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Synopsis

Shipping contributes today to 2.1% of global anthropogenic greenhouse gas emissions and its share is ex-
pected to grow in the coming years. At the same time, fuel prices are increasing and companies of the related
increase in operational costs. This demands for higher efficiency in ship operations. In these regards, battery-
powered vessels are often regarded as a promising solution. The existence of an energy storage element in the
system, however, introduces additional challenges in its efficient control.

This paper presents the application of machine learning and mathematical programming to the optimization
of the energy management system of Diesel-electric vessels with an energy storage system operating according
to a cyclical operational profile.

The proposed energy management system uses unsupervised exclusive machine learning algorithms, k-means
or k-medoids, to learn from prior operations. Then mathematical programming based on mixed-integer linear
programming is used to address the problem of the optimal unit commitment by means of optimizing the system’s
operations for minimizing fuel consumption. The calculated optimal state of charge of the energy storage system
is used as the reference value for a proportional-integral controller during the real-time operations.

The proposed energy management system is evaluated through its application to a case study corresponding
to a hybrid-electric ferry operating in a urban area having cyclic operations through several stations. The results
show that the efficiency of the control action is high with an accuracy ranging between 87% and 99%, when
compared to an ideal controller, even in presence of large variations in the operational profile and the charging
stations.

Between the two tested clustering algorithms, k-means showed higher efficiency in the reduction of fuel
consumption in presence of charging stations, while in absence of these, k-medoids showed to provide a better
performance.

Keywords: Energy management system; hybrid-electric vessel; cyclic operational profiles, unsupervised machine
learning algorithms; mathematical programming; energy efficiency

1 Introduction
International and domestic shipping activities are the catalyst of the economic development and have seen a

widespread growth during the last century. Today, shipping plays a crucial role in global greenhouse gas emissions
due to the wide use of fossil fuels for propulsion [1]. During the last decades, the stringent environmental regula-
tions and the fluctuation of fuel prices have pushed the transportation sector to invest in novel systems for reducing
fuel consumption.

Hybrid-electric vessels (HEV) are ship systems where the power demand is provided by the combined use of
internal combustion engines and an energy storage system (ESS). Hybrid concepts are proving successful in the
automotive industry [2], where they have shown to contribute to a significant reduction of CO2 emissions in actual
operating conditions [3]. More recently, their use is also spreading in the maritime sector as a mean to reduce
emissions and fuel consumption [4].

Similarly to most hybrid applications in the automotive industry, the main purpose of a hybrid system in ship-
ping is for peak shaving. In this condition, the Diesel engines are operated as close as possible to their most fuel
efficient operating condition, while the ESS takes care of high- and low- power conditions. This also generally
results in a decrease of the size of the total installed power [5] [6]. If the installed ESS capacity is increased, HEVs
can also be used to provide part of the energy demand from shore, in association with charging stations, hence
further reducing local emissions.

Several authors in previous literature have shown the potential for reduced fuel consumption in shipping by
means of HEV designs. Dedes et al. identified savings ranging from 0.3% to 28% depending on the ship type
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Nomenclature w f Weighting factor for Diesel engine’s
fuel consumption

a0,a1 Linearizing fitting coefficients wt Weighting factor for Diesel engine’s
C Constant operating hours
D Traveling distance between harbors wss Weighting factor for the number of start
EESS,0 ESS initial energy (kWh) and stop of Diesel engines (-)
EESS, f ESS final energy (kWh) xi(k) The load on Diesel engine(i)
Emax

ESS ESS maximum capacity (> 0)(kWh) xmax,i Maximum load on the Diesel engine(i) (-)
EESS(k) ESS available energy (kWh) xmin,i minimum load on the Diesel engine(i) (-)
f (k) Objective function for time step k xmax,gen Maximum load on the generator (-)
i Index of diesel engine and generator ẋ Load variation in the Diesel engine (1/min)
k Time step index yi(k) On/Off mode for the Diesel engine(i)
K Constant ∆t Operating time step (sec)
ṁ f uel Fuel mass flow rate (kg/s) ηch ESS charging efficiency (-)
ṁ f uel,max Maximum fuel mass flow rate (kg/s) ηdis ESS discharging efficiency (-)
N Number of diesel engines ηem Electric motor efficiency (-)
Ncycle Number of vessel’s daily operational cycles ηgen Generator efficiency (-)
P Diesel engine power (kW) ηin Inverter efficiency (-)
PDemand(k) Demand power for time step (k) (kW) ηrec Rectifier efficiency (-)
Pmax

DE,i Maximum power of Diesel engine(i) (kW) δ STA
i (k) Number of starts for the Diesel engine(i)

Pmin
DE,i Minimum power of Diesel engine(i) (kW) δ ST P

i (k) Number of stops for the Diesel engine(i)
PCh

ESS(k) ESS charging power (< 0)(kW)
PDis

ESS(k) ESS discharging power (> 0)(kW) Acronym
Pmax,ch

ESS Maximum charging rate (< 0)(kW) APCA Adaptive piecewise constant approximation
Pmax,dis

ESS Maximum discharging rate (> 0)(kW) CHST Charging station
PHotel(k) Hotel power demand for time step (k) (kW) CHST/ON Charging station and overnight charging
Pmax Maximum power of Diesel engine (kW) DC Direct current
PProp Propulsive power (kW) EMS Energy management system
Pstation(k) Power of the charging station (kW) ESS Energy storage system
Q Fuel power (kW) HEF Hybrid electric ferry
Qmax Maximum fuel power (kW) HEV Hybrid electric vessel
SOCmax Maximum state of charge (-) MILP Mixed-integer linear programming
SOCmin Minimum state of charge (-) ON Overnight charging
uc(k) ESS charging mode PI Proportional integral
ud(k) ESS discharging mode PMS Power management system
V Speed of the vessel (m/sec) SOC State of charge

and on the operational profile, showing a large potential for the implementation of this technology to a wide range
of vessel types. Zahedi et al. [7] also came to similar conclusions, while highlighting the synergies resulting
from the use of ESS in combination with a direct current (DC) power distribution grid. From a system sizing
perspective, Anvari-Moghadam et al. [8] used mixed-integer nonlinear programming approach for optimal sizing
of ESS together with economic dispatch of a drill-ship power system so that ship operation cost was minimized.

