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1. Consider a collection of s symbols and let a row of N of these be
arranged in any way with or without repetitions, and imagine this row to
be repeated indefinitely in both directions, or, what comes to the same
thing, to be arranged in a circle. We shall call this a row of order N.
Now let this row be endowed with the capacity of generating another row
by the following process. Let the symbol a followed by the symbol /S be
represented by the symbol X, one of the set. It is convenient to imagine
the symbols as operations which are combined according to a given multi-
plication table, so that the sequence a/3 is represented by the product
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a/3 = X. Then, the multiplication table being given, any row S will
generate uniquely another row T of order N in the s symbols. Thus, if
a/3 = X, /3y = fi, yS = v, ..., afiyS ... generates \/JLU . . . . We shall call
T the first evolute of S. This row, again, will generate another row of
order N. Then, since the number of arrangements, with or without
repetitions, of N things out of s things is finite, when this process is
continued we must, after a finite number of operations, return to one of
the previous rows. From this row onwards the rows form a period.
Conversely, if the row S produces the row T, we may reverse the process
and obtain S from T, but in general there are several rows which will all
produce T and the reverse process is not unique. If T is the first evolute
of S, we shall call S a first involute of T.

The multiplication table of the symbols may be fixed quite arbitrarily.
As there are s2 pairs, the order being taken into account, there may be s
or more pairs corresponding to a single symbol. If the symbol a corre-
sponds to no pair, any row containing a will, of course, possess no
involute.

2. An interesting special case is that in which for every symbol a, the
pairs aa, a/3, ay, ... are all represented by different symbols, and for
every symbol a the pairs aa, /3a, ya, ... are all represented by different
symbols. In this case, in general, every row has s involutes. For, con-
sider the row X1X2...XJV. Xx represents s different pairs. Suppose one
of them to be a ^ . Then there is just one symbol a3, such that a2a3 is
represented by X2, and the row can only be continued in one way. It may
happen that some of these s involutes are the same.

If aNax is represented by \ the involute is of order N. But if atfai is
not represented by Xlf we have a#ai represented by Xlf then a'Na", and so
on, until we get finally a^"1^ represented by Xv Then the involute is of
order tN, and this multiple involute counts as t of the possible s invo-
lutes.

A still more special case is that in which the symbols can be repre-
sented by the operations of a group, or, let us say, form a group, and in
particular an Abelian group.

3. To investigate the order of the involutes of a row in the case where
the symbols form an Abelian group, consider the row
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axa2 — ctiao = X2,

a 2 a 8 — a2<*3 — A2,
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Then a2 =

therefore a2aa = af 1a|a2a3 = 0203,

also a8 = a l ^

therefore a3a4 = ai~la1a3a4 = 0304,

and generally

i.e., aia3 =

i.e., aLa4 = 0104;

Hence, if N is odd and = 2m+l»

and the involute of

is

... A
2m+i

aiaa... a2m+iaia2

and is thus of order 2iV, unless ai = av when it is of order N.
Again, if N is even and = 2m,

Let

then

Let

then, similarly,

where

Suppose

where

Then

Then

a2mai' = = a'lmd{-1 a? af2 =

= = ai

= a2 ma2 m a \ ,

f8 = a*v.

tt'1«o1-«
+1

>= tt1«o i.e., a*-1' =*-1' = aP^

= a

and if < is the smallest index for which a'/ = a:, the involute of Xl... X2m

will be of order 2tm, and t must be a factor of the order of the group,
i.e., of s. Hence, if s is prime, the involute of any row of order N will be
a row of order either N, %N or sN. Also for a row of even order, if an
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involute of S is BXB2... Bt, then the evolutes of Bv JR2, ... are all the
same, though not equal to S, for a2ma1 = «2Wa'i = ... .

To find the condition that the involute of a row of order N may also
be a row of order N.

We have

a l a 2 = = \> « 2 a 8 = X2, •••» aN-l<*N = X # _ i ,

a2 = af^i* therefore a2aa = af' A1a8 = X2 ;

hence Xja3
 = ^2ai*

a3 = Xf 1X2a1, therefore ctaai = Xf 1X2a1a4 = X3 ;

hence X2a1a4 = \i\$.

Similarly, XjXg ... X2r-ia2r+i = X2X4 ... X2,a1,

XiXg . . . \2r-1 = = X2X4 . . . X.J.,._2a1a2r.

Let JV= 2m+l .

X = XX X 2 a ( X X X g ) " a

i.e., XiXfj . . . X2W+1 = X2X4 . . . X2OTaj[.

Let N = 2?n.

C(2m0ti = X2,» = XjX3 . . . X 2 H I - I ( X 2 X 4 . . . X2HJ-2)~ ,

i.e., X j^Xg . . . X2m- i = X 2 X 4 . . . X2m.

Hence (1) A row of order %m-\-\ has involutes of order 2w&+l in
which the first symbol ax is determined by

ax = (XXX3 . . . X2m+i)(X2X4 . . . Xo)),)" >

and every other involute, starting with a symbol ax which does not satisfy
this equation is of order 2(2m.-f-l).

(2) A row of order 2m has all its involutes of order 1m if

X ^ g .... X2W-1 = X 2 X 4 . . . X'JTO;

but if this condition is not satisfied its involutes will be of order lint,
where t is the smallest index for which a'/ = a\, and t is a factor of s.

Two particular cases may be noticed.

(1) s an odd prime.
A row of order 2wi+l has one involute of order 2/?i+l and I (s — 1)

involutes of order 2(2w-|-l).
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A row of order 2m has either .<? involutes of order 2m or one involute
of order 2??i.s.

(2) s a power of 2, and the group of type (1, 1, 1, ...).
A row of order N has either s involutes of order N or %s involutes of

order 2N according as X^g... is, or is not, equal to

I.

4. The simplest case, and that to which our attention will be confined,
is the case of two symbols which we may denote by + and —, and con-
nect by the usual law of signs

+ + = = +i H = H = —,

i.e., a permanence of sign is denoted by + and a change of sign by —.
These symbols may evidently be represented by the operations of an
Abelian group of order 2.

In order to represent a row of order N let {p) represent a sequence of
p plus signs and q a sequence of q minus signs. Then the row may be
represented by

where %(pP+qP) = N.

This represents a partition of N into 2?- parts. Every row of order N
is therefore represented by a partition of N into an even number of parts,
where the cyclic order of the parts is taken into account, and the " plus "
and " minus " parts, which follow alternately, are distinguished.

A partition of JV in which the order of the parts is essential has been
called by Glaisher* a composition of N. A partition in which only the
cyclic order of the parts is essential will here be called a cyclic composition.
If there is no risk of confusion we may use simply the term composition.
We may say then that every row of order N is represented by an even
cyclic composition. We shall have also to consider compositions of JV
with an odd number of parts, or odd compositions. From the present
point of view an odd cyclic composition standing by itself condenses at
once into an even cyclic composition, as (p)q(r) into (p-\-r)q, but this
process is to be excluded and an odd cyclic composition is to be considered

* Cf. MacMahon, " The Theory of Perfect Partitions of Numbers and the Compositions of
Multipartite Numbers," Messenger of Mathematics, Vol. xx. (1891), pp. 103-119.
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as imperfect and as giving a row only when conjoined with the alternate*
composition, as (p)q(r)p(q)r.

Let us attempt to extend this nomenclature to the general case of s
symbols. The number which expresses a collection of s different kinds of
objects, %of altn2 of a2, ... is called a multipartite member,\ and is written

A partition of such multipartite number is

where 2% = Wj, 2a2 = n2, ..., and if the order of the parts
b1b2..., ... is essential, we have a composition of the s-partite number.
In the present theory not only the cyclic order of the parts is essential,
but also the cyclic order of the whole row. Two compositions, as

aaftftyftafty and ftyftaftyaaft,

represented by 221,010,111 and 011,010,111,210,

are in this theory considered identical; so that a row can be represented
in many ways by a composition of the same s-partite number. Further,
the evolute of a row which is represented by a composition of an s-partite
number is not in general represented by a composition of the same s-partite
number. Thus, if the multiplication table for the symbols a, /3, y is

a

7

a

a

ft
y

p

ft
7
a

y

7
a

8

the evolute of aafifiyfiafiy is uftyaajifiuy, which is represented by
111,220,101, a composition of the tripartite number 432, while <mj3 ftyfiafiy
is represented by a composition of 342. In the particular case of two
symbols, again, a row would be represented by a composition of a bipartite
number denoting the number of plus and minus signs ; but here again, for
example, the evolute of 23 is 1121, a composition of 32, not 23. The
multipartite number is therefore not invariable during the operations,
though the total number of symbols is, and we gain nothing by repre-
senting a row by a composition of a multipartite number. In the case of
two symbols we shall find that for most purposes the distinction between

* See below, § 5.
t MacMahon, Messenger of Matliematics, Vol. xx., p. 107. Also " Memoir on Symmetric

Functions of the Roots of Systems of Equations," Phil. Trans., Vol. CLXXXI., A. (1390).
pp. 4S1-536.
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the plus and minus parts can be disregarded, and a row can be represented
by an even cyclic composition of the unipartite number N.

5. Rules for Evolution.

Consider the row (p) q {r) s. (p) denotes a sequence of p plus signs,
and on evolution gives p — X plus signs, similarly q gives q — 1 plus signs.
Also in passing from (p) to q or from q to (r) we have one change of
sign, which is represented by a minus. Hence the first evolute of

0>)?(rt«i« (p_ l ) . 1, ( g - l ) , 1, fr-1), 1, ( . - I ) . 1.

If q = 1, this rule fails. We have then two consecutive changes of
sign from (p) to (r), and this is represented by 2. Similarly a sequence
of q ones gives g-f 1 minus signs. Hence, denoting a sequence of q ones
by V, the first evolute of

(p), VAr), •••

is (p-l),q + l, (/— 1), . . . .

We shall denote the ?--th evolute of P by E'P and an r-th involute by
E~rP, remembering, however, that the inverse operation is not unique.

The first evolutes of (p) q (r) s ... and p(q)r (s)... are the same. Two
rows which only differ by interchanging the plus and minus signs are
called alternate. The alternate of P will be denoted by P.

