110 Mr. H. M, Macdonald on Bessel Functions. [Nov. 11,

Note on Bessel Functions. By H. M. MacpoNaLp.
Received November 10th, 1897. Read November 11th, 1897.

The solutions of the differential equation

Ty Ly, Wy
d:c’+a:d;i'+(l ws)y—o

can be represented by convergent series in ascending powers of z for
all values of », and by semiconvergent series in descending powers of
z for values of n, which are such that the real part of = is greater
than —%. If y, and y, are two solutions of the first kind, y; and y; of
the second, then they are connected by relations of the form

Yi = ay+bys, ¥ = et dys

The constants in the above relations are usually obtained by
calculating the numerical value of the two sides of the equation for
certain values of  (Stokes, Camb. Phil. Trans., Vol. 1x., X.; Weber,
Orelle, Vol. uxxv.; Math. Ann., Vol. xxxvi.). The object of the
following note is to show how the one form of solution can be directly
obtained from the other. .

1. Solution of the Differential Bquation.

The solutions of the differential equation have. been given by
Sonine (Math. Ann., Vol. xv1.) in the form

By I elete-1n Gt

2m g’

the paths of integration being such that they begin and end at places
where el*(-¥" vanishes, » being arbitrary. These solutions are there
obtained from the difference equation; they can be obtained from the
differential equation in the following manner. ‘

Assume y= J ‘ ¢ Sds,
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where Si8 a function of s not involving x. Then, substituting in the
differential equation, after having multiplied by a?

[l e (2 +as +a’—n®) Sds = 0;

%

integrating by parts
£2] , — _é_ g G "
€ [w(s’-}-l)S ds{(s’+1)s}+ss:| l'..
+j & [d% {@+1) 8} - L (:9)—ms] as=0.
Henco e I:a: (*+1) s-—gs {(#+1) 8} +sS] ]o =0, )
@ 3+1) 8} — L (68)—n?S = 0 5
@+ 8} - Z () —nS=0. ©)
Putting s = sinﬁ n, (2) becomes

1 'i{ 1 d
coshy dn ( cosh n dn

1 _ 1 a.c. 8 Q —
(S cosh n)} i & (Ssimhn)—nS =0,

that is, % (S cosh n) —#3S cosh n = 0.
n
A solution of this is Scosh n = de™™,

whence y=4 f " gestonn gino dn
"o
is a solution of the original differential equation, n, and »n, being
given by A d n
gFeinhn [zS cosh?y— I (S cosh n)] I =0,
0 ,0

'h=0.

"

that is, by e*i8h7 (3 cosh n+n) e~™

Writing e” = ¢, y takes the form

4 J"' pt=te-un 4t

nel?
6\ ¢

» ‘l
where ¢, ¢, satisfy el=¢-10 [%— ¢+t +11J t'"l =0.
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The following values of £, and ¢, satisfy this condition :—

t,=0we*, t =me

ty= 0e™", ¢ = Qel~~#),

ty=0e""9, ¢t =o0e*
where the real parts of ze*, ze* are less than zero. The solutions
corresponding to these sets of values for the limits may be denoted

by 4y, ¥s ¥s; they are the same as those given by Sonine. The solu-
tion ¥, is immediately seen to be equivalent to the series which is

usually taken to define J, (z), the constant 4 being put equal to 2L .

m
The solution y, is equivalent to e ""J_, (z) and y; to

J—n (Q‘») —e™ " J:a (2}) .

2u8in nmw

These relations are established in the paper quoted.

2. The Semiconvergent Forms of the Solutions.

When a function can be represented, for certain values of the
variables involved, by two series one of which is convergent and the
other semiconvergent, it seems natural to expect that it can be
represented by a double series of the form 3,3 u,, where summation
with respect to g first gives one of the series, and with respect to p
first the other. In the present case it is required to find a double
integral which shall be equal to the integral above given, change in
the order of integration giving the semiconvergent form.,

Taking the solution

oAt
y ] ._].'_ e" (e-1/¢) ﬁ
3 27“ tn-rl ?