When dealing with the use of HEVs, the system optimal scheduling and control becomes a relevant challenge.
The use of an energy management system (EMS) as a decision support tool on the ship’s on-board system can
determine the optimal operating points for operating the multiple power sources and support maximization of the
efficiency of the power plant in terms of the reduction of fuel consumption and of the environmental impacts [9].
In addition, the use of an EMS can have a positive influence on dynamic performance and service life [10].

Much of the experience in the control of HEVs comes from the automotive sector. Musardo et al. [11] proposed
an adaptive algorithm used in an EMS for application to hybrid-electric vehicles. Yu Wang et al. [12] presented a
multi-variable control framework for the purpose of splitting demand power among the different power generators
in a hybrid-electric vehicle.

Many authors have proposed different approaches to the optimal scheduling problem. Bassam et al. [13]
proposed a multi-scheme energy management strategy for a hybrid fuel cell/battery passenger ship to increase
the energy efficiency of the ship.

Barklund et al. [14] used linear programming approach in the EMS design for power sharing purpose. Kanel-
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los [15] discussed an optimal power management system (PMS) with greenhouse gas emissions reduced thanks
to a dynamic programming approach for an All-Electric ship power systems comprising ESS. Zahedi et al. [16]
addressed a detailed efficiency analysis of a shipboard DC hybrid power system and proposed an optimization
algorithm to minimize the fuel consumption under various loading condition. They finally proposed an online
optimization control for the All-Electric ship power system. Skjong et al. [17] analyzed the load profiles extracted
from three different vessels for three different power plant configurations and proposed an EMS used mixed-integer
linear programming (MILP) and logic algorithms. All these approaches, while very relevant to the correct analysis
of the design and operations of HEVs, limit their work to the offline scheduling of the system given the knowledge
of future operations.

In real-life applications, future operations are not known in advance, and the application of optimization-based
controllers becomes more challenging. Grimmelius et al. [18] proposed the application of a dynamic computer
model of hybrid ship drive systems and compared different system layouts and control strategies using a combi-
nation of fuzzy rule based and an optimization algorithm and by means of linear programming approach. More
specifically, they proposed the use of equivalent-consumption models in order to eliminate the time-dependence of
the problem. Seenumani et al. [19] compared hierarchical controller and a model predictive control for real-time
PMS in an All-Electric ship with ESS, fuel cells and gas turbines as power supply systems.

The aforementioned solutions are very effective in a majority of applied cases, and are based on a wide set
of experiences from other, more mature sectors such as the automotive industry. In the case of vessels operated
according to a cyclical operational pattern, however, information about the past can be used to provide an estimation
of future operations.

This study presents an EMS for vessels operated according to cyclical patterns. In this case, learning algorithms
can be effectively used to provide a prediction of future operations according to what has occurred in prior cycles.

2 Methodology
2.1 General description

The EMS proposed in this paper is made of an offline and an online control layer. The offline layer refers
to the computations which take place before starting any new cycle and is further subdivided into three main
interconnected parts:

Clustering Past operational data are used to provide an estimation for the upcoming operation based on the anal-
ysis of past measured operational profiles. This is done using clustering algorithms, such as k-means and
k-medoids.

Segmentation Clustered data are simplified using an adaptive piecewise constant approximation (APCA) to re-
duce the dimensionality of the data-set. This is done to reduce the computational time in the optimization
section.

Optimization The segmented profile sent to a MILP optimizer with the aim of identifying the optimal power
share for the upcoming operational cycle.

In the online layer of the EMS, the information of the optimal state of charge (SOC) of the ESS is sent to the
control system of the ESS and used as a reference value in a proportional-integral (PI) controller. The scheme of
the proposed EMS is shown in figure (1).

Figure 1: Scheme of proposed EMS

2.2 Offline layer
In the proposed control system, the EMS operates based on the principle of clustering techniques and data

analysis processes. After each cycle of operation, the control system is automatically updated by considering the
recent operation for the estimation of the next upcoming operation.
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2.2.1 Clustering
The proposed EMS is based on the idea of learning from past operations to provide an estimation of the next

operating cycle. The implicit assumption is that the future cycle will be similar to the ones previously experienced
by the system.

The task of identifying an element that can be used as the most representative of a group of elements is often
referred to as clustering [20]. In this specific case, the electric power demand of the vessel, resulting from the sum
of the demand for propulsion and for ship auxiliaries, is used as the clustering feature, where the dimensionality of
each point in the analysis space is given by the number of time steps of the measured data series. The calculated
cluster center is then used as the reference profile for the next operational cycle.

k-means and k-medoids are two plausible unsupervised exclusive machine learning algorithms, both relying on
the Euclidean distance. In the k-means approach, the cluster center is evaluated according to the averaging of all
past operational performance. In the k-medoids approach, instead, the position of the center is chosen among the
past power profiles.