6. Bide for Involution.

A row {p) q(r)s ... of order N has, in general, two involutes

(21 + 1), 1, (1), 1, ... and p + l, (1), 1, (1), ...,

and these are alternate rows, P, P, of order N. But the involute may be
of order 22V. In this case P, P are imperfect and the single involute is
represented by PP.

7. A row which has two involutes of the same order as itself will be
called proper, one which has one involute of double the order improper.

A row of 27V, such as PP, in which P is imperfect, will be called
regular. Its first evolute is QQ, where Q is an even composition, but
this is just a row of N. Considered as a row of 22V, QQ will be called
alien.

A more general definition of an alien may be given.
An alien of order JcN consists of a non-alien row or composition of N
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repeated k times, and it is said to appertain to N; it will be called an
even or an odd alien according as h is even or odd. The following case is
excluded.

A regular row of 2N consists of a non-alien composition of N repeated
twice.

A row, one of whose successive evolutes is alien is said to be degenerate.
A row of N whose successive evolutes are all non-alien rows of N is said
to be irreducible.

If N is odd there can be no regular rows, and therefore no degenerate
rows, but there may be aliens. If N is prime every row is irreducible.

The evolutes of any row, if they are not alien, are proper.
The involutes of any improper row are degenerate.

8. If an irreducible row of N be repeatedly evolved, we shall return
after a finite number of operations to a previous evolute. Suppose

EnP = ErP.

Then we have a period of n—r, and every irreducible row either belongs
to a period or evolves to a row belonging to a period. A row belonging to
a period is called a pure row. Every pure row is proper.

Let the rows of a period be involved successively. Each row gives
first the previous row of the period and its alternate. Each of the alter-
nates, if they are proper, then gives two other rows, and each of these
again two others, until we arrive at improper rows. This must happen at
some stage since the number of compositions is finite, and since no further
periods can arise, and of these improper rows there is, of course, a finite
number. The set of all these rows, any one of which evolves finally to a
pure row of the same period, forms the complete set of rows belonging to
the period. If these are arranged in a scheme such that each row is the
evolute of the next row to the left and an involute of the next to the right,
we have on the right the period and on the left a dichotomous arborescence
ending with improper rows.

If a row is degenerate it is either a regular row or an involute of a
regular row. This is obvious from the way in which a regular row arises.

9. Condition that a row may he proper.
The first involute of

(Pl) </l (Pi) ? 2 ••• (Pa)q<i,

is j
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and the number of parts must be even. But the number of parts is

Hence the condition is that the sum of the " minus " parts, or the number
of minus signs, must be even.

This can be deduced also from the condition in the general case,

Xj X 3 . . . = X 2 X 4 . . . .

This gives A^Xg. . . = ( X ^ ...)2 = + ,

which proves the result.

If N is even, two alternates are either both proper or both improper.
If N is odd, of two alternates one is proper and the other improper.

10. A row which reads the same way backwards as forwards is called
symmetrical* Unsymmetrical rows occur as pairs of enantiomorphs.

The evolutes of a symmetrical row are symmetrical, and the successive
corresponding evolutes of two enantiomorphs are either enantiomorphs or
identical and symmetrical.

Also, if one member of a period is symmetrical, all the members of
the period are symmetrical. Such a period will be called a symmetrical
veriod.

Again, if one member of a period be unsymmetrical, no member of the
complete set is symmetrical.

If+ two enantiomorphs belong to the same period every row is accom-
panied in the period by its enantiomorph.

For, if P and P' both occur and the successive evolutes of P are
QRS ..., the successive evolutes of P' are Q'B'S' . . . . The period must,
therefore, be of the form PQR ... XP'Q'R'... X'. If this does not happen
then we have pairs of enantiomorphic periods and sets.

• MacMahon [Phil. Traits., Vol. CLXXXIV., A. (1893), p. 838] calls a composition which is
formed by reversing the order of the parts of another composition, the inverse of the other
composition, and a composition which reads the same way backwards as forwards a self-
inverse composition. These terms will be retained when we are dealing with ordinary compo-
sitions, but as it will be convenient to speak of a cyclic composition as being symmetrical
about some part or pair of parts the term symmetrical seems to be more useful for our purpose
than either self-inverse or reversible.

t Tt is proved later (§ 29) for the case where iV is odd that this is impossible.
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11. It will be convenient now to drop the explicit distinction between
a row and its alternate. A row will then be represented simply by a
cyclic composition of the unipartite number N. We may say then that
every composition, unless it is regular, has two first involutes, viz., the

involutes of P will be E~lP and E~lP. These are not, of course, alter-
nates, and they are identical if P is regular, for then P = P. Then a
pure composition has two involutes, one of which belongs to the period.
If N is odd, one involute is of order 22V, and a composition is either alien
or pure. In this case the complete set contains only the period. If N is
even the distinction between proper and improper compositions survives.

12. Two cyclic compositions which have the same first evolute are
conjugate in the corresponding sense to that in which the term is used by
MacMahon for ordinary compositions.

Adapting his graphical representation we may represent a cyclic com-
position by a series of nodes and links in a circle. The number of links
between two successive nodes denotes a part of the composition. The
conjugate is obtained by suppressing the existing nodes and putting nodes
at the other angular points. Thus we have a cyclic composition of 12
and its conjugate.

r \ k \

V. J \ . /
The cyclic composition represented by

will have for its conjugate *-«, a2+2, ....

and the first evolute of either is

Oj—1, a i + 1 , a2—1, a2-f-l, —

Graphically, the first evolute is obtained by replacing links by points and
points by links, and putting nodes at points which replace links un-

SEB. 2. VOL. 7. NO. 1022. T
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symmetrically bounded. Thus the first evolute of the above compositions
is represented by

L )

If R is the number of parts in a cyclic composition, the number of
parts in the conjugate is N—R. Hence, if N is odd the conjugate cyclic
composition is imperfect.

Conjugate compositions are always distinct, but a cyclic composition
may be self-conjugate. This requires that N be even and R = $N, and
the composition is the first involute of a regular composition or of an
alien consisting of a regular composition repeated. Thus 128412 is self-
conjugate and its first evolute is 321321; 124124 is self-conjugate and its
first evolute is 3333. A self-con jugate cyclic composition is therefore
always degenerate; but the converse is not true, thus 12321223 is de-
generate (§ 22), but its conjugate is 32123221.

A cyclic composition may be inversely conjugate, i.e., its conjugate
may be the original composition read backwards. In this case also
R = %N, and the first evolute must be symmetrical. E.g., 122242 is
inversely conjugate, its conjugate being 422122, and its first evolute
314312.

13. We shall proceed now to consider some other processes to which
the compositions can be subjected.

Reduction of a cyclic composition of 2>N, modulo N.
Take any cyclic composition P of 2JV in which one of its parts exceeds

N. Then, on subtracting N from this part, we get a cyclic composition
of N which will be denoted by P (mod N).

Consider the composition p _ W 1
Jr — p, q, IV -f / , 5,

where jp+g + J'+s = N and r > 1.

Evolving, we get ^ — 1, 1, q — 1, 1, N+r— 1, 1, s—1, 1.

On reducing the original composition, modulo N, we get V, q,r, s, and its
first evolute is p — 1, I, q — 1, l , r—1,1 , s — 1 , 1, and this is the same as the
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first evolute of P reduced modulo N, i.e.,

E\P(modN\ = {E(P)\ (mod N).

To investigate the rules for reduction, modulo N, when no part exceeds
N, we shall fix the condition represented by this equation.

I f P = p, I1'"1, iV+1, I - 1 , P (mo&N) = p, l«+>-\

then \E{P)} (rnodN) = p — l, q, 0, s

and E \P(modN)\ = p — l, q+s.

Hence q, 0, s = q-{-s.

Next let P = p. V'-\ N, l-\

P(modJV) =p, V~\ 0, Is-1 = p, I1'--, 2, Is--'.

E{P(modN)} =p-l, q-1, 1, s - 1 ,

',E(P)\(modN) = p — l, q, — 1, s.

Hence q, —1, s = q — 1, 1, s — 1.

Proceeding in this way, it may be shown generally that

q, —r, s = q — r, r, s — r.

We may thus introduce zero and negative parts subject to the follow-
ing ru l e s : - L PlO,q=p+q,

II. p, 0,0,q= p, q,

III. p, —q, r = p — q, q, r—q.

These rules for the elimination of zero and negative parts may be
taken to be quite general. It will sometimes be convenient in evolving
a composition to retain zero or negative parts. A negative part will
sometimes be written with the minus over the part, as p.

14. Having found an interpretation for zero and negative parts, let
us investigate the meaning of a negative number of ones.

A first involute of p, q is p-\-l, I''"1. Let us assume that this holds
whether p and q be positive or negative, then we have

Also p, q, r, s = p — q, q, r — q, s

and E~l(p, q, r, s) = p + 1, l-('/+1)
; r + 1 , Is"1

= p-q + l, l"-\ >-q + l, I-1.

Hence p, l-fa+1>, r = p—q, I*1"1, r—q.
•v 2
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If q = 0,

and

Hence

Mi;.

P>

E-\p

P,

D

0

4

1

. M. Y.

, /, s —

•r, s) =

~\r =

SOAIMERVILLE

p+r, s

jp+r+1, I-1

^+r—1,

[NOV. 12,

15. General Theorems on Reduction.

r r+1

= i>ai 2>s» A . •••» A » N—2pp, 2 p P — N , p r + - 2 , ...,pn-i,

Assume this to be true for r, then we get as the next step (§ 18, III.)

i>-2»/>3> - - - . jPn / ; ' - l ' N ZpP> 2>PP N,pr+

But the first step is

N-plt Pi+p.2-N, pz f̂c-i,

Hence the process is established.

