8r--1) h l - l - ( H l - 1 ) ( 2 - h D  

K 2 -  h'(O 0 1 . .  �9 Or--l) K' ~ K e  - K r .  

From (3.323) and (3.324) it follows that  

n - - I  n - -1  
( 0 0 1 . . .  O n - - 1 ) h ' - - l l  I < K I e  - K n <  K n e  - K n  --~ o(1), 

r~O ~r r~O 

which is (3.3142). This completes the discussion of case (ii). 
3.33. I t  is now not difficult to prove Theorem 7. We suppose 

selected so that  (3.321) is true, and we write 

[ 1 ], =[nr+l](0~r<v), n o = n ,  (3.331) nr 

so that  
n~ A [ 2al \ 1 / 1 \  a, 

- -  hi--1 - -  ( 3 . 3 3 2 )  T ~ < O O i . . . O , _ l < O O 1 . . . O y < ( C )  (Old}h, - 1  , 

by (3.321), or 
1 1 1 

(3.333) 1 > C h-7 n 1- V, > C n  1 h,. 
0~ 

On the other hand we have, by (3.19)1), 

1) We have n~+ ~ -= n~Or-Jr-g, where 0 ~ # ~  1. It is therefore the second of the 
transformation formulae (3.18) and (3.19) to which we appeal. 
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(1) s(n~, o,)+ s(n,+~, o~+~) = 0 

for 0 < r < v ;  and so 

1 + 1 s(n,O)=(--1)'s(nv, O*,)+o(l +--~l +... 8--~_1), 

1 Is(n, 0)[ ~ Is(n*,, 0*,)l--A( 1 n t- ~ + . . .-t- 0 1--_l) .  

But 
n*, ny 

s(n*,,O~)__Z{nO,}<~(1 1) A -3 ~ <- -An , ,<-  0--~ ' 
and so ( 1 1  1) 
(3.334) Is(n,O)[>-~--A + ~ + . . . +  ~-y~_~. 

The ratio of the second term on the right to the first is less than 

1 1 + 1 
 (oo, o-=:_1) 

by (3.321), and this tends to zero as v ~ ~ ,  by (3.3142). Hence 

A 1 1 
is (o, n) l > ~ > C n  1 -  ~ > C' l~  1 - -It, 

since h < hl. 
3.34. It  will be useful to observe that the n of our argument satisfies 

inequalities 
(3.341) A q,+ t <  n < A q*,+l< q*,+l 

when v is large. The second and third of these are immediate consequences 
of (3.331), (3.332), and Lemma 2. To prove the first we observe that 

A K 1 
> > v  (0 <= r <  v) nr :> n u > - - ~  (001 . . .  8u--l} h-i > K 2 u  (h-i), 

for all sufficiently large values of v. Hence 

and so 

- -  ( ) (1 1) nr+~ 1 ~  n~+x 1 1 > m-+x ---u-  , 
~r ~ Or Or nr-t- 1 Or 

n >  
A 

(1--+)'001--.0 >Aq,+l. 
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3.41. The proofs of our next two theorems are the most difficult in 
the memoir. The results were enunciated without proof in our former 
memoir1), and discovered and proved independently by OST~t0WSKI~). 

We give a proof here based on the formulae (3.18) and (3.19). 
We have abbreviated this proof in every possible way, and present it 
almost in the form of a sketch; for we recognise that  the quite different 
proof of 0STROWSKI is simpler. I t  is indeed here that  0STROWSKI'S method 
shows to the greatest relative advantage. At the same time our proof 
seems to us interesting in itself, and it is essential, if we are to develop 
the theory systematically from our own point of view, that  this crucial 
theorem should appear in its proper place. 

Theorem 8. There is a positive A such that 

(3.411) Is (n, 8)] > A log n 

]br every irrational O and an infinity of  values of  n. 
Theorem 9. There is a B = B(K)  such that each of  the inequalities 

(3.412) s(n, O) ~ Blogn ,  s(n, 0) < - - B l o g n  

is true for  every 0 for  which an .< K and for  an infinity of  values of  n. 
In proving Theorem 8, we may suppose that  0 satisfies (1.331) 

for some h: we may take, for example h = 2, in which case 

1 A 
(3.413) - -  

Oy 001 �9 �9 �9 OV-- 1" 