The training data set is continuously updating the control system by means of the last recent measured obser-
vation after ending of each cycle of operation and improves its decision making based on the most recent target.

An example of the result of the application of the two clustering algorithms to nine cycles resulting from
randomized variations of a reference profile (see section 3) is shown in figure (2), where the difference between
the learned profile between the two different algorithms can be observed.

It should be noted that, in presence of charging stations (see section 3) there would be, in theory, two different
features to cluster on: the demand power, and the maximum power from the charging station. In this paper, in order
to avoid this duplication of the clustering problem, we modify the measured profiles of the demand by assuming a
fixed, negative value when the system is connected to a charging station (see figure (3)).
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Figure 2: Example of application of clustering techniques to a reference profile.

The distinction between two clustering techniques are also shown in figures (2) and (3). The post-learning
profiles obtained by k−means algorithm is less similar to operational profiles because it is based on the average.
On the contrary, the k−medoids post-learning profile is selected as one of the past operational profiles and it is
more similar to the rest of operations.

2.2.2 Data processing- segmentation
The resulting size of the clustered profile reflects the sampling rate of the on-board monitoring system. As a

reference example, starting from an on-board monitoring system with a 1 Hz sampling frequency, the clustered
profile of a ferry with a one hour long operational cycle would include 3600 points. As the solution time of an
optimization problem roughly scales with the number of variables and constraints, using an unnecessary large
number of time steps can lead to long computational times.

A time series is a temporal database in which the variation of variables are monitored and tracked with respect to
time through several observations [21]. Different techniques are commonly used to find of interesting, unexpected,
and interpretive valuable structure from data-set [22]. Segmentation is one of the techniques used for compression
partitioning analysis in the aim of reducing the dimensionality of the data-set. Segmentation splits up the database
into homogeneous and manageable piece-wise information so to ensure to convey the largest amount of information
with the least amount of time steps [23]. Among all proposed dimensionality reduction algorithms, in this work
we suggest the use of the APCA proposed by Eamonn Keogh et. al [24].
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Figure 3: Example of application of clustering techniques to a reference profile, with charging stations.

Figure (4) demonstrates the post-learning and post-segmented profiles in presence charging station. Sub-
figures (A) and (B) differ based on the clustering algorithm used in the previous phase (k−means and k−medoids,
respectively).
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Figure 4: Post-learning and segmentation profiles in the presence of charging stations.

2.2.3 Optimizer- Mathematical programming
The segmented demand is then used in the optimization section to determine the optimal load sharing between

ESS and engines for the next cycle of operation. The approach proposed in this section is similar to what proposed
by Skjong et al. [17]. In this paper, the optimization is modeled as an MILP problem [25].

The main objective of the optimization stage of the EMS is to minimize the vessel’s fuel consumption by acting
on the power share between Diesel engines and ESS. The objective function is presented in equation (1):
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minimize
xi,yi,δi

f (k) = w f ·
N

∑
i=1

(
a1 ·xi(k)+a0 ·yi(k)

)
· ṁ f uel,max

+wt ·
N

∑
i=1

(
yi(k) ·∆t

)
+wss ·

N

∑
i=1

(
δ

STA
i (k)+δ

STP
i (k)

) (1)

Where i and N are respectively the index and the number of Diesel engines. In the objective function the
fuel consumption of the Diesel engines is modelled as a linear function of the engine brake power, as shown in
equation (2):

ṁ f uel = (a0 +a1 ·
P

Pmax
) · ṁ f uel,max (2)

where ṁ f uel is the rate of fuel consumption, Pmax is the maximum engine power, and a0 and a1 are the fitting
coefficients. This formulation well represents the behavior of the efficiency of the Diesel engine used in the case
study (see Section 3), as shown in figure (5).
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Figure 5: Fuel efficiency and normalized power for the Diesel engine.

The problem is subject to a number of constraints related to the physical behavior of the system and to its
operational limits.

To ensure more realistic solutions, the objective function also includes penalties related to the start and stop
operations of the Diesel engines and to their operational time. The first contribution is used to prevent solutions
where engines are continuously started and stopped with limited benefit to fuel consumption, while the second
contribution allows including the effect of maintenance cost.

The energy conservation is expressed in equation (3) ensuring that the demand power is met by the power
supply system.

N

∑
i=1

(
Pmax

DE,i ·ηgen ·xi(k)
)
+

PCh
ESS(k)
ηch

+PDis
ESS(k) ·ηdis +Pstation(k) =

PDemand(k)
ηin ·ηem

+PHotel(k) (3)

In this paper, we assume that there is the possibility of charging the ESS at one or more stops of the vessel
at charging stations, represented by the term of Pstation(k). The absence of the charging station leads to consider
Pstation(k) = 0 in this equation.

In order to prevent unrealistic optimization results, the SOC at the beginning and at the end of each cycle
need to be related to each other. In this paper, it is considered that the vessel is charged overnight, when it is not
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employed for normal operations. To make use of the charge accumulated overnight, we assume that, at the end of
each cycle, the SOC can be lower than the initial one by a quantity that depends on the ESS capacity and on the
expected number of cycles per day. This is represented in equation (4):

EESS,0 −EESS,f =
SOCmax −SOCmin

Ncycle
·Emax

ESS (4)

It should be noted that, in order to increase the ESS’s life cycle, it is assumed that the SOC can only vary in
the range of 30% to 100% in practical application. This gives the foundation for overnight charging within which
vessels start operating off with SOC = SOCmax and end up the daily operations with SOC = SOCmin.