II. p-N, V, r, V = l-v-<»+*>, X+l , IP+«-A-I, r , l-\p+\-N.

By Theorem I. the left-hand side becomes

1\ N-(p + \),p + \+l-N, I""*"1, r,

Put \ = AT—(^-f-1), a°d we get

1A'-(P+1), 1, 0, 1P+«-*, r, l * - 1 , ^ ^ ! -

By the same process this gives

1\ N-(p + l-\), p+^ + 2-N, i<v-(y.+A+2)) 2, p+'/-A'-i? r>

and, putting X = JV—(^ + 2),

>, 1, 0, 2, p+v-v-^ r> r -

Now assume the theorem for X such steps, and we have

p+\-N, l-v-<»+*>, X+l , p+'i-A'-1, r, i«

which becomes at the next stage

x+i, p + ' -*- \ ;•, r
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and, putting /* = N—(p+X+l), we get

A+2, v+4-*-\ r,

Hence the theorem is established.

III. p-N, 1«, r, s, V = q+% lN-<p+q+l), p+q + r-N, s,

By Theorem II. the left-hand side is equal to

Put A = N—p, and we get

* 1 , r , s, 1'+P-A', 0

1, r, s, l«+i»-y-i

- N , a, I ' + P - * - I (§ 14).

Hence the theorem is true.
We may, of course, interpolate any parts between the r and the 1',

as these are not affected by the process. Also, in all three theorems N
may have any value.

16. We have now to show that the process of reduction is unique.
Let T) v, « «

* — P v p<z> • • •» P k ,
where Up = 2N.

By Theorem I.,

Pi>Pz—N,pB, ...,pk
v r+1

= Pl+P2 — N,Ps, ...,pr,N—'Epf, 2 pp — N,pr+2, ...,pk.

Putting r = k—1, we get
A - l /.•

—N,pa, ...,pn-i, N— 2 pp, Zpp—N

—N,P* -..,Pk-\,Pi+Pk—N, N—p!

= Pi,Pa> ...,Pk-i,Pk,Pi—N.

Then, since PvPi—N,pB, ...,pb = Pi—N,p2,p9, ...,pk,

therefore pv p2, p3—N,pi, . . . , pk = pv p*—N, pa, ...,pk

= pl—N,pi,pa, ...,pk,
and so on.

Hence the result is proved generally, and reduction, modulo N, is
a unique process. This result is true whatever the number of parts
may be, even or odd.
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By a repetition of this process it is always possible to arrive at a
composition free from negative parts, for, on the reduction by the above
rule for negative parts, the negative parts which may be introduced, as
others are made positive, continually become smaller numerically. Thus
from p, q, —r, s we get p, q—r, r, s—r, and, if q—r is negative,
r—q < r. These parts will ultimately either vanish or become positive.
In actual practice it is advisable naturally to subtract N from the largest
part.

17. Successive reduction of a composition of 2roX to a composition of X.

Any composition of 2mX may, by the above process, be reduced
uniquely to a composition of 2m~1X. This, again, by a repetition of the
same process, may be reduced to a composition of 2m~2X, and so on until,
finally, we reach a composition of X, and the final result is unique. Also
the evolute of such a composition when treated in the same way always
leads to the evolute of the corresponding composition.

This reduction may be effected by separate stages in the manner just
indicated, or it may be effected at one step, or the reduction to the
various moduli, 2m~1X, 2m~-X, ..., may be made in any order. This is
made clear if we retain the zeroes which may arise; then the effect oi
the reduction to any modulus can be traced throughout all the stages,
and it is immaterial from what part this modulus be subtracted.

18. The reverse process may also be performed, i.e., to obtain a
composition of 2N from a composition of N. Zero or negative parts
may be first introduced and the composition transformed in any way
according to the preceding rules. Then N is added to any part and the
whole composition again transformed until zero and negative parts are
eliminated. The reverse process is evidently not unique. Thus 2, 4 ;
1, 1, 1, 3 ; 1, 5 ; and 1, 1, 2, 2 all reduce, modulo 3, to 1, 2.

19. If P belongs to a period of n, P{moAN) will belong to a period
of n', a factor of n, and, if P(modN) belongs to a period of ri, P will
evolve to a composition belonging to a period containing a multiple of n'.

We have

EnP = P, (EnP)(modN) = En {P(modN)\ = P(modN),

and also En> \ P (mod N)\ = P (mod N);

therefore n is a multiple of n'.
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20. A regular or an even alien composition of 2N reduces, modulo N,
to a single part, and, when reduced, modulo %N, vanishes.

Consider the composition

k
where 2 pp = N.

We have

p1—N,pit pz, ..., pk,plt p2, ...,pk

J f c - l k

N— 1 pp, 2pp—N,plt ...,pk-i,Pi+pk—N

Pk, 0,pvp2, ...,pk-i

= P* Pa> •••» Pk-2, Pk-i+Pk+Pi, p%, • - . , pk-2,

Proceeding in this way we get

and, putting r = 8,
k k

^ i + 2pp—N, p2, i?i+ 2pp, pi = —pif pif N—p2, pi

= p2, 0, N—p2, 0

= N.

Conversely, P will condense to a single part when reduced, modulo N,
only if it is regular or an even alien.

At each step of the reduction, except the last, there can be only one
condensation whereby the number, of parts is reduced by 2, and the
penultimate result must be of the form p, 0, q, 0; hence the number of

parts must be even, say 2&. Let pt be so chosen that px-\- Z pP^ N;

then, since the negative part at the end of the series after the r-th step
2k

is P!-\- 2 pp — N, there cannot be more than k—1 steps. But the

number of condensations required up to the second last step is
${2k—4) = k—±

Hence there must be k — 1 steps, and one condensation must occur at
each step except the last, where there are two.
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We have

Pi—Nip^ ...,pzk
r-l r

= P2>Pa> -..,Pr-i,N— 2 pp, 2pp—N,pr+i, •.-,P2k-

In order that condensation may occur we must have

24

for some value of l^ Also JPI+ 2 pp^ N,

therefore 2 pp < N =

therefore lx < h.

We have then as the first step

—N, p.2, ..., ph-!, ph, 0, ̂ 1 + 1 , jpil+

— ^ , 2̂> •••» A - b Ph+Ph+h Ph + 2,

For the second step we have

r - l

p2,P3, .-..JPr-1, iV— 2 Pp—pu,

and for condensation 2^p+^2* = N;

h
therefore pu — 2 ^ p and Z.2 < ^.

This gives

and, after s steps, we have

2Jt

*1

with the conditions 2pp = N,

,2.P, = P2k-r+2 (r = % 3, ..., 5).
< + i
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2ft h

Hence p^ 2& 2 + i pP—N = p2k-s+i+Pi+^ pP—N

PMS+I

The smallest value of ls is 2. Let the final value o! s be t, so that

while

Then

P2k =

Now

Hence

ii

t will

» Pu-i -

k<
be <k—1

i?2*-<+2 < 2

*2

l^lPp, • • •> i?2Jfe-<-

C U < ... < 2̂̂

unless

pp.

h-\ n
f2 ^— ^ Pp, P2k—t + l ^ " 2

( r = l , 2, . . . , * - ! ) ,

Hence t = A;—1, and lr = A;—(r—1)

and P2k-r+2 = ^i r_ , = /?&-r+2,

*-e., p , = pft+,.

Hence the composition must be regular or an even alien.

21. An odd alien composition of 2N appertaining to %n reduces,
modulo N, to an odd alien composition of N appertaining to m*

Let Q =Pi,p>i pt repeated 2&+1 times, or p2k+l,
t

where 2, pp = 2m and N = (2&+l)ra.

Q(modiV) =pt,Pi—N,p2, ..., Pt, P2k~\pv ...,pt-\

r - l T

N, Pi, >.>,Pr-i, N— 2 pp, 2pp—N,pr+l, ...,

Pt, P'k-\plt ...,pt-l.

* This theorem is not esscutial for what follows.
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Put r = t, and we get
t-\ t.

i-N,p2, ...,pt-i, N— 2 pp, 2pP-N, Pik-\pY, ...,jp,_,

i—N, p2, •••, Pt-\,Pt, iV—2m, px—(N—2m), p%, ...,

pt, P 2 *" 2 ,p v ...,pt-\.
In the same way this becomes

i—N,P2, -.;Pt, -P"1, N— 2rm,pl—(N—

and, putting, r = k,

i — NtPi* •-, Pt, P*'1, ™, Pi—m, Pi, -.-,Pt, Pk~\Pi, >..,pt-\

i—N,Pt, --;Pt, P*~ l , wt, P ( m o d m ) , Pk~l,pv ...,pt-i.

Again, this becomes
r-\ r

Pt-i+Pt+Pi—X, Pi- ••;Pr-\, N—pt— 2 pp, 2pp—N+pt,pr+u ...,

pt, Pk-\m, ...,pt

and, putting r = t—l,

pt-2,pt-\, N—2m,pt—{N—Zm), Pk~\ m, P(modw), P*" 1 ,^ , . . . ,^_. ,

which becomes, as above,

pt-i+Pt+Pi — N, p2, ...,pt, P'~-, Pu ...,pt-u N—2?m, ^ t — (IV—2rm),

P A - r , w, P ( m o d m), Ph~\ plt ...,pt-2,

and, putting r = k,

Pt-i+Pt+Pi—N, p.2, ..., ph P1'-'-, plt ..., pt-\, m, pt—m, in, P (mod m),

Pk~\pv ...,pt-2

= pt-\+Pt+Pi—N, p3, ...,ph Pk~\ m—pt,ptiP{modm),Pk-\p1, ...,y«_2.

In the same way we get

Pt-s+Pt-i+Pt+Pi — N, pz, ..., pt, Pk~\ m—pt-x—pu pt-u pt, P (mod m),

Pk~\Pl, --;Pt-3.
Proceeding in this way we get

t t
2 P P + P \ — N > P* •••» P<> P^""1 ' m~ 2 PP> Pt-r+\, •••, Pt, P ( m o d ?»),
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and, putting r = £—1,

t t

pp—N, p2, ...,pt, Pk~\ m—'2pp,p2, ...,pt, P (mod m), Pk~1

1 2

= Pl-(N-2m),p2, ...,pt,P
k~\ {P (modm)\\ Pk~\

By repeating these series of operations we get again

p1-(N-2rm), p2, ..., pt, Pk~r, {P (mod m) \2r, P*"r,

and, putting r = k,

Pi—m,pz, ...,pt, l P ( m o d m ) } 2 f c = {P {mod m)}***1,

which proves the theorem.