For, if the condition is not satisfied for h ~ 2, we have, by Theorem 7, 

Is(n, 0) 1 :~ A V-~-> Alogn  

for an infinity of values nS). 
3.42. Let 

[1 r] 
(3.421) ar ~ l(a, .~3),  a,.----- --~a (a t>3) ,  

(3.422) u  , 

(3.423) r l = - - ~ l ~ - ,  r 2 = ~ , - -  01' r s - - - - - -~s=-~- , ,  

(3.424) r4 = ~ 4 -  ~s 0a a4 = (X804050607 "31- (~12 0405 �9 �9 �9 011 -Jl-. �9 �9 , 

I) 
2) 

to avoid 

p. 36. We raised the question which they answer in our note of 1912. 
0., pp. 85--92. 
One of the inherent advantages of 0STROWSl~I's method is that it enables him 
making this distinction. 
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with corresponding equations in which every suffix is increased by 
4, 8, 12, . . . .  

Further,  let m be a large positive integer, and 

( 3 . 4 2 5 )  ~4rt~+2 : 04m+2(1--r4m+8), ~ r - - 1  = - -Or-:~r(O<_r<4m + 2), 

(3.426) NrOr-= N r + : + 6 r + ~ ,  (O<_r<_4m+2) ,  

(3.427) -hr4~+8-= O, 

it being understood that a zero suffix may always be omitted, so that, 
e.g., 7o = r. The ~'s are defined by (3.425), and the equations (3.426) 
and (3.427) then define 2~m+2, N4m+:, . . . ,  No----N in turn. I t  is 
not obvious from the definitions that  the N 's  are integers, but it follows 
immediately from them that N4m+2 = 1. If now h~ is an integer, and 
we consider congruences to modulus 1, we have 

Or--1 

by (3.427) and (3.426). It follows by induction that every N~ is integral. 
We write 

(3.428) sr = s(Nr, Or). 

3.43. We use the following properties of the numbers r, ~, ~, N: - -  

(3.431) 

(3.432) 7s ~ A, 

(3.433) l _ r i : ~  A a ~ - - a ,  (0<_i<__3), 
6 4 

(3.434) a,  ----- r[-~s ] 

(with similar results in which every suffix is increased by 4, 8, 12, .. .), 

(3.435) [ ~r [ ~ 1 - -  7r (0 ~ r ~ 4 m + 2), 

0 < ~2r-~- ~2r ~ 1 ( 2 r ~ 4 m  @ 2), 
(3.436) 

- - 1 ~  ~2 r+ :+  ~ r + z ~ O  ( 2 r @ 1 ~ 4 m + l ) ,  
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(3.437) N r >  1 (O<__r<__4m-[-2), 

(3.438) N r ~  ( m ~  oo), 

(3.439) N-< 
24m+2 

88z . . .  84,n+z" 

Of these results, (3.431), (3.432), (3.433) and (3.434) follow from Lemma 1 
and the definitions of the 7%; (3.435) is obvious from the definitions 
when r = 4 m - 4 - 2 ,  and is .easily proved generally by induction; and 
(3.436) is an immediate consequence of (3.435). 

The results (3.437) and (3.438) follow at once from (3.426)and 
(3.436):--we find in fact that  N r - x > N r ,  and that  the sign of equality 
is impossible if r is even. Finally, (3.426) now gives N r <  2Nr+~, which 
proves (3.439). 

3.44. Lemma 9. If 
(3.441) ur ~ ~r t?r(1--t?r) 

Or 

(3.442) Ut ~ U4t ~ U4t + 1 "21- U4t-4-2 - -  U4t-4-8 21- 2 34t+4,  

then 
"11'1.--1 

(3.443) 2 s(n,  O) = X Ut Jl- u4~tt--u4t, t-~l-}- 0(1) .  
t~o  

Here', and in the arguments which follow, the O's and A's are absolute. 
Let ~r = (Nr0r) = (Nr+l-4- ~r-4- ~r). Then, by (3.426) and (3.436), 

we have 
~=r = ~=,---I-~=r, f~ r+ :  = 1-kS=,-+,-'J-~'=r+l. 

By (3.18) 

(3.4441) 2 ( s + s 0  = ~ + ~  
($+~)(1--~--~) 

=. . (1 - . ,  4-0 = u + O g , ) ,  

and by (3.19) 
(3.4442) 
2 (s, + s,) ---- ~ + ~1-- 

since 

I- 
Similarly we find 
(3AAA3) 

g, j = + o = og , ) .  