In the absence of overnight charging facilities energy conservation laws require the initial and the final SOC of
the ESS are constrained to be equal.

The energy conservation equation for the ESS and the correlation between the number of start/stop with switch-
ing condition of the Diesel engine are respectively presented in equations (5) and (6) as equality constraints.

EESS(k)−EESS(k−1) =
(

PCh
ESS(k)+PDis

ESS(k)
)
·∆t (5)

yi(k)−yi(k−1) = δ
STA
i (k)+δ

STP
i (k) (6)

The MILP problem is also subject to some inequality constraints which are used to limit the variation of a
decision variable or activate/disactivate the components in the system. The generated load should not be larger
than the maximum feasible load that can be generated and sustained by Diesel engines and the generators (see
equations (7) and (8)) and should not be lower than the minimum load can be generated by Diesel engines (see
equation (9)). There is a conditional constraint regarding on/off status of Diesel engines which represents the fact
that the Diesel engine can be either on or off, and that both statuses do not occur simultaneously (see equation (10)).
Additionally, a limitation for the load variation of Diesel engines are considered in equation (11).

xi(k)− xmax,i ·yi(k)≤0 (7)

xi(k)−
xmax,gen

ηgen
·yi(k)≤0 (8)

xmin,i ·yi(k)−xi(k)≤0 (9)

δ
STA
i (k)+δ

STP
i (k)≤1 (10)

xi(k+1)−xi(k)≤ ẋ ·∆t (11)

Equation (12) represents the conditional constraint for charging or discharging of the ESS and equations (13)
and (14) represent the limits to the charging and discharging rate of the ESS.

uc(k)+ud(k)≤1 (12)

Pmax,ch
ESS ·uc(k)≤ PCh

ESS(k)≤ 0 (13)

0 ≤ PDis
ESS(k)≤ Pmax,dis

ESS ·ud(k) (14)

2.3 Online layer
The online part of the system is made by the actual controller that generates the control input for power share to

the ship energy systems. In the proposed control system, the online layer is composed of a feedback PI controller
in which the actual value of SOC in the real-time operation tracks the reference value provided by the offline layer.
This control configuration allows a high flexibility of the system in meeting the demand, even when there is a large
difference between the estimated and the actual values.

It should be noted that when the system detects the connection to a charging station, the control system is
”over-ruled” and the system is forced to charge the ESS and to take all available power from the charging station.
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2.4 Ideal and real controller
In order to provide a reference value to compare the performance of the proposed controller with, an ideal

controller is also implemented. In this study, an ideal controller is defined as the one that has access to the
knowledge of the upcoming operational demand (see figure (6)), as opposed to a real controller that needs to
estimate the future according to the past operations (see figure (7)). The efficiency of the proposed control system
is hence calculated as the ratio between the fuel consumption of the system based on an ideal controller and that
of the proposed controller.

Figure 6: Ideal controller.

Figure 7: Real controller.

3 Case study
The proposed EMS is applied to a case study. In this case, we propose an urban ferry, as this represent a very

typical shipping application subjected to a cyclical operational profile.

3.1 Urban hybrid-electric ferry (HEF)
An urban ferry is a vessel operating in urban areas as a part of the public transportation systems as an alternative

to the construction of bridges. In this context, the integration of an ESS to the ferry’s power plant is highlighted as
an interesting solution for operating with high fuel efficiency, low emission, and reduction of transient load from
Diesel engines. Thanks to its cyclic operational profile, an urban ferry can be considered as a convenient example
for vessels with cyclic operational regimes.

The HEFs in this case study takes 42 minutes of operation to carry out a complete cycle along with two charging
stations where the ESS is charged for 4 minutes. The two cases of the ferry being equipped with shore-connection
facilities are evaluated separately (see figures (8) and (9)). Tables (1) and (2) respectively present the design data
and upper/lower bounds for decision variables.

3.2 Stochastic artificial data generation
In absence of measured operational data, in this work, a simplified algorithm is developed to generate stochastic

artificial operational profiles to test the proposed control system. The method that was employed in this work is
based on the idea of introducing a random variation in the power requirement and operational schedule, starting
from a reference profile, that maintains the distance travelled.

In this work, we assume that the propulsive power PProp against the resistance force of a vessel moving through
the water with speed of V can be determined by equation (15) [26].

PProp = K ·V 3 (15)

Reformulating equation (15) to equation (16) to have the velocity of the vessel with respect to the propulsion
power:

V =
( 1

K
·PProp

) 1
3

(16)
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Figure 8: HEF without an external charging circuit. Figure 9: HEF with an external charging circuit.