If N is an even multiple of m = 2km, N—2rm vanishes when r = k,
and we get successively

Pt+px-N,p2, ..., pt, Pk~\ 0, Pk~\p1, ...,pt-i;

Pi—N,p2, ...,pt, P*-2, pv ...,pt-i, 0, ph 0, Pk~\pv ...,pt-2;

-2m),pz, ...,pt, PK-2,pv 0, ..., pu 0, P*-1,

and ultimately every second part becomes zero, and the whole composition
condenses to a single part, as in the case, already considered, § 19,
where k = 1.

22. Every composition of 2m is degenerate.

Let us assume this to be true for compositions of all powers of 2 up
to 2m~\ and let P be any composition of 2™. Then P (mod 2"1"1) is a
composition of 2"1"1, and, by assumption, it finally evolves to 0. Hence
the corresponding evolute of P must be regular, and P therefore de-
generates. But all the compositions of 4, viz., 1, 3 and 2, 2 degenerate
to 0, hence the result is true generally.

In particular consider the regular composition 2r, 2r,

2r, 2r = 2r (1, 1) and E (1, 1) = 0 ;

therefore E* (2r, 20 = 0,*

and E*-x (2r, 20 = 2r+1 ones.

• See below, § 25, II. The equation E (1, 1) = 0 is symbolic. The composition 1, 1 de-
notes a row of + and — alternately, and on evolution gives — repeated indefinitely, and this
is represented by (0)2, or, in fact, (0) x where x is any positive integer. Evolving again we get
a row of + signs alone or x (0), and repeated evolution does not alter this.
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23. Condition that a composition of 2N should be degenerate.
If P is degenerate E'P is regular for some value of k, and

[EkP\ (mod N) = Ek \P (mod N)\ = 0.

Therefore P (mod N) is an alien composition of N consisting of a compo-
sition of a power of 2 repeated. Conversely, if P (mod N) is an alien
composition of N appertaining to a power of 2, EkP (mod N) vanishes,
and therefore EkP is regular and P is degenerate.

It may happen that, while P is not degenerate, P (mod J ^ is an alien
composition of N. Thus, if

P = 112116, P(mod 6) = 112110 = 1212 ;

but P belongs to a period (112116, 1858, 122214, 11111282). The
necessary and sufficient condition that P be degenerate is therefore that N
should be a poiver of% or that P(mod N) should be an alien appertaining
to a power of 2.

24. Successive Evolution.

Let P = pvp2, ...,p«

be any partition of N. Then

EP =Pl-l,l,p2-l,l, ...,

E2P = p1-% 2 ,^ 2 -2 , 2,...,

E»P=p1-Z, 1,1, l , ^ 2 - 8 , 1,1, 1, ...,

E*P=Pl-<L, 4 ,^ 2 -4 , 4, ...,

and, generally, EnP = p^—n, \n\,p2—n, \n], ...,

where \n\ is an odd composition of n obeying the law

| 2 » + * } = \h\, 2 » - & , {k\,
for k < 2W.

To prove this, assume first that |2m} = 2"1, for m = r. Then

and #2r+1P = EF.EfP = p ! - 2 r - 2 r , 2r, 0, 2r, ̂ a - 2 r - 2 r , ...
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Hence the assumption is established for all values of m. Then

E2'"P = pl-V
t\ 29",jp.2-2"\ ...,

and E-"+kP = Ek.E2'"P = Pl-'2,M-k, \k\, <l"l-k, [k\, p3-2
w-k\ ...

= Pl-2
m-k, {Q,m+k\,p2-Z

n-k

Hence { V n + k \ = { k \ , 2 m - k , { k } .

Now, if for the sake of brevity we write [r] instead of

2 m * -r+1 _ 2 M * -• • -• — . . . — 2 T O * ,

then {2m> + 2 m 2 + . . . + 2w*[
= [1] [2] [1]... [1] [2] [1] [3] [1] [2] [1] [ft] [1] [2] [1] [3] [1] [2] [1] [4]

It thus contains 2^—1 parts.

The form of {n\ can be rapidly found by working in the scale of 2.
To find [k~\ subtract n from the next power of 2; to find [&—1] strike off
the first significant figure from n on the left and subtract from the next
power of 2, and so on. Thus, if n = 85, or, in the scale of 2, 1010101 ;

[4] = 101011 = 43, [3] = 1011 = 11, [2] = 1 1 = 3, [1] = 1 ;

and {85f = 1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1, 3, 1.

The process of eliminating negative parts is much more laborious than
evolution, so that often the quickest way to obtain any evolute of a com-
position is to evolve repeatedly.

25. The operation of doubling a composition.

Let P be a composition of N, and let each of its parts be doubled.
Then we get a composition of 2N in which every part is even. Denote
this by 2P.

THEOREM L— #2(2P) = 2E(P).

Let P = p, q, l r, s, . . . .

Then EP = p — 1, 1, q — 1, r + 1 , s—l, ...,

2P = 2p, 2q, r twos, 2s, ...,

E . 2 P = 2p—1, 1, 2q — 1, 2 r + l ones, 2s—1, ...,

E2.2P = 2 p - 2 , 2, 2 ? - 2 , 2r+2, 2 s - 2 , ...
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THEOREM II.— E* (2rP) = 2r. E (P).

Assume this to be true for r. Then

E2'+1(2r+1P) = #2'j#2r(2r+1P)}

= E2" )2rE(2P) [ = V\E(E.2P)

Hence the theorem is true generally.

THEOREM III.— 2r. #8P = Es-2>. 2rP.

Assume this for s. Then

2r£8+1P = E'-.W.EP

COROLLARIES.—Every alternate evolute of 2P has all its parts even.
If P belongs to a period of n, 2P will belong to a period of 2?&.
If the r-th evolute of P is pure, the 2r-th evolute of 2P will be pure.
If P is regular, 2P is also regular, and if the r-th evolute of P is

regular, the 2-r-th evolute of 2P will be regular; then the (r+l)-th
evolute of P is alien and the (2r+l)-th evolute of 2P will be alien.

26. Doubling a composition and reducing modulo N.

Let the combined operation of doubling a composition of N, and at the
same time reducing modulo N, be denoted by D, so that

DP = 2P (mod N).

Then DP is also a composition of N. In this way we can pass from one
composition to another composition of the same number.

Theorems of exactly the same form as I. to III. of the preceding
section can be proved in the same way, only reducing the final results
modulo AT. It is unnecessary to state the theorems, as we have simply to
substitute D for 2 in the operator (not in the index).

If N is odd, DP and P contain the same number of parts.
In reducing pvp2, ..., modulo N, the parts are always of the form

pr or + (pr-\-Ps-\----—N). Hence, sincepr is always even and N is odd,
this can never vanish and condensation never occurs.

If N is even, condensation may occur, and DP has all its parts even,
for all the numbers which occur at any stage are even.
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27. The reverse process.
First introduce zero or negative parts and transform by the usual rules

until there is not more than one zero or negative part, and (1) if N is even
there are no odd parts, (2) if N is odd, only one odd part which may be
positive or negative. Then add N to the zero, negative or odd part, or to
any part if all the parts are even, and divide each part by 2.

If N is eoen the reverse process is possible only if all the parts are
even, and is evidently not unique, for from 2p, 2q, 2/-, 2s we get, e.g.,
p+^N, q, r, s or p, q+$N, r, s or px, 1>N, p2, q, r, s, and so on, where

Pl+Pi = P-

If N,is odd the reverse process is alioays possible and it is unique.
To prove this, we notice that the only transformation available is

p, q, r, s =p,q + r, r, r+s,

since the number of parts must remain the same (§ 26).
Since N is odd there must be an odd number of odd parts. If three

odd parts come together they may be reduced to one, for, distinguishing
an odd number by enclosing it within brackets,

(p), (q), (>"), ... =p + q, (q), r+q, ... .

If two odd parts come together they may, by a succession of steps, be
transferred to any other position in the composition.

For,

(p), (q), r, s, ... = p+q, (q), (r+q), s, ... = p+q, r, (r+q), (q + r+s), ...,

and so on.
If one odd part occurs by itself, it may be made first to give rise to

three, thus , , . , . ._. . , .
p, (q), r, s,... = (p+q), (q), (q + r), s, ... .

Then either of the pairs which occur together may be moved along the
series and the single odd part, say (p+q), has been moved one place in
the opposite direction, as

(p + q), r, (q+r), (q + r+s), ... .

The following process then suffices to eliminate all the odd parts
except one. First eliminate all triplets. Then move any pair of odd
parts until it comes adjacent to another odd part, producing a triplet
which reduces to a single odd part. We are now left with an odd number
of isolated odd parts. Suppose there are three odd parts, in positions
numbered 1, m, n. Transform the middle one into a triplet and move the
pair on the right until it forms a triplet with the third part and eliminate
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this triplet. We now have three odd parts in positions 1, tn— 1, n— 1.
Treating the middle one again in the same way, we get three odd parts in
positions 1, m—2, n—2. Proceeding in this way, we get at last the three
odd parts in positions 1, 2, n—m-f 2. Then the pair can be moved to
the right until it forms a triplet with the third part, and this then reduces
to a single odd part. By a repetition of this process we shall finally be
left with a single odd part which may be positive or negative, the even
parts at any stage being always positive. Then, adding N to this part and
dividing all through by 2, we get the required composition.

Now these compositions, in whatever order the processes are per-
formed, are all equivalent, modulo N, and the final result before adding N
is always the same. Hence, as there is only one way in which the N may
be added, the whole process is unique.

In the following sections 28-80 we shall suppose N to be odd.

28. If a composition of N be multiplied repeatedly by 2, only reducing
modulo N when it is possible without introducing negative parts, it will
return to itself after p multiplications and not before, where p is the ex-
ponent to which 2 appertains (mod N).

For, since 2P = 1 (mod N), z.W = x (mod N),

and, without the introduction of negative parts, it cannot return to its
original value before this.