2(s,+ss) = u~+Og~), 

(3.4444) 2 (ss + s,) = u~-- 2 ~, + o g,). 
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From (3.4441)--(3.4~44) it follows that  

(3.445) 9 (so-- s,) = Uo + 0 (~,). 

We have similar equations in which every suffix is increased by  4, 8, . . . .  
Adding them, and using (3.495) and Lemma 1, we obtain 

(3.446) 9 (So - -  s4,,,) = ~  Ut + 0 (1). 
o 

We have also 

(3.447) 9 (s4 ,~ - -  s4,~ + 2) ~ u4 ,~ - -  u4,n + 1 + 0 (~4,n + 2), 

and (3.443) follows from (3.446) and (3.447), since s4m+:---~ 0 ( 1 ) a n d  
~4,,+2 = 0(1). 

3.45. Lemma 10. We have 

(3.451) 
m - - 1  m --1  

s( N,O) ~ - - A  + A ~ ( a 4 t + 4 - -  a4t+4) + AZOat+2. 
t = O  t = O  

An elementary reduction shows that  

Y 4 t + l t ~  0 ~ ~ / "  
(3.459) U t =  9(74t--~'4t+4)-I- O~---t+lt~-- 4tt~4t+l)tt--Y4t+l) 

s 1 + -~-4t-~-8 ( 1 - -  O~t+2 04t+8) ( - - r 4 t + 8 )  > 2 @~t--  r,t+4) 

1 1 
+ -~ 04t+z r4t+s (1 : -  04t+104t+ 2 r4t-t- 8) -[" "-~ a 4 t + 4 ( 1  - -  r4 t+8)  

9 @,t- - r4t+4)  + A 04t+2 + A(a4, + 4 - -  a4t+4~, - - 

by Lemma 1, (3.423), (3.432), and (3.433). Also 

(3.453) u4m - -  u4,~-i  = O (1) + 0 [ r 4 , , / +  = 0 (1). 
" ~04,,,/ \04,~+1/ 

The result follows from (3.452) and (3.453). 
3.46. Theorems 8 and 9 follow easily from Lemma l 0. 
The number iV is a function N(m, 8 )of  m and 0 alone. W e  write 

(3.461) ~ = N(m, 0i) (i = O, 1, 2, 3). 
By  Lemma 10, 

8 4 r n + 8  4 m + l  

(3.462/ ~ s  (N, Oil > - -  A + A~_~(a~ - -  at) + A~Or. 

A 
0r__  1 ; and if at<3,  0~-1:~ 

A 
~ r - - 1  ~ 

If a ~  4, a r - - a , ~ A a r ~  Hence 
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(3.462) involves 
8 4 ~ 4 - 2  r 

(3.463/ ~ s  (_h~, 0,) ~ - -  A + A ~ - ~  -~ 
i = 0  r - ~ l  r - - 1  

1 
:> - - A  + A(4 m + 2) ~40.+ 2 :> - -  A -b A l og~  > A  log~, 

where 

(3.4631) 
~4 m-{- 2 

0 0 1  . . .  0 4 0 . + 1  " 

If now N i s  the greatest of N, N~, N~, Ns, we have, by (3.439) and (3.413), 

- -  240*+5 8 ~ ~A 
(3.464) N ~  <: < . 

001  �9 . .  04m--~-4 040*--{-2 040.--~-8 040*-}-4 

Hence, if s(~, O)is that one of the sums s ( ~ ,  0i) whose modulus is 
greatest, we have 

Is (-d, O)[ > A  log~  ~ A log N > A  log ~; 

and 6 ~ oo. Theorem 8 is therefore true for one of the three numbers 
0, 8x, 0,, 0s and therefore, by the fundamental formula (3.18), it is true for 0. 

The deduction of Theorem9 is more immediate. In this case 0,~B1),  
and so 

Ir~--1 
s (N, O) ~ - - A  + A ~ o , t +  2 :>Bin, 

0 

while, by (3.439), N < B  40.+2. It follows that 

s (N, 0) > B log N, 

which is one of the desired inequalities. The formula (3.18) then shows 
at once that 

s (N:, 0) ~ - - B  logN' 

for arbitrarily large values of ~ ' .  
It  is not possible, in the general case, to prove two-sided inequalities 

of the type s ~ A logn, s < - - A  logn. Herr 0STR0WSKI has gone further 
in this direction; he has shown that s may in fact be bounded on one 
side, and has investigated the conditions under which this is possibleS). 
We have not attempted to apply our own method to this problem, as 
we had not considered it before the publication of 0STR0WSKI'S memoir, 
and it is clear that a proof on these lines could not be so simple as his. 