Table 1: List of design data

Parameter Value Unit

Fuel lower heating value 42780 [kJ/kg]
Fuel density 850 [kg/m3]

Diesel engine maximum power 1200 [kW]
Diesel engine minimum power 120 [kW]
Generator maximum power 1150 [kW]
Generator efficiency 0.95 [-]
Electric motor maximum power 1000 [kW]
Electric motor efficiency 0.96 [-]
Inverter efficiency 0.98 [-]
Rectifier efficiency 0.98 [-]
ESS maximum capacity 400 [kWh]
ESS maximum charging power 400 [kW]
ESS maximum discharging power 400 [kW]
ESS maximum state of charge 100 [%]
ESS minimum state of charge 30 [%]
ESS charging efficiency 0.95 [-]
ESS discharging efficiency 0.98 [-]

Table 2: Decision variables

Lower bound Variable Upper bound Unit

0 PDis
ESS(k) 400 [kW]

-400 PCh
ESS(k) 0 [kW]

{0} Pstation ∞ [kW]
120 EESS,0 400 [kWh]
120 EESS(k) 400 [kWh]
10% xi(k) 100% [-]
{0} yi(k) {1} [-]
{0} δ

STA
i (k) {1} [-]

{0} δ
STP
i (k) {1} [-]

{0} uc(k) {1} [-]
{0} ud(k) {1} [-]

The distance D traveled by a vessel can be easily found by integrating the speed profile over time (see equa-
tion (17)):

D =
∫

V ·dt =
∫ ( 1

K
·PProp

) 1
3 ·dt =

1
K
·
∫ (

PProp

) 1
3 ·dt (17)

The distance between two harbors D is constant, and we as assume that, not having specific information about
the case study and its actual operations, K can also be simplified to a constant. As a consequence, equation (18) is
reformulated as:

C = D ·K =
∫ (

PProp

) 1
3 ·dt (18)

Where C is also a constant. In this study, we assume that operational profiles of the vessel can be considered
as discrete patterns. For instance, sailing between two harbors A and B could compose of four steps of operation
including a step of docking from the harbor A, a step of a short maneuvering, a step of the main operation, and
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finally the step of docking to the harbor B. The same for B to A to do a cycle. All these steps can be described
by the duration of each step and the average required power. Therefore, the discrete form of equation (18) can be
expressed as equation (19).

C =
n

∑
i=1

(
P

1
3

i ·∆ti
)

(19)

Where Pi and ∆ti are respectively the average power and the duration of each step in the load diagram. n is
number of steps between two harbors. Equation (19) has a high degree of conformance. It gives the foundation
for generating four different types of load diagrams. Four main data generation techniques are discussed in the
following.

1. Variation in duration of time step: considering constant average power associated with each step. The time
duration regarding each time step can be stochastically varied so that C in equation (19) is held constant.
The total duration of the cycle is also maintained constant.

2. Variation in the power: on the contrary, for this case, considering constant time duration associated with each
time step. The average power for each time step can be randomly varied in such a way that C in equation (19)
is held constant.

3. Variation in duration of time step and the power: the scope of this case is generating stochastic load pro-
file having variation in both time duration and average power for each step of operating as long as C in
equation (19) is held constant.

4. Variation in duration of time step and power in presence of dynamic noise: considering the variation of
power around the average power by accounting a noise on the load diagram. This type of data generation is
intended to provide the closest representation of how vessels operate in reality.

It should be noted that, while the suggested method for automatic data generation is based on strong simpli-
fications of the actual behavior of a propulsion system, such as the absence of added resistance or the implicit
assumption of constant propeller efficiency, it is only used in this study for testing purposes. The proposed control
system does not include the artificial data generation, and hence does not depend on it for its correct functioning.
The control system proposed in this study focuses on the optimization of the power share between the engines and
the ESS, and is hence not concerned by the ships propulsion efficiency.

4 Results
This parts attempts to present and compare the results corresponding to the implementation of the control

technique on the various types of HEF. In the first part, the loading conditions of the the Diesel engines and
the ESS for different scenarios are presented and the fuel consumption is compared. Subsequently, the results
corresponding to the performance of the control system for the ideal and the real controller are visualized and the
robustness of the control system is discussed for different types of operation.

4.1 Effect of external charging circuits
In this section, the behavior of the ship power system using the proposed EMS is analyzed for the different

potential configurations:

HEF with peak-shaving (HEF) The Diesel engines are the only available source of energy for powering the ship
and charging the ESS.

HEF with charging stations (HEF-CHST) The ferry can be connected to the electrical grid during one or more
of the stops using charging stations.

HEF with overnight charging (HEF-ON) The ESS of the ferry is fully charged during the night, but not during
the day.

HEF with both charging station/overnight charging (HEF-CHST/ON) The ESS of the ferry is fully charged
during the night, and can be charged/discharged during the day; plus, having connection to the grid to charge
the ESS during its operation.

The results are compared for two scenarios for the ferry, five and ten cycles of operation per day. It is assumed
these operations are stochastically varied up to 20% in time and power. A dynamic noise to simulate the real-time
conditions is applied on the power.

Conference Proceedings of INEC 2 – 4 October 2018

14th International Naval Engineering Conference & Exhibition 10 http://doi.org/10.24868/issn.2515-818X.2018.042 



0 500 1000 1500 2000 2500
Time [sec]

0

200

400

600

800

1000

1200

P
ow

er
[k

W
]

HEF HEF-ON

0 500 1000 1500 2000 2500
Time [sec]

0

200

400

600

800

1000

1200

P
ow

er
[k

W
]

CHST CHST

HEF HEF-CHST Enter to CHST Exit from CHSTFigure 10: Load on the Diesel engine in presence and absence of overnight charging

0 500 1000 1500 2000 2500

Time [sec]

-400

-200

0

200

400

P
ow

er
 [k

W
]

HEF HEF-ON

0 500 1000 1500 2000 2500

Time [sec]

-400

-200

0

200

400

P
ow

er
 [k

W
] CHST CHST

HEF HEF-CHST Enter to CHST Exit from CHST
Figure 11: Load on the ESS in presence and absence of overnight charging

The behavior of the system in HEF mode corresponds to what expected from a hybrid system, as shown in
figure (10). During low load demand periods the optimizer suggests to switch off the Diesel engines and to supply
the demand using the ESS, while during medium-high power operations the Diesel engines are operated at higher
load to charge the ESS. It can be noted that this behavior was achieved without pre-setting a rule, and is hence
flexible to the application to different ship types, or to different operational patterns for the same ship.