Hence, for any composition P of N,

Again, if there exists an index t, such that 2* = — 1 (mod N), the
composition obtained after t multiplications, when reduced repeatedly,
modulo N, until the sum of its parts is equal to N, is the same as the
original composition, but written in the reverse order.

For, since 2' = — 1 (mod N), as.2* = — x (mod N),

therefore the composition obtained from

P i , P<i> ••-, P k ,

after t multiplications, can be written

P\> Pz> •••> P k ,

or, making the sum of the parts = N = Ilpp,

Pi, Pi, ••', ptc-2, N—pk.u N—pk.
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This is equal to

Pv —Pi—Pa> —i>s» •••> —Pk-2, N—pk_lt N—pk—pY

r-l r

s, .... j>r-i, 2 pp, — 2pp,pr+l, ...

A.--3 k-2

k-s, 2 ppf — 2 ^p, N—pk.\, N—pk—

k-2 A - l

JV— 2 pp, N—pk—

1.-2

= ^2.2>3> • • •» l»Ji-2t 2 ^?p, pk, N—pk—pv

In the same way this becomes

= & • •

and, similarly,

= Pk-1,

;P,-U

fc-2

2 pP,
fc-3

Pft-3, •

2

fc-3
2 pP,
2

* 2 ppt
2

k-2

r- l

pk-i, p

•',Pl,'l

2

k-2
- 2 JC

»fc, Pk-l

,Pr+l, - .

/ > - 2

>p, 2 pp, p*., N—pk—p1—p2
i

iv— pfc— P i — p 2 ;

r - l

r _3 , ...,pvpk, N—pk— 2 j
1

/.-3
pv pk, N—pk— 2 pp

i

Hence, if N is such that 2' = — 1 {modN), and therefore 22t = 1 {mod N),
every composition when multiplied t times by 2 and reduced modulo N,
gives the enantiomorphic composition, and if it is symmetrical it returns
to itself.

It may happen that when a composition is multiplied by 2 repeatedly,
and reduced modulo N each time, it will return to itself or give its image
after fewer multiplications than t. If it returns after s, so that

D'P = P or P',

then also D'P = P or P',

and s must be a factor of t.
SEE. 2. VOL. 7. NO. 1023. U
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Also it may return to its image after s doublings, although there is no
number t such that 2' = — 1 (mod N). In this case, however, as in the
other, s is equal to or a factor of £P. E.g., 1455 gives 2855, and then 4155 ;
but p = 4, and no number t exists for which 2' = — 1 (mod 15). Such
an occurrence is evidently dependent upon the form of the composition.

29. If P belongs to a period, DP will also belong to a period, which
may be the same period or another; corresponding members of the new
period are not in the order of evolution, but each one is the second evolute
of the preceding.

Let DP = Plf DP! = P2, ..., then Ps = P, where s is equal to or a
factor of p, the smallest index for which 2* = 1 (mod N), and we have a set
of s compositions, P, Plt P2, ..., Pa-u all with the same number of parts.
Now, if P belongs to a period of n, then since no two different composi-
tions give the same result when doubled and reduced, Px will belong to a
period of n or 2n. In the same way P2 will belong to a period of n, 2n
or 4?i, and the period of P8_i will consist of 2 r . n, where r < s—1. Since
Pg_i now returns to P, P's period would contain 2r.?i(r ^ s), but it con-
tains n ; hence each of the periods must contain only n. The n members
of P's period must therefore, when doubled, give all the members of the
period of P, and these occur in alternate order, hence n must be odd.

We have seen that, if a period contains both of a pair of enantio-
morphs, each composition will be accompanied by its image, and the
number of members in the period would therefore be even. When N is
odd this is therefore impossible and enantiomorphic periods occur in pairs.
Such periods are primarily isomorphic, i.e., to each composition with a
parts in one period corresponds a composition with a parts in the other,
and these occupy the same relative positions in the two periods.

30. Let us now examine more carefully the periods generated by
P, P), ..., PB-\. Let the first period be represented by

(0 ,1 ,2 ,8 , . . . , n - l ) .

Let 0 become 0v 1 become lv ..., then the second period is

n is of course odd. Let the symbols of the members of the new period be
permuted cyclically and placed below the original period. Then if 0!
falls under r, lx will fall under r + 2 , ..., sx will fall under r+2s . Hence
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the pair of periods represent a substitution which will contain cycles of
the form ,

1, ;•, r+2r, r+2(r+2r), ....
i.e., 1, r, 3r, 7r, ..., (2*-l)r , . . . .

Suppose a cycle to contain p, then

(2''—1)>- = 1 (mod n).

If r is prime to w, this can only be satisfied if

2P = 1 (mod »).

Again, we shall have a cycle

s, r+2s, 8/-+4«, ..., W'-l)r+2?8, ...,

and, if (2?— l)r+2*'s = s (mod n),

(2* —l)(r+s) = 0 (mod n),

which, if r-\-s is prime to n, is only possible if

2? = 1 (mod n).

If r-f-s = n, i.e., s = n—r, s forms a cycle of 1. Hence

If the periods generated by P and DP are the same there is one mem-
ber of the period, A, such that DA = A.

If DP does not belong to the period of P it will belong to another
period, and these two periods will be called secondarily isomorphic, i.e., if
we consider only the number of parts in the compositions, and P's period
is denoted by . , .

J {abc...),
where, of course, some of the letters are in general the same, then con-
sidering this as representing a substitution, the period of DP will be
represented by , ,2

When the two periods are the same a secondary isomorphism is estab-
lished within the period.

The set of periods generated by P, Plf ..., Ps-\ will be called a conju-
gate set; and when the periods generated by P and DP are the same the
period will be said to be self-conjugate.

If there is an index t, such that 2* = — 1 (mod N), then DlP = P, if
P is symmetrical, and = P ' if P is not symmetrical. In the first case
the conjugate sets contain t or a factor of t; in the second case they con-
tain 2t or an even factor of 2t, and each set contains pairs of enantio-
morphic periods.

u 2
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If there is no such number t, and 2P = 1 (mod N), the number of
periods in a conjugate set is p or a factor of p, and the enantiomorphic
pairs of periods may occur in the same set if p is even.

When P is symmetrical the set of periods to which it belongs is a
symmetrical conjugate set.

When P is not symmetrical and the conjugate set does not contain
both of a pair of enantiomorphs, we have a pair of enantiomorphic conju-
gate sets. If there is no number t such that 2* = — 1 (mod N), we may
have a pair of enantiomorphic self-con jugate periods.

When P is not symmetrical and the conjugate set contains both of a
pair of enantiomorphs there is one conjugate set to which both P and P '
belong. Such a set will be called racevvic.

81. The following theorems will be required in what follows.

THEOREM I.— p1—x, x,p.2—x, x, ...,pa—x, x

= pl—x-\-kN, x—kN,p2—x+kN, x—kN, ...,

where N = 2p.

We have Pi—'x> x, p2—x, ...

= x—px, Pt+Pz—x, x—p* p*+p3—x, ...

+ ( + ) + + X > * —(
r c >'+l r + 1

= 2pp—x, x—2pp, 2 pp—x, x— 2 pp,
1 2 2 3

Putting r = a, we get

N—x, z—N+Pi, N—x, x—

= x — N, pi—x+N, x—N, p2—z+N, ... .

Now assume the theorem for k, then

Pi—x+kN, x — kN, p2—x + kN, x—kN, ...
= pl-z + (k + l)N, x-(k+l)N

Hence the theorem is established.

THEOREM II .— F , - a + 1 , 1", ... = I1'"', * + l , 1''"', ••• •

We have P , —x + l,V,...

= F- \ -*+2, x-1, -x+% I*"1, ...
= P-2, -x+8, x—% -x+3 , x-% -x+3, l«-a,

= P-fc, (-x + k + 1, x-k)k, -
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Let k = x, and we have

1*-*, (1,0)*, 1, I1'"*, ...

= V"*, x+l, I''"*, ... .

82. We proceed now to investigate the number of compositions in a
period, first in the case where N is odd.

Suppose first that A is a member of a period such that DA = A.
Then, if EA = B,

EB = E2A = E2DA = DEA = DB,

E2'DrB = DrEB = D'DB = Dr+1B,

E2"lDr-xB =DrB,

Hence Dr+1B = E«2* B = #2r+1-1E.

But, if 2{ = ± 1 (mod N), D'B = B,

hence E2'~lB = B.

[If 2* = — 1 (mod N) A must, of course, be symmetrical.]
Second, if DA0 is not a member of the same period as Ao, we have a

set of isomorphic periods generated by Ao, DA0 = Av D2A0 = A$, ...,
and we have DrAH = Ar+S, where the subscript of A is to be reduced
modulo p, p being the exponent to which 2 appertains (mod N).

Let EAS = Bs, then

E2"DrAa = DrEAs = DrBs = ErA,+n

i.e., E2"Ak = DrBk-r.

Hence E-'DrBs = E2rE*"As+r - E1'"' As+r = Dr+}

Putting in succession •/ = r, r— 1, ..., 0,

s = 1, 2, ..., /-

we get

If 2* = -

therefore

Dr+1BQ

1-1 (mod N),

D*L

— iio ±}r+1

1Q = Bo and

E'-*B0 =

= E^'

Bt =

Bo.

~lBr+x.
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If 2' = - l ( m o d t f ) ,

£'£<, = B'o and Bt = B'o,

therefore E 2 ' - 1 ^ = J3J.

Hence every composition of N satisfies the equation

It may happen, however, that D'P — P or P', where s is a factor of t,
and if every member of a period satisfies this equation, then for every
member of this period j/?2'-1 p — p

The period of a composition of JV is therefore, in general, 2' — 1 , where
t is the smallest integer satisfying the congruence 2* = + 1 (mod N).
We shall call this the normal period of N.

In exceptional circumstances there may be short periods, factors of
2' — 1 . E.g., 17 has a normal period of 15, but it has also periods of 5.
(See Appendix. It is noteworthy that there are periods not of the form
2rt—1. 17 is the smallest number for which such periods exist.)

88. The result E'-~lP = P can be proved more simply thus. Let

P=Pl,P2,P3, ••••

Then E*P=p1-2
r, 2 r , ^ 2 - 2 r , 2r, ... (§ 24)

, V-kN, ... (§ 31, I.).