1) B denotes throughout a positive number depending only on K. 
2) The question is left open in O. (S. 92~. 
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3.5| .  We return for a moment to the triangle problem. In this problem 
the analogue of Theorem 9 holds without restriction on 0. To prove 
this we require the lemma which follows, which is of course included 
in OSTIt0WSKI's work, where it occupies a more central position. 

L.emma 11. We have 

(3.511) s (q~, o) ---- o(1). 

It  is evident that, i f -  

O, 01, 0 , , . . . ,  we have 

1 v, P,, 1 P,, 

q , '  q , , l '  q,,9. 
- - , . . .  are typical convergents to 

P ,  ~ q , - - 1 , i ,  ~ ) l J - - l , 1  = q~*--2,2, . . . .  

I If now we take n ~ qy in (3.18) or (3.19), we have nl ~ p ~  or n 1 ~ P v ,  

w h i l e d  or e, whichever is relevant, is O(q~+l) .  Hence 

/ 1 \  
s(q., o) + s(q _ 1,. o,) = o 

\q~+lO/ 

and so on. Consequently 

8(qu~ O) 
q,,i O1 . . . .  

0(01 02 . . . .  0 p - ~ -  02 . . . .  0, -[- . . . .  -[- 0, -[- 1) = 0(I), 

by Lemma 1. 
3.52. Theorem 10. There is an A such that each of  the inequalities 

(3.521) U(O ~ A l o g ~ ,  U(~) < - - A l o g ~  

is satisfied for  every 0 and arbitrarily large values o f  ~. 
It  is sufficient 1) to prove that 

(3.522) s ( 0  = , ~ { ~  o - - f  } ~ A log 
~p 

for arbitrarily large values of q, together with an analogous inequality 
involving - -A log~ .  By a change in ~/, of magnitude 0(1), we can 
make f '  anything we please between 0 and 12). It  is therefore enough 

t) 1, p. 18. 
~) 1, p. 17. 
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to establish the existence of a g = g(n) such that 0 <: g < 1 and 

n 

(3.523) 81 (n) : ~ { t ~  0 - -  g} > A log n 

for arbitrarily large values of n, with a corresponding result f o r - - A  log n. 
We suppose first that (1.331) is satisfied for some particular h, 

say h ~ 2 .  Then 
(3.524) log g,+l  < A logq~. 

There are, by Theorem 8, large values of n for which one of the 
inequalities 

n 

~{t~O} > A l o g n ,  ~ { t ~ 0 } - < - - A l o g n  
1 1 

is true, say the first. Then (3.523) is true, with g : -  0, for such values 
of n. Let N be one of these values, as determined in 3.42, and let 

(3.525) q~ - 1 <_ N ~ q~; 

then, by Lemma 11, 

% + 1  qp+L N 
= 

.~--~- 1 1 1 

or 
qv+1 - N  

(3.526) o + (No)} < - -  A logN.  
1 

If now p is the least positive integer for which 

and 
(3.527) 

A 
then p < y and 

O.<g ~ p o - - ( N o ) ~  l 

n ~ q~+l--Nqt-P, 

(3.528) ~_~{~O--g} = ~ { m O + ( N O ) } + O  < - - A l o g N ,  
1 1 

if N is large enough. But 

log N > log q~_ 1 ~ A log q~ + 1 > A log n, 

by (3.525) and (3.524), and so 
n 

~_~{l~O--g} < - - A l o g n  
1 

for an t ~ f i t y  of values of n. 
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3.53. This proves the theorem when (1.331) is satisfied for h = 9. 
When it is not satisfied, much more is true; for then (1.332)is satisfied 
for h ~ 2, and in this case, by Theorem 3, we have 

(3.531) N(,/) ~ A  i~- ,  N(,j) < - - A  V~-~, 

each for arbitrarily large values of ~. 
The proof of Theorem 3, given in 2.5, was transcendental; and it 

is worth while to observe that it may also be proved by an argument 
like that of 3.52. We have only to suppose that N is the n of 3.3 
so that (say) 

~ { t ~ O } ~ A N  1 a 
1 

Arguing just as in (3.52), and making use of (3.341), we establish the 
existence of an infinity of values of n for which 

n 1 
~_~{/~O--g} < - - A n  1 a, 

1 

and the theorem then follows in the same way. 