In presence of the peak-shaving function alone, the ESS system is largely underused. This is a consequence
of the fact that marine Diesel engines tend to operate at relatively high fuel efficiency also at low load, and of the
fact that very low load operations and transients are rare compared to automotive applications. This is also shown
by the fact that the ESS is never used to its full potential, neither in terms of energy (ESS capacity), nor of power
(maximum C-rate).

In presence of overnight charging, the ESS supplies a larger share of the power demand because it is allowed to
discharge a portion of energy for each cycle. In the presence of overnight charging, the ESS is gradually depleted
during the daily operation. The contribution of overnight charging to the reduction of the fuel consumption for
each cycle of operation for the two cases is reported in table (3).

In presence of charging stations (HEF-CHST), similarly to the HEF-ON case, the average load on the Diesel
engines is lower, since part of the energy is provided by charging the ESS when it is connected to the shore (see
figure (12)) during the stops. When it is connected to a charging station, not only the ESS is charged, but also the
full power demand of the ferry is fulfilled by the power coming from the grid.

It is worth mentioning that this is also a result of the fact that the EMS is aware of the future availability of a
charging station, and will consequently allow the use of a larger share of the ESS charge knowing that it will be
possible to charge it soon. This behavior, in which operations from past cycles are used to optimize the system in
accordance with expected future events, represents one of the main improvements proposed in this work compared
to previous literature.

The contribution of charging stations in reduction of fuel consumption for each cycle of operation is reported
in the table (3). It should also be noted that when both overnight charging and charging stations are available the
savings are improved by more than the sum of the two single contributions, showing the synergy in the combination
of the two.
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Table 3: Cyclic reduction of fuel consumption on basis of the mean value of five simulation tests in an ideal
controller w.r.t HEF when operational profiles have up to 20% variation on time and power in presence of noise.

Cycles HEF-ON HEF-CHST HEF-CHST/ON

5 7.61% 10.1% 18.98%
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Figure 12: Load on the Diesel engine in presence and absence of charging stations
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Figure 13: Load on the ESS in presence and absence of charging stations

4.2 Controller performance
The results presented in this section focus on the online part of the controller. The ideal controller can appro-

priately track the reference SOC coming from the offline layer, since its prediction of future operations coincides
with the actual power demand. Moreover, the ESS is monitored by the PI controller and the rest of demand power
is supplied by the Diesel engines. This is valid for all configurations and any types of variation for operational
profiles.

On the contrary, the real controller does not know the future. In the proposed control system, k−means or
k−medoids learning algorithms are adopted in the real controller to estimate the forthcoming operation based on
past operational profiles. The results of the simulations suggest that in absence of charging stations (configurations
HEF and HEF-ON) the controller can appropriately follow the reference, regardless of the type of clustering
algorithm used.

In the case of presence of charging stations, however, the situation is different, as shown in figure (14).
This is primarily caused by the decision of over-ruling the PI controller of the ESS when the system is connected

to shore, and by the fact that the timing at which this happens can vary compared to the future reference cycle
estimated by the clustering algorithm. The persistence of an error between reference and measured SOC after the
charging stations is due to the limitation of discharging power in ESS.

The cause of this disturbance in the real controller lies in the variation of operational profile in terms of the
duration of the time steps, and not in variations of the average power.

It should also be noted that, in presence of charging stations, there is a significant difference in the performance
of the EMS depending on the chosen learning algorithm. In particular, it was observed that the k −means ap-
proach performs better than the k−medoids if the operational profiles are widely different in time duration (See
figure (14)).
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Figure 14: SOC in the real controller for HEF-CHST

4.3 Efficiency of k−means and k−medoids algorithms
In the previous section, it was qualitatively observed that the k −means algorithm behaves better than k −

medoids in some scenarios. To make a decision on which of the two clustering algorithms, we performed a series
of tests with varying conditions of power, time step duration and in presence of noise. The analysis is based
on a total of 120 tests. The clustering algorithms are then compared based on their achieved reduction of fuel
consumption when compared to an ideal controller.

The results of these tests are summarized in table (4). They suggest that the application of the k−means learning
package is closer to the ideal controller for the ferry in presence of charging stations and for large variations in the
operational profile, while the k−medoids approach works better in absence of charging stations.

4.4 Analysis of weight factors in the objective function
In the proposed EMS, the objective function that is minimized within the optimizer section is made of the

contribution of three elements: the fuel consumption, the number of engine starts and stops, and the running hours.
As these contributions originally have different units, the problem would result into a multi-objective optimization.
In order to treat it as a single-objective problem, we used weight factors. The choice of the value assigned to weight
factors is hence to be discussed based on their influence on the system behavior.

The influence of the weight factors of the number of start and stops (wss) and of the running hours (wt) on
the number of engine start and stops in a cycle is shown in figure (15). It can be observed that even a small wss
is enough to reduce the number of engine starts from 16 (wt = 0) to 10 or 12. It can also be shown that having a
non-zero value for the wt helps in making the system more resilient against an inaccurate choice of wss.

It can be concluded that the use of a weighting factor for the number of engine start and stops helps in avoiding
an excessively high, and unjustified, number of engine starts and stops, and that a use of the weighting factor for
the running hours make it easier to adopt a reasonable value for the wt .