Now choose r = t, so that 2' = + 1 (mod N), and 2{ = JcN±l. Then
we have _ , . -

Pi + 1, ± 1, •••

= Pi—1, 1, ... for either sign

= EP.
Hence E2'P = EP and E*~*P = P.

This proof, though simpler than that of the last section, does not
illustrate the occurrence of short periods of the form 2s—1.

34. Short periods.

If s is a factor of t there may be a short period of 2s—1. In particular,
even if t is prime, there may be short periods of 1. A short period of 1
can only be obtained in the following way. Take a composition of M,
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say P, form its first evolute EP, where if p is the first part of P, p—1 is
the first part of EP. Form the successive evolutes in the same way, and
place them consecutively, and we get

Q = P,

EQ = EP, E2Pi E*P, ...,

so that if the series recurs EQ = Q.
In this general process negative and zero parts will, of course, arise,

and in the general case it is not possible to say whether or at what point
the series will recur, without having a method of eliminating zero and
negative parts.

Two cases, however, may be noted.

(1) Let P = 2r.

Then we get

2r; 2 ' - l , l ; 2 ' - 2 , 2 ; . . . ; 2 r -2*, 2*; ... ; 2 r - 2 r - \ 2r~1 ; . . . ;

2 r—2r+l , 2r—1 ones, 0, 2r, 1, ...

which gives 2 r ; 2r—1, 1; . . . ; 2r—1 ones.

(2r—2r+l, 2' —1 ones) is the (2r—l)-th evolute of 2r, and

N = 2 r . 2 r - l = 2 2 r - l .

Examples of this are 21, 48122111.

(2) Let P = 2 r + l .

Then we get

2 r + l ; 2 r , l ; 2 r - l , 2; . . . ; 2 r -2 r " 1 , 1, 2 r - x - l , 1; . . . ; 2, 2 r - l o n e s ; 1

and N = 2 r ( 2 r + l ) + l = 2 2 r + 2 r + l .

Examples of this are 8211, 5413221111.

85. Now take the case where N = 2mX.
Let

Then E*m P = Pl—2m, 2m, p2—2m, 2"\ ....
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Choose k BO that 2* = k\ + 1, then we have

2m+t-kN = 2m(2'-A;A) = + 2"1,

and E2""'P = p 1 - 2 m , 2m, ... = EmP.

Hence, if Q = E*P, &"<*-VQ = Q,

and Q belongs to a period of 2m(2'—1) or a factor of this.* The 2m-th
evolute of any composition of 2m\ is therefore pure, and its normal period
is 2m(2 '- l ) .

We shall now show that the (2m— l)-th is the first pure evolute of an
improper composition of 2mX.

Any improper composition may be written

P = Pi—1, 1, P2— 1. 1. •••• pa—1, 1,

where a is odd. Then

Ef-ip = E2m*t-lP=p1-<2,m, 2m, ... = E2'"v'-lKEr'-lP.

Now we have to show that the (2ni—2)-th evolute of P, where P is
improper, is equal to the first involute, not belonging to the period, of

, 2 W -1 ones,^2-2"lH-l, 2" l - l ones, ...

= p 1 - 2 w + t - l ones, 2 m + '+ l , ^ 2 - 2 w + t - l ones, 2 m + ( +l , ... ,
a

where 2 pp = N = 2"lX and a is odd.

The right-hand side

= 2w+t— px—l ones.px+jpa—2m+t+l, 2m+(— p2—l ones,

= Pa+Pi+P2-2m+t-l ones, 2 m + { -p 1 -p 2 +l ,P i+jp 2 - | -p3-2" 1 + ' - l ones,

by alternate application of § 14 and § 31, II.
Continuing in this way we get, since a is odd,

V*+t_N_l one8> #+ i>1_2T O + '+l , 2 m + t - i V - l ones, IV+p 2 -2 ' u + t + l , ....

* A proof is still wanting for the theorem (if it is true) that the periods of compositions
of 2mx are all of the form 2mp, where p is a period of a composition of K ; also for the general
case of the theorem (true when N is odd) that pairs of enantiomorphs cannot occur in the
same period.
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Proceeding again in the same way we get

N-2m+t+pa+Pl-l ones, 2n+t-N-Pl+l,

jSf-2m+t+Pl+p2-l ones, 2m^-N-

= 2m+t-N-pa-Pl-l ones, N-^

V^'-N-p^pz-l ones, J V ^

= 2 m + t - 2 # + p 1 - l ones, 2 N - 2 m + < + l , 2 m + ' - 2 I V + p . 2 - l ones,

2JV-2ni+ '

= 2N— 2m+'+^1—1 ones, 2 m + ' - 2 J V + l , 2ZV-2m+'+p.2—1 ones,

2 m + ( -2A T + l , ...
= 2w+t-2iV—px—1 ones, 2tf — 2 " l + t + ^ 1 + # J + l ,

2™+'_2N—p.2-l ones, ...

_ QM+t_SN_1 o n e S j 3 ^_2 m + '+_p 1 4- l , 2m+t—3ZV—1 ones,

and, for any odd value of r,
^>i+t_rN_1 o n e s > r^_2«+'-f i ? 14- i j . . . .

Now 2m+t—rJV = 2m(2'—rX) = ± 2m

by properly choosing r.
If 2J = + 1 (mod X),

we get 2m—1 ones,2?i—2m+l, 2m—

If 2' = - 1 (mod X),

we get —2W—1 ones , ^+2™+1, —2'u—1 ones, ...

= 2m—1 ones,2>i—2"l+l, 2W—1 ones, . . . .

Hence the theorem is established, and we have the result:
The r-th evolute of an improper composition of 2"lX is pure only if

r<£2m— 1, and, conversely, a pure composition of 2'UX can be involved
2m— 1 times until it becomes improper. The number of impure involutes

2'" —2

of a pure composition is 2 2M = 22'""1 — 1 .

36. Now let B be an improper composition of 2mX. Then B (mod %N)
is improper and its successive evolutes are impure until E'2'"~ " ^ ( m o d %N)
which is pure, and all the successive evolutes after this are pure. Let
P = E"m~lB ; then P is pure and, if Q is any r-th involute of P,
(r<2'"~1), Q{mod^N) is equal to the pure r-th involute of P(modJiV),
i.e., all the r-th involutes of a pure composition of 2WX, for r ̂  2"1"1,
reduce, modulo 2m~1X, to the same pure composition of 2m~1X.
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37. Next consider an improper composition, P, of 2mX which evolves
to a regular composition, R, and then degenerates.

.R(modA7) vanishes and EkP (mod %N) is an alien appertaining to a
power of 2. (§ 23.)

Now, if P is an improper composition of 2W, E2'"~lP = 0, while
j£2tM-2p _ -̂  ^ rp0 p r o v e £nis a s s u m e the result for m, and let Q be
an improper composition of 2m+1. Then Q(mod 2m) is an improper com-

position of 2"\ and E-'"-lQ(mod2m) = 0. Therefore E2'"~lQ is regular,

and E2"'Q is an improper composition of 2W repeated. Hence

E2"'-\E2mQ = E2'"+i-1Q = 0.

But E{1,1) = 0, hence the result is established.
We have also, if (2m) denotes a non-alien composition of 2"\

J5-'""1(2m) = (2,m-y, E-"~~E2m~l(Vn) = (2m"2)2',

and generally Ek(2m) = (2T)2""r,
»H —1 TO—1

r »—1 '

'i.e., it u ^^ ^ ~~" A ~~ K ^^ z ~ ~ i .

We have then E~kR{mod\T$) = (2r)2'""'" A,

if 21-1 — 1 < k < 2r

and E R (mod ̂ -̂ T) = (2"l~ ) ,

which is improper. Hence

A regular composition of 2mX can be involved 2m - 1 —1 times until it
becomes improper, and the number of compositions associated with each

regular composition is 1 + 2 2H = 22"~ -1.

Note that the theorem proved in § 35 is true even for degenerate
compositions. Let P be an improper composition of 2mX which de-
generates to an irreducible composition of 2W~1X. Then J B 2 " " ' - 1 P is
regular and E2™ P is an improper composition of 2"l~1X repeated.
Hence E2"" -1.JET2'""1P is a pure composition of 2W~1X repeated, i.e.,
E2'"~lP is pure and E2'"~2P is impure. Similarly, if P is an improper
composition of 2TOX which degenerates to an irreducible composition of
2m~rX, the number of the first pure evolute is

38. Generating compositions of a period.
We have seen that, if P belongs to a self-conjugate period, there is
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one member A of the period such that DA = A. A will be called the
generating composition of the period.

(i.) To find the generating composition of a self-con jugate period.
Let B be any member of the period and suppose DB = ErB. Let

A be the generating composition, so that DA = A, and let B = E'lA.
Let n be the number in the period.

Then DB = DE"A = E2WA = E2"A

= E'B = Er+I1A.

Therefore q = /• (mod n).

Hence A = En~'B.

This holds whether N is odd or even.
(ii.) Let N be odd, and let t be the smallest index for which

2' = ± 1 (mod N).

Then DlP = P or P' . Let s be the smallest index for which DSP
or its enantiomorph belongs to the period of P. Then

DsErP = Er~'DsP.

Hence, if Q is any member of the period of P, DSQ or its enantiomorph
belongs to the period of P. Thus P belongs to a conjugate set of s or 2s,
and s is a factor of t.

Suppose there is a member A such that DSA =• A or A'. Take any
other member B. Let D*B = ErB or ErB' and B = E''A.

Then BSJB _ jy.E,,A _ E'<-2'DSA = Ef>--A or E*"A'

= E'B or ErB'

= E'>+rA or E'I+I'A'.

Hence #(2*—1) = r (mod n).

If g is the greatest common measure of 2s—1 and n, the solution of
this congruence gives g values for q. In particular, if the period is
normal, n = 2l—1, and s is a factor of t, and in this case q has 2*—1
values.

The compositions A = E~'lB will be called the generating com-
positions of the period. If s = t every member of the period is a
generating composition.