The Ces~ro means of the series~{ne}, 

3.61. h good deal of additional light is thrown on the behaviour 
of s(n, O) by the study of the corresponding Ces~ro mean 

(3.611) ~(x,o) -~- (x--m){mO}. 
do ~ 1  

The study of a(x, 0) leads us naturally to consider also the sum 
X 

Lemma 12. We have, in the notation of 3.1, 

(3.613) a , ~ - - - ~  -~ ~ , 

where 

1 ~ ( 2 ~ _ 3 ( 1 _ _ 0 ) ~ + 1 _ 3 e +  e~). (3.614) O(0, ~) = -~- 

If in (3.12) we take f ( u ) ~  u s, g ( u ) ~  u, express the summands 
in terms of a,~ and ~,, and reduce, we obtain 
(3.615) 

16" 
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where P is a polynomial whose coefficients are absolute constants. If on 
the other hand we take f(u)  ~ u, g(u) ~ u ~, we obtain a similar formula 

1 
in which x,y;  0,~-; am, fin are interchanged. When we multiply this 

by O, and subtract from (3.615), the terms in ~ m  am and ~ n  ~n disappear; 
and when finally we substitute f o r ~ a m % ~ $ n  from (3.16), we obtain 
the result of the lemma. 

3.62. We say that 0 belongs to class F(H) if 

o o l . . .  o~_~ 
(3.621) < H. 

r~O~ Or 

of the series is equivalent to that of the series The convergence 
~ q r + l  

q$ 
Theorem 11. 

(3.622) 
Write 

I f  0 is of class F(H) then 

t (x, o) ~ 0 ( tD.  

1 
(3.623) x l ~  Ox, x2 ~ 01x1, , . . ,  a~ 12 - -  a,~. 

By (3.613), we have 

~ a m ( O ) - -  O~,am(01) = 0 . 
1 1 

Write xl, 01 forx, 0, and multiply by 0; x~, 0~ for x,. 0 and multiply by 001; 
and so on until the second sum disappears. Adding the resulting equations, 
and using (3.621), we obtain the result1). 

3.63. Lemma 13. I f  o belongs to class F(H), then 

(1) 
(3.631) r O)-{-~(y, Or) = c(O)+ 0 + 0 ~ ,  

where 

(3.632) c(0) = 4 12 " 

We have, from (3.611) and (3.615), 

2y(~(x, o)+~(y ,  ol))----=--~- + ( ~ y - - 1 )  ~ , ~ m +  ~,~ m 12 " 

The last term is 0 (H), by Theorem 11. We write t~ 0 ~ O(1) for y, sub- 
stitute f o r ~ a m - F ~ n  from (3.16), and divide by 2y;  and a simple 
calculation gives the result. 

3.64. We say that 0 belongs to class C(K) if a n ~ K ,  where K > 2 .  
In this case all of 0, 01, 0~,... belong to a class F(H) for which H . < A K .  

1) This is the revised form of the theorem stated incorrectly on p. 229 of our 
Cambridge communications and noted as incorrect on la. 36 of 1. 
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Lemma 14. I f  O is of  class C(K), and v = v(x) is defined by 

(3.641) x~+~ ~ 0 0~. . .  01++1 x < 1 ~ 0 0 1  . �9 �9 01~X - - - -  X V . t _ I ,  

then 
1+--1 

(3.642) a(x, O) - - ~  ( - -1F c (Or) + 0 (KS). 
r~0 

We have, by repeated use of Lemma 13, 

1+--1 
(3 .643)  ~ (x, o) = ( - - 1 )  ~ ~ (x , ,  o~) + ~ ( - -  1) r c(or) 

1)) 
"+'0 - '{--~1 -]- ,.'."JF 001 - 01+_ 1" 

1 1 )) 
+o u ~ + T ~ I  + . . . +  ool...o~_~o~'_~ ' 

1 
But, since a . <  K, we have ~ = 0 (K), and the second line of (3.643) is 

( K (1+01+_~+0~_~0~_~+ ) =O(KJ) ,  0 001. . .  O~_lx -~ 

by (3.641) and Lemma 1. Similarly the third line of (3.643) is 0 (KS). 
Finally 

~(=,, o1+)= o(=,)= o( -=1++' )=  o(~,  
01+ 0v+ 1 , 

whence the result. 
3.65. Theorem 12. There are O's of  class C(K) far which 

(3.651) ~(x, O) =- 0(1), 
and others for which 
(3.652) ~(x, 0)'~ Llogx,  

A K  A K  
where L > ~ or L < log K" 