5 Discussion
As highlighted in the previous section, the method proposed in this paper for the optimal control of hybrid

vessels shows a positive performance in optimizing the energy efficiency of these systems. However, it should be
noted that the method has limitations, some of which are intrinsic to the proposed approach.

First of all, this approach is specifically designed for vessels having a repetitive, cyclical operational profile.
This hypothesis is the basis for using previous operations in order to predict future ones, and is central to the
functioning of the method. The method is hence most suitable for ships operating in short cycles repeated with
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Table 4: Efficiency of learning algorithms with respect to ideal controller, HEF-CHST/ON

Variation 5 cycles 10 cycles
k-means k-medoids k-means k-medoids

Time variation

5% 97.6% 96.6% 98.7% 96.7%
10% 96.4% 94.0% 98.0% 96.3%
20% 93.3% 94.2% 97.2% 90.2%

Power variation

5% 98.7% 99.3% 95.9% 96.5%
10% 97.8% 97.5% 99.2% 99.2%
20% 98.2% 96.4% 98.1% 98.9%

Time and power variation

5% 96.2% 94.5% 97.3% 96.1%
10% 96.0% 91.8% 97.8% 95.1%
20% 97.4% 93.8% 98.0% 87.5%

Time and power variation in presence of noise

5% 95.5% 95.0% 99.0% 94.7%
10% 97.0% 93.8% 98.6% 93.7%
20% 96.3% 89.7% 99.0% 98.0%

Figure 15: Effect of weight factors on the number of engine starts and stops

high frequency, as short-sea ferries operated in towns or between close islands, where operational cycles last
between a few minutes and a few hours, as it was tested in the case study proposed in this paper. We expect that the
proposed method could be extended, after appropriate test phases, to vessels with regular services on longer routes,
such as ferries, cruise ships, fishing vessels and container-ships. We expect, on the other hand, this approach to be
inappropriate for ships with inherently irregular patterns, such as those operated in tramp trade.

In addition, the model presented in this paper for the system optimization was tailored to the case study in
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different parts, and the validity of the model for other types of systems can be questioned.
As a first point, it is worth mentioning that in many types of marine Diesel engines the maximum efficiency

is determined around 80% of maximum load. However, the experimental points provided by the manufacturer for
the specific engine used in this study (see figure 5), demonstrate a different behavior of the selected engine, with
the peak efficiency located at the 100% of the engine load. This provides the ground for the choice of a simple
linear modeling assumption for this specific case. It should be noted, however, that the standard case with peak
efficiency at intermediate loads can be dealt with using a piece-wise linearization approach.

Furthermore, for this specific case, the Diesel engines are operated in generator mode at constant speed, hence
making the engine efficiency to be independent from the engine speed. In cases where mechanical propulsion is
used, and hence the influence of engine speed is non-negligible, the method should be revised accordingly, and is
expected to perform with lower accuracy.

As highlighted in the text, in this paper we assume that all the efficiency of electro-mechanical components
(electric generators and motors) and of the ESS are constant. This assumption is justified by its common application
in previous literature in the subject [18, 17], but certainly introduces a simplification of the ship model. It should
be noted, however, that this can be partly solved by using additional integer variables, with limited loss in solution
speed.

6 Conclusions
This study aimed to assess the effect of learning algorithms in improving the efficiency of the control system

in a specific category of HEVs having cyclic operational profiles. The challenge of the optimization of the load
sharing on different power sources was addressed. The proposed EMS was trained by means of past operations
to deduce a new prediction for the upcoming operation. Having processed the post-learned profiles by means of
segmentation technique, the information is used in the MILP optimizer to evaluate the optimal status of charging
and discharging of the ESS. This information is then used in a PI controller to monitor the real SOC in the real-time
operation of the vessel.

The control system is applied to different configurations for a HEF through a case study. The effects of pre-
senting external charging circuits on the control system is analyzed under the assumption of random variations of
operational profiles up to 20% with respect to a reference operational profile.

In this study, it is concluded that the proposed EMS works efficiently even in presence of large variations in the
operational profile. The efficiency of the control action, with respect to an ideal, optimal controller, is high even
in presence of charging stations, with an accuracy ranging between 87% and 99% (when compared to an ideal
controller) depending on the clustering algorithm, on the size of the variations in the operational profile, and on the
availability of charging stations. The system showed to have close to ideal performance even with large variations
in the operational profile, hence showing the robustness of this approach.

Of the two tested clustering algorithms, k − means showed higher efficiency in the reduction of fuel con-
sumption in presence of charging stations, while in absence of these, k −medoids showed to provide a better
performance.
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sanne and Peter Rampen from Damen Shipyards for their precious advice and support during the whole duration
of the project. In addition, the authors would like to thank Damen Shipyard, the Valais canton and the European
Commission (Project number 708288 within the H2020-MSCA-IF-EF framework) for the financial support.

References
[1] Martin Stopford. Maritime economics. Routledge, 2013.
[2] Mohd R Mohamed, Suleiman M Sharkh, and Frank C Walsh. Redox flow batteries for hybrid electric vehi-

cles: Progress and challenges. In Vehicle Power and Propulsion Conference, 2009. VPPC’09. IEEE, pages
551–557. IEEE, 2009.

[3] Robert Alvarez, Peter Schlienger, and Martin Weilenmann. Effect of hybrid system battery performance on
determining co2 emissions of hybrid electric vehicles in real-world conditions. Energy Policy, 38(11):6919–
6925, 2010.