(iii.) Suppose next that N = 2mX, where X is odd.
DA has all its parts divisible by 2S+1 (say, DA is divisible by 2S+1) if

A is divisible by 2s, provided s <. in. Hence D'A cannot = A or A'
unless A is divisible by 2m. Then A = 2'M1, where Ax is a composition
of X. Then, if D*AX = Ax or ^4i, D'A = 4 or .4'. Corresponding to
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a set of s periods of compositions of X, we have, therefore, a set of s
periods of compositions of 2mX, and in these periods every 2m-th member
is divisible by 2m.

Consider now a period in which there are compositions divisible by 2r

but none divisible by 2r+1. Let A be such a composition. Then DM~M
is divisible by 2m, and, provided DVA is not alien for any value of p,
Dm~rA belongs to a period of a set. (It may happen that D"A is divisible
by 2m where p < m—r.)

The periods of 2mX are therefore of the following kinds :—

(1) Belonging to a set. This happens if there are compositions in
the period divisible by 2m.

(2) Such that DM belongs to a set.
(8) Such that DM is an alien appertaining to 2"'~1X.

In these cases it is always possible to find a generating composition
A such that

(1) DM = A or A'.
(2) DPA = B, where B is a generating composition.
(3) DM = BB, where B is a generating composition of 2"1"1 X.

To find such a composition.

(1) Let DSB or its enantiomorph = ErB, and suppose B = E'JA, where
DM or its enantiomorph = A. Then

DSB = E'l&~l)B = ErB.

Hence g(2s—1) = r (mod n).

If the period is normal, n = 2"l(2t—1), and q is determined as one of
2*—1 values.

(2) Let DPB or its enantiomorph = ErA, where DM = A or A', and

let D"EqB = A = Eq-"DPB = E"-'2"+rA.

Hence q . 2P = — r (mod n).

r must be divisible by 2^, and q has 2P values.

(3) Let DPB or its enantiomorph = ErA.ErA, where DS'A or its
enantiomorph = A, and let

D»E«B = AA = E'^IPB

= E'l-2P{ErA.ErA) = Eq-2P+rA.Eq-2"+rA.

Hence q. 2P = — r (mod n),

and q is determined as before.
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II.

Enumeration of Cyclic Compositions.

39. The number of compositions of a number N with B parts has
been investigated by MacMahon.* He finds

cm m - {N~1)l - I1*-1] +
C ( i V ' U) ~ (B-1)\(N-B)\ - \B-l)-

He also investigates the number of self-inverse compositions, i.e., those
which read the same backwards and forwards, and finds

SIC(2n, 2r) = SIC(2n, 2 r - 1 ) = SIC(2n-l, 2?—1) =

while SIC(2n-l, 2r) = 0.

Here we require the number of cyclic compositions of a similar nature.
We shall use the notation

Cy (N, B)

for the number of cyclic compositions of N with B parts, Cy (N, even) for the
number of cyclic compositions with an even number of parts, and Cy (N)
for the total number of cyclic compositions of N; and when we wish to
describe more particularly the nature of the compositions we shall use the
following abbreviations :—

cr = symmetrical, a = alien,

p = regular, <5 = degenerate,

7T = pure, i = improper,

and introduce them into the formula thus

Cy<r(N, B)

denoting the number of symmetrical cyclic compositions of N with B parts.
A bar over a symbol, standing for a minus, denotes the negative, as

a- = not symmetrical, 8 = irreducible. Also the product of two symbols
will denote the logical product, as <rp = both symmetrical and regular,
ap = neither alien nor regular; and the sum of two symbols will denote
their logical sum, as a-\-p = either alien or regular.

* "Memoir on the Theory of the Compositions of Numbers," Phil. Trans., Vol. CIJCXXIV.,
A (1893), pp. 835-901. This and a second memoir, Phil. Trans., Vol. ccvu., A (1908),
pp. 65-134, deal mainly with compositions of multipartite numbers.

t Employing the usual continental notation, equivalent to .V-ICK-I.
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40. To find Cy<r(N,R).
Take any symmetrical cyclic composition of N with R parts.
If R is odd one part occurs singly, the others in pairs.
If R is even and N is odd two parts (whose sum is odd) occur singly,

and in the cyclical order these are opposite one another.
If R is even and N is even there may be two parts (whose sum is

even) occurring singly, or they may all occur in pairs.
If we take any symmetrical cyclic composition of 2 n + l with 2r-f-l

parts, and increase the single part by unity, we get a symmetrical cyclic
composition of 2»+2 with 2>-+l parts, and if we diminish by unity the
single part (which is even) in a symmetrical cyclic composition of 2?i+2
with 2 r + l parts, we get a symmetrical cyclic composition of 2w+l with
2/-+1 parts. Hence

Again, if we take any symmetrical cyclic composition of 2w+l with
2>-+l parts, and make the pair which is opposite to the single odd part
coalesce, we get a symmetrical cyclic composition of 2 « + l with 2r parts,
and if we break up into a pair the even part which occurs singly in a
symmetrical cyclic composition of 2w+l with 2r parts, we get a sym-
metrical cyclic composition of 2«.+ l with 2 r + l parts. Hence

= Cy<r(2n

Next take any symmetrical cyclic composition of 2» + l with 2?- parts.
There are two parts, whose sum is odd, occurring singly. If we diminish
ihe greater of these by unity we get a symmetrical cyclic composition of
'In with 2r parts in which two parts occur singly. But these compositions
are not all different. Consider the cyclic composition

kabc ... A;+l ... cba.

Subtracting 1 from &+1, we get

kabc ... k ... cba.

But this is the same as k ... cba kabc ...,

and these have been reckoned distinct unless

abc ...

is a self-inverse composition. But in this case if r is even, so that abc ...
has a middle part I, the composition is cyclically symmetrical about I, and
would therefore arise also from

kabc ... I... cbakabc ... l-\-l... cba.
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Again, if k = I, and the composition lying between k and I is self-inverse,
and has a middle part m, the composition will be cyclically symmetrical
also about this part, and so on ; but we see that on any supposition there
are only two different numbers about which the composition can be
symmetrical, viz., k and I if they are different numbers, and k or I and m
if k = I. Hence

(1) If r is odd = 2s—1, and n = 2wt or 2w—1, the number of cyclic
compositions of 2?i which are given twice is

n—r+l

| 2 \C(n-k,r-l)-SIC(n-k,r-l)\

(2) If r is even = 2s, the number given twice is
n-r+l

Further, this process does not give all the cyclic compositions of 2?i
with 2r parts. There are others in which all the parts occur in pairs, e.g.,

kabc cbak.

Some of these will have been already included if they can also be con-
sidered as symmetrical about a single part. This will happen only if

kabc ...

is a self-inverse composition with a middle part, and this requires that r
be odd. Hence the number of compositions not included is

(1) If r = 2 s - l ,

(2) If r = 2s,

Hence Cy<r(2n, 2r) = Cy<r{2n+l, 2?-).

Now to find these numbers consider a symmetrical cyclic composition
of 2 n + l with 2 r + l parts. There is a single odd part which may be
1, 3, 5, ..., 2(n—r) + l, and the remainder is a self-inverse composition.

Cy<r(2n+1, 2r+l) =
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So that, finally,

, 2r+l) = Ctyo-(2»+l, 2r)

y f 2r+l) = CZ/<T(2N, 2r) =

The total number of symmetrical cyclic compositions can now be found

Cy<r(2n+1, even) = 2 (n) = 2 n - l ,

Cy<r(2»+lf odd) = 2 h = 2™,
r=0 \ 7 '

Cy<r(2n, even) = E ( j = 2 * - l ,
r=l \ 7 /

•ft—1 A,, 1 \

Cyo-(2?i, odd) = 2 n r = 2 ^ ,
r=0 \ ' /

and Cy<r(2n+1) = 2 n + 1 - l ,

These numbers, of course, include aliens.

41. We have next to find Cy(N, B).

(1) If N is a prime there are no alien or regular compositions* and
every cyclic composition with B parts gives B ordinary compositions.
Hence -

and CyW, B) = Cy(N, N-B) = ±r Q .

Therefore Cy(N. even) = Cy(N, odd)

— _ L (2W— 2) = — (2N"1 —
2AT ; JVV

* We exclude here the composition with N parts, 1, 1, 1,
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(2) Suppose now that N is not a prime. Then there may be alien or
regular compositions. Consider an alien or regular composition of B
parts consisting of S parts repeated, so that pS = B. Then, if K is the
order of the repeated portion pK = N. Hence p is a factor of the
highest common factor, G, of B and N. To every value of p there
corresponds a certain number of alien or regular compositioas, the com-
positions being regular, according to the definition, only when p = 2.
Now an alien cyclic composition which appertains to K will only give rise
to 8 different compositions by cyclical permutation. Hence

Cijap(N,B)=±-\C(N,B)-2S.Cya-p(K,S)\,
Jti

N B
where K = — , S = — , and the summation is extended to all values of

V V
p which are factors of G, 1 being excluded. This gives

A l s o Cy-(NNB) = ± ( N \ 2 ^ C ( ^ N~B

N \N—BJ p J r \p ' p

Since the H.C.F. of N and N—B is the same as that of N and B, and if
we assume that

~ =Cyap(±, $),
pi \p p

for all values of p, we have

Cyap(N, N—B) = Cyap(N, B).

But this is true when N is a prime, therefore it is true generally.

(8) If N is odd there are no regular compositions, and

Cya{N, N-B) = Gya(N, B).

Also Cya(N, even) = Cya(N, odd) = ^

(4) If N is a power of 2 = 2W, there are no aliens with an odd number
of parts, and

0,(2-, *> = £
8KB. 2 . VOL. 7 . NO. 1 0 2 4 .
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if B is odd. Hence

-4

42. Number of alien and regular compositions.

Cy(a+p)(N, B) = ICyap ( - , - ) ,
\p p I

and Gyp (N, 4r+2) = Cty5 (?L, 2 r + l ) ;

(2V) = (7y a ^ » o d d ) •hence

48. Number of improper compositions.

(1) If N is divisible by 4, every improper composition of N has two
involutes which are regular compositions of 2N, therefore the number
of improper compositions of N is

Cyi(N, even) = %Cyp(2N)

= ^Cya(N, odd).