(i) If 
1 1 

1 +  1 + . . .  

then 0r = 0 for every r, and (3.651) follows directly from (3.642). 
(ii) If k = [K] => 2 and 

1 1 1 1 
k +  1 +  k +  1 + . . . '  

that so 

~ k - - l ,  
1 

o+ -Ol--o- ~ 
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then it follows from (3.642) that  

(3.653) (r(x, O) = ( k - - 1 ) [ 2  v] + O(K,) 
Also 

~, l ( k - -  1)~,. 

logx - -  o g ~ -  + 0( logK)  -----~log 1 ~=o 0 ~ 0 ~ + :  ~- 0( logK) 

k + 2 + - V U - - - -  _ + 4 k  - -  ( [ l v ]  + l ) l~ o~: + O(l~ K ) ' ~ l v  l~ 2 

Thus we obtain (3.652) with 
L ~  k - - 1  

1 ( k +  2 + / ~ )  log-~ 

A K  
logK'  

247 

If we exchange 0 and 01, we obtain an example in which L has the 
opposite sign. 

4. C o n c l u s i o n .  

4.1. The proof of Lemma 13 indicates clearly that, if we were to 
attempt the construction of a complete theory of the se r i es~an ,  it would be 

necessary to construct at the same time a theory of the s e r i g s Z I a ~ - - - ~ l  }. 

A little further investigation shows that  we must also consider the series 

I ~ (4 a~ a~), the n th tern of the pth series being substantially 12 " ' "' 

a,,-i-~-. There are many curious theorems the ~th Beruo~lian function of 

connected with these series: we content ourselves with mentioning one. 
T h e o r e m  11. I f  o belongs to a class F (1t) (and in particular i f  z(. an is bounded) then the seines a n -  is summable (C, 1), or by any 

1 Ceshro mean of 2ositive order, to sum 
12" 

4.2. We conclude by a brief reference to a different matter. I t  is 
of considerable interest to determine the largest half-planes in which the 
functions 
(4.21) a~ 1 

n s , ns ' " "  

are regular. HECKE has shown that, when 0 is a quadratic irrational, 
f l  (s) is meromorphic all over the plane, and has at most a doubly infinite 
system of simple poles, at the points 

- - 2 k  4- 2 m r ~ i  (k, m ~ O, 1, 2, . ..) 
where r is a constant depending on 0. 
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Our more elementary methods are applicable to problems of this 
kind also. Le t  it be defined as the least number for which 

( 0 0 1  . �9 �9 O ~ - l )  ~ + ~  --> 0 

On 

for every positive ~, so tha t  (1.331) is satisfied with h ~ l%i t - ] -~  but 
not with h ~ 1- t - i t - -~.  Then we can :prove tha t  

(a) f~ (s) is regular for 

l+it; 
(b) a ~ ~ is a barrier o f  singularities for fp(s), except possibly 

when it----O, so that 
(c) fp(s) is either regular for a : ~ l - - p ,  or has a barrier of  

singularities to the right of  a ~ l - - p ,  and in particular 
(d) f i  (s) is either regular for a ~ 0 or has a barrier to the right 

of  a - ~  O; 
(e) the series for f~(s) is summable by Cesaro's means for r ~p 

and in particular 
(f) the series ~_~a,~n - s  is convergent, when it :> O, throughout the 

region of existence o/ the/unction f l  (s). 
The propositions (a) and (e) have been proved independently, and in 

a different manner, by Herr BEttNKE~). 
The case in which it ----- 0 is exceptional and more difficult. I t  would 

seem tha t  a ~ ~ ---- 1 - - p  is still a barrier in all cases except that of  
a quadratic O, but this we have not been able to establish rigorously. 

In this last  case, finally, our method reveals the existence of 
HECKE's poles, though it does not render a complete account of them 
so readily as tha t  of HECKE himself. This is only natural,  as HECKE's 
method is so much more special and so much deeper than ours. 

In view of the length of the memoir, we confine ourselves here 
to the statement of these results, reserving a fuller discussion for 
publication elsewhere. 

1) H. BEHNKE, Ober die Verteilung yon Irrationalitiiten rood. 1. (Diese Abhand- 
lungen, Bd. I, vorliegendes Heft.) 