[4] Arthur Vrijdag, D Stapersma, and T Van Terwisga. Control of propeller cavitation in operational conditions.
Journal of Marine Engineering & Technology, 9(1):15–26, 2010.

[5] Viknash Shagar, Shantha Gamini Jayasinghe, and Hossein Enshaei. Effect of load changes on hybrid ship-
board power systems and energy storage as a potential solution: A review. Inventions, 2(3):21, 2017.

[6] Jun Hou, Jing Sun, and Heath Hofmann. Mitigating power fluctuations in electrical ship propulsion using
model predictive control with hybrid energy storage system. In American Control Conference (ACC), 2014,
pages 4366–4371. IEEE, 2014.

Conference Proceedings of INEC 2 – 4 October 2018

14th International Naval Engineering Conference & Exhibition 15 http://doi.org/10.24868/issn.2515-818X.2018.042 



[7] Bijan Zahedi, Lars E. Norum, and Kristine B. Ludvigsen. Optimized efficiency of all-electric ships by dc
hybrid power systems. Journal of Power Sources, 255:341–354, June 2014.

[8] Amjad Anvari-Moghaddam, Tomislav Dragicevic, Lexuan Meng, Bo Sun, and Josep M Guerrero. Optimal
planning and operation management of a ship electrical power system with energy storage system. In In-
dustrial Electronics Society, IECON 2016-42nd Annual Conference of the IEEE, pages 2095–2099. IEEE,
2016.

[9] RD Geertsma, RR Negenborn, K Visser, and JJ Hopman. Design and control of hybrid power and propulsion
systems for smart ships: A review of developments. Applied Energy, 194:30–54, 2017.

[10] Jingang Han, Jean-Frederic Charpentier, and Tianhao Tang. An energy management system of a fuel
cell/battery hybrid boat. Energies, 7(5):2799–2820, 2014.

[11] Cristian Musardo, Giorgio Rizzoni, Yann Guezennec, and Benedetto Staccia. A-ecms: An adaptive algorithm
for hybrid electric vehicle energy management. European Journal of Control, 11(4-5):509–524, 2005.

[12] Yu Wang and Zongxuan Sun. Dynamic analysis and multivariable transient control of the power-split hybrid
powertrain. IEEE/ASME Transactions on Mechatronics, 20(6):3085–3097, 2015.

[13] Ameen M Bassam, Alexander B Phillips, Stephen R Turnock, and Philip A Wilson. Development of a multi-
scheme energy management strategy for a hybrid fuel cell driven passenger ship. International Journal of
Hydrogen Energy, 42(1):623–635, 2017.

[14] E Barklund, Nagaraju Pogaku, Milan Prodanovic, C Hernandez-Aramburo, and Tim C Green. Energy man-
agement in autonomous microgrid using stability-constrained droop control of inverters. IEEE Transactions
on Power Electronics, 23(5):2346–2352, 2008.

[15] FD Kanellos. Optimal power management with ghg emissions limitation in all-electric ship power systems
comprising energy storage systems. IEEE Transactions on Power Systems, 29(1):330–339, 2014.

[16] Bijan Zahedi, Lars E Norum, and Kristine B Ludvigsen. Optimized efficiency of all-electric ships by dc
hybrid power systems. Journal of power sources, 255:341–354, 2014.

[17] Espen Skjong, Tor Arne Johansen, Marta Molinas, and Asgeir J Sørensen. Approaches to economic energy
management in diesel–electric marine vessels. IEEE Transactions on Transportation Electrification, 3(1):22–
35, 2017.

[18] Hugo Grimmelius, Peter de Vos, Moritz Krijgsman, and Erik van Deursen. Control of hybrid ship drive
systems. In 10th International conference on computer and IT applications in the maritime industries, pages
1–15, 2011.

[19] Gayathri Seenumani. Real-time power management of hybrid power systems in all electric ship applications.
2010.

[20] Brian Everitt, editor. Cluster analysis. Wiley series in probability and statistics. Wiley, Chichester, West
Sussex, U.K, 5th ed edition, 2011. OCLC: ocn666867900.

[21] Shailender Kumar. Study of time-varying data models.
[22] David J Hand, Gordon Blunt, Mark G Kelly, Niall M Adams, et al. Data mining for fun and profit. Statistical

Science, 15(2):111–131, 2000.
[23] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. Segmenting time series: A survey and novel

approach. In Data mining in time series databases, pages 1–21. World Scientific, 2004.
[24] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra. Locally adaptive dimension-

ality reduction for indexing large time series databases. ACM Sigmod Record, 30(2):151–162, 2001.
[25] Enrique Castillo, Antonio J Conejo, Pablo Pedregal, Ricardo Garcia, and Natalia Alguacil. Building and

solving mathematical programming models in engineering and science, volume 62. John Wiley & Sons,
2011.

[26] MAN Diesel and Turbo. Basic Principles of Ship Propulsion. MAN Diesel and Turbo, 2013.

Conference Proceedings of INEC 2 – 4 October 2018

14th International Naval Engineering Conference & Exhibition 16 http://doi.org/10.24868/issn.2515-818X.2018.042 


	Introduction
	Methodology
	General description
	Offline layer
	Clustering
	Data processing- segmentation
	Optimizer- Mathematical programming

	Online layer
	Ideal and real controller

	Case study
	Urban hybrid-electric ferry (HEF)
	Stochastic artificial data generation

	Results
	Effect of external charging circuits
	Controller performance
	Efficiency of k-means and k-medoids algorithms
	Analysis of weight factors in the objective function

	Discussion
	Conclusions