(2) If N is odd, every composition is improper and gives rise to only
one regular composition of ZN.

(8) If N = 2X, where X is odd, the regular compositions are improper
and these give rise to only one regular composition of 2N. Hence

. (N, even)+CyP(N) = Cyp(2N) = Cya(N, odd)

= Cya(N, even),

where the last expression includes the regular compositions (see next
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section); therefore

Cyip{N, even) = ^Cyap(N, even)

, even),

since, when N = 2\, the only compositions which are degenerate are
aliens or regular compositions.

44. To prove that Cya(N, even) = Cya(N, odd),

the regular compositions being included in the left-hand side.

When N is odd, this equation has been already proved, § 41 (3), for
there are no regular compositions. When N is even we have to prove

Cy a (N, odd) — Cyap (N, even) = Cy /> (N).

Assume this to be true for all factors of JV. We have, >; 41 (2),

Cya(N, odd) = ^ T (J^) -22 ±Cyap(K, S),

where — = p = —£— ;

and Cyap(N,even) = - 1 **£' ( ^ ) - 2 2 - L CyapiK', S"),

where — = p
f = — ;

and, § 42, Cyp(N) = Cyu {^-, odd).

Let N = 2mX, where X is odd. Then p must be odd and can have all
values which are factors of X, 1 being excluded, and S must be odd. p'
may have all values which are factors of Ar, 1 and N being excluded, but
if p' is odd, S' must be even.

Hence 22 — Guap(K, S) = 2 — Ci/a{K, odd),

and 22-^-Cyap (K', S') = 2— Cyap(K,even) + 2 — Cyap{K'),
p' Pi Pi

where p1 is odd and p2 is even.
x 2
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Now Cy a(iV, odd) — Cya(N, even)

1 i i*-1 / N \ -v~1 /N\ I 1
= "F - o l i ) - s U ) •+2-Cy5j5(A'1,even)

A i >=o \ 2 r - f l / »=i \ 2 r / i Pi

+ 1 — CyapdQ-2 — Cy5(Ar
1; odd)-(7//a (^, odd)

Pi Pi \2 /

— 2 — CypiKJ — Cya [—, odd) (by original assumption)

'I1, J , ̂  <»

where a is any factor of X, excluding X, but including 1.

Now ^ Cj,3 ( J L , odd) - - 1 -

= o 7 - iC i / 5 ( ^ o d d ) -Cy~a'p & e v e n )
= —TfiCyp (~ow ^y original assumption)

provided j -< m.

Hence, by applying this result successively,

- Cya ( - , odd) - 2 — Cy«, ( — ) = — Cy P ( ^ = 0

since ^ - ^ is odd,

where a is any factor of X, including 1, but excluding X. And

1^-(N Ai\ "v1 1

TCya ^ , oddj - £ ^
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Hence Cya(N, odd) — Cya(N, even) = 0,

with the given assumptions. But this is true for any odd number, hence
it is true generally.

When N is a power of 2 the value of Gy a {N, even) can be found at
once by this theorem. For

Cya(2m, even) -Cy(%m, odd)

N-1

45. We can now find the whole number of even compositions which
are not aliens.

Gy a (N, even) = Cy'a (N, odd)

N

where/) is given all odd values which are factors of N, excluding 1.
This forms a reduction formula by which we can calculate the number

of compositions of N when we know the number of compositions of factors
of N. We may, however, obtain a formula which will be self-contained.

(1) Let N = 2mX, where X is a prime.

Gya(N, even) = j=r 2JNr"1- ~ Cya(2m, odd)

= J_ a^"1 i- — o2"'-i
N X 2m

N K

(2) Let N = ap, where a is an odd prime.

Cya(ap, even)

= j ; 2a"-1--i- Cya(ap-\ odd)

— ~ZT Cya(ap-2,o&d) — ...— -f=i Cya(a, odd)— -

and Cya(ap-\ odd) = - ^ i 2 a P " 1 - 1 - — Cya(a?-\ odd) - . . .

-•^=2 Cy a{a, odd)--^i;
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therefore

Gya{ap, even)— — Cya{av~\ odd)

= h W"-1-^ Cy a(aT-\ odd)-±V>-1'1 ;

hence Cya(ap, even) = -^ (2aP-1-2°p'1-1) = -^ (^~l-2N'a-1).
ap N

(8) Let N = 2ma6, where a, b are different odd primes.

Cya(N, even) = - 1 2 * " 1 - — Cya(2mb, odd) - - f Cya(2ma, odd)

~ N Z a 2-6 ( 2 2 }

L -*• (n2'"a.-\ o2m-l\ _i_ n2'"-l

_ J_ l-2-v-i_2Ar/'<-i_2-^-i_^2iV/a&-1).

It can now be proved that, if N = 2m.aa6V.. . , where a, b, c, ... are
different odd primes,

Cy a (N, even) = -^ (2*-1 — 2Nla-1 — 2Nlh~x —... + 2A7a6~1 + . . . — 2iV'/a6c"1 — ...).

We may write this symbolically -^= [2^]*(iV'),

where 0(iV) = ^ ( l - ^-) ( l— -y) ..., and [>Ja±b = x°±a;&.

Then, to find the number of irreducible compositions, we have to
subtract the number of degenerate compositions. Each regular com-
position gives, including itself, 22" - 1 degenerate compositions, § 87, hence

CyS(2mX, even) = 22"'"l-1C?/5(2m-1X, odd)

2»'-l_l J _ ,- -, (2,,,-lA)

2mA L d

and Cy8(Vn\, even) = ^

The appendix which follows contains a mass of numerical results
relating to the number of compositions and the periods for values of .N"
up to 20.
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APPENDIX.

I. Number of Cyclic Compositions and Periods.

N

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

C
ya

 (
N

, 
ev

en
) 

I

1

1

2

3

5

9

16

28

51

93

170

315

585

1091

2048

3855

7280

13797

26214

a.

1

—

1

—

1

—

2

—

3

—

5

—

9

—

16

—
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—
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I

————
l

—
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232
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—
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3388
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Cy
Sff

 (
N

, 
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en
) 

1

1

—

3

4

7

—

14

24

31

48

63

112
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—

255

476

511

960

'a
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i

—

3

2

9

—

28

24

93
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315

288
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—
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3626
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1
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—

3

2

7

—

7
6

31

4

63

14

15

—

15

14

511

12
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s

r-t

—

1

1

1

—

2 + 2.1

2 + 2.1

1 + 2.1

3 + 2.1

1 + 2.2

4 + 2.8

8 + 2.32

—

16 + 2.120

17 + 2.121

1 + 2.13

20 + 2.126

S
ho
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1

1

2
1 1
\ 3

5
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1
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1

2.1

2.2
2.1

1 + 2.1

3

II. Generating Compositions of the Periods and Sets of Peiiods.

The compositions which are here tabulated are the generating com-
positions of the periods, and they are arranged in conjugate sets. When
N is even DA and DB may belong to the same period or they may be
identical, even if A and B belong to two different periods. In this case .4
is chosen so that DA is a generating composition, and DA is given within
square brackets. The compositions in italics belong to racemic sets,
i.e., sets which contain both enantiomorphs. For example, if A = 1428,
DA = 1284, D2A = 2418 = A', and this set really consists of four
periods. The indices are symbolic, e.g., 234 stands for 2224.
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N = 8. One period of 1:—12.

N = 5. One period of 8:—132.

N = 6. One period of 2:—24.

N = 7. One period of 7 :—152.
A pair of periods of 1:—1223.

N = 9. Two periods of 7 :—172 ; 36.
A pair of periods of 7 :—123*.

N = 10. Two periods of 6 :—284; 133 [234].
A pair of periods of 6:—122132 [234].

N = 11. One period of 31:—192.
A pair of periods of 31 :—1*2124.

N = 12. Three periods of 4 :—48 ; 121323 [48]; 1353 [2424].
A pair of periods of 4 —142123 [48].

N = 18. One period of 68:—1U2.
Two pairs of periods of 63 :—1*2*1*2, r312.

N = 14. 4 periods of 14 :—
254; 12121232, 141328, 1321512, [264].

8 pairs of periods of 14 :—
122154, 123223, 13862, 122185, 12212223,

1332212, [254].
1293, 1352, [2246].

2 pairs of periods of 2:—
2246; 12412212 [2246].

N = 15. 8 periods of 15 :—
1132; 5 10 ; 836 ; 31821212 ;

8 12, 69 ; 1721212, 14212142.

82 pairs of periods of 15 :—
1248; 121326; 123*; 1*231212;

3227, 1563; 12121232, 18218212;
52U, 2352; 1428, 1284 ; 1*2173,1*52*4 ;
12212512,1*312*4 ; 1*212*12*, 1*21*31*3 \
1*2*1*2, 1*21*3;
I2 2 11, 224 7, 1 8 4 7, 126 7 ;

1 2 49 , 2 2 8 3 , 4 2 1 6 , 1 2 5 7 ;
13326, 122682, 221324, 312518.
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One period of 3 :—

126213.

A pair of periods of 3 :—
1642122.

A pair of periods of 1 :—
1822134.

N = 17. 16 periods of 15 :—

1152; 12312262; 2393, 6164;

3 14, 6 11, 5 12, 7 10 ;

338, 5156, 582, 3437 ;

352, 151514, 232325, 321324.

120 pairs of periods of 15 :—These fall into 30 racemic
sets of 8. To save space only one of each will be given.

2249, 2*85, 4*36, 3*29, 3247, 7212,
1259, 1295, 1529, 3*14, 33134,
1*3% 1S622, 2»325, 23521,
33126, 3S224, 129312, 124146,
223235, 225251, 321316, 322324,
422412, 1S239, 122175, 121283,
122147, 12221263, 12231216.

3 periods of 5 :—
21212414; 1431423, 1721412.

N = 19. One period of 5 1 1 : —
1172.

13 pairs of periods of 5 1 1 : —
la3121522; 12 511,24103,16 4 8;

12215,22411,4283,328 5,
32 7 6, 1 5 7 6, 52 7 2, 1 9 5 4, I2 9 8.