0elv-a)s
and putting ¢ = 2r,

Ozelr=a)s T
If the real part of n is greater than —1, the upper limit may be
taken to be ¢+, where ¢ is any real positive quantity, for the part
of the integral from o ze® to ¢+ o« vanishes. Further, if the real
part of z is taken to be greater than zero, the lower limit can be
chosen so that the real part of r is positive all along the path of
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integration. - Now
I (n—%) = ‘r"“J’ e~"s"~ids,

0
when the real part of r is positive and the real part of = is greater
than —3; therefore

g

x

chs (f°
[ —pa—— r—8- () n-} _;d .
Yo = G T (n—1 )j L et e drds;

.where the real part of n is greater than —}, and the real part of a
is greater than zero. This may be written

. ) ctws 1
Ys = 1 __ & [I 5 g @) g-be-ddr ds
0

2m 2”H(n— )
+r+¢?‘ r e"""’"‘"s"“r".drds];
1

0

Writing in the first integral :
r(1—s) =4,

and in the second r(s=1) =¢,
it becomes .
1 Al ot "l -0 gn - PP
e — j ]' (1—s)-V¢-Vdeds

+ I" J' gt DG g (s—-l).“t“dtds] )
0 1

Now, by the above,

fcw:e‘-[z-a-.)/m % = 7 eu:»/(l—c)’
° .

ond jcm.e_t-[z-(c—l)m]git_.t = 7 a-aml(o-l) ;
o .

hence, changing the order of mtegratlon in the expressmn for y,,

1 "

—_ u»/(l'l) -1 (]1— ]
Ys 2Jﬂ 2..1-[(”_%) [J'o s (1 3) ds

.'._l r e_,d(.-n) g (s—;l)"ds].
) . :

Writing Dfor 2 ) and observing that the expressions under the:
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integral sign are uniform between the limits of integration,

T n-§ -.n/(l -a) — §
2»01 ‘\/7I' H (n ) (1+D,) [f (1 S) dS

+ % J e==V-1 (5—1) -4 ds],
1 .

“that is, Yy = (1 +D)h e, 3)

PARYE ] H (n—
Substituting for y, the equivalent expression

Jon(z) ="y (z) _ z" woy €
2¢ 8in nar T /rIl (n—1) 1+79) i @

Similarly, it may be shown that

Jon(x) —™J, (a:) 1 9\n-3€"%
2¢ 8in nr 2"4/7rl'l(n 1)(1+D) @ )

These expressions can be extended to the case where the real part of
x 18 negative after the manner of Weber, Math. Ann., Vol. xxxvir
The symbolical forms for the Bessel functions (3) and (4) have been
given by Hargreave, Phil. Trans., 1848, for J, (z) and Y, (2). From
the above, subtracting (4) from (3),

22" $\u—y IR T sin a:
@ = mmop A0
. J_p(@)—J, () cosnmr __ 22" Sy ,cos 2,
adding, sin nw T /r M (n— (1 +D)

when n is an integer, this latter becomes

1o _ 22" "- ,cosa-
w .= o o/w II (n— )( +1)

where Y, is Hankel’s second solution of the equation.

The integral forms can be obtained from the symbolical as follows :—

noy €
z"an("")(1+D’) '

+Dy-i L f " ometa ay,
]

0

_ w’l
TVl (n—-1)
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q - & 1T e $\n~} 3 .
tha.tls,. y‘_2"\/1rl'l(n—§) lLe (=2 4831 dt;

—_— -z 2"-6 w-l(Zrul)mJ’m —zt yn-3} ( — t)u“i
hence y,—.2——,.vwn(n_%)e . et 1 5 dt.

Putting ¢t = s,

-} (@2n+i)m N A (1 )u—id
—_— e~ts" -_— S,
b= \/27rw I (n—%) .L 2w

that is,
La@)=eh@) et [y (s ),
2¢sinnw oz II (n—3) Jo ez ’
I, (z)—e™ ], (,v) g THEnelm r’ g -i 1 n-}
n A s _—— ¢ s + ds.
2¢sin nw V2 I (n—2%) lo ( )

These are equivalent to the relations given by Weber, Math. Ann.,
XXXVIL, and can_be extended to the case where the real part of =z is
negative as before.

The Integral {P:dz, and Allied Forms in Legendre’s Functions,
between Arbitrary Limits. By R. Harareaves, M.A. Re-
ceived October 28th, 1897. Read November 11th, 1897;
and received, in revised form, December 15th, 1897.

For different positive integers the indefinite integral [ P, P, dz has
been expressed in simple form, and when m = n the value of the
definite integral between the special limits 0 and 1, or —1 and +1,

is due to Legendre. The fundamental theorem of the present paper
2

expresses the difference (2r+3) P.,,—(2n+1) P; as the differential

coefficient of a simple expression involving P, and P,,,. From this

follows the difference of two consecutive integrals between arbitrary

limits, and a direct summation gives the value of the single integral.

As the argument turns on the use of sequence equations, it is at once

applicable to the forms P,Q, and @, and moreover the index n may
12



