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was engaged in revising the first edition of the Principia. The refer.
ence to prop. 7 cor. 3 looks at first sight as if the manuscript were
subsequent to the second edition; but I think that this reference - -
relates merely to the manuscript of his proposed addition to that
proposition, of which the three rules mentioned above are, I helieve,
a rough draft. On the other hand, the numerical calculation re-
lating to book 111, prop. 4 gives a number as occurring on page 406,
line 25, and can refer only to the first edition; moreover many of
the remarks alluded to above in art. 3 wounld be meaningless if
written subsequent to the publication of the second edition in 1713.
Altogether I feel no donbt that the mannscript was written before
the issue of the second edition.

The Harmonic Functions for the Elliptic Cone. By E. W.
Hcepson.  Communicated in abstract January 14th, 1892.
Received May 30th, 1892,

The harmonic functions for the circular cone were introduced by
Mehler ; an account of his theory is given in Heine's Kugelfunctionen.
In the present communication, I give some indications of a theory of
the more general harmonic functions which are required for the
corresponding potential problems connected with the elliptic cone ; I
propose to call these harmonics elliptic conal harmonics.

It is first shown that the normal funclions ave of the form

1 sin

7 cos (plogr) 4, (p) B,(v),

where r is the radius vector, and g, v are elliptic coordinates, the
latter referring to the elliptic cones, and p is a constant; the
functions 4, (n), B, (») satisfly differential equations which are the
same as Lamé’s, except that the degree n is no longer a positive
integer, but & complex quantity —} +pc, so that the functions are
really Lamé’s functions of complex degree. I have next considered
the forms of the solutions of the differential equations satisfied by
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A, (n), B, (v) which must be taken for the potential problem. There
are no solutions, as in Lamé's case, which can be found in finite'
terms. The constant parameter which occurs in the differential
equations is determined from the condition that A, (x) must be
periodic with respect to a certain angle ¢, of which u is a function;
it appears that 4, (u) falls into four distinct classes corresponding to
Lamé's four classes, and that the constant is determined as a root of
one of four transcendental equations. I have next considered the
nature of the roots of these equations, and shown that these roots are’
all real and are contained betwcen certain intervals. It is next:
shown that two solutions B, (v), B, (—») of the equation satisfied by
B, exist, onc of which is finite everywhere within the cone, but
infinite over a cortain space lying in a principal plane of the coue
produced beyond the vertex.

So far as 1 am aware, Lam{'s equation has boen hitherto studied
only in tho case in which = is a positive integer (by Lamé and
Hermito), and in the case in which # is half an odd positive integer.*
It appeared to me that the indications I have been able to give
a3 to the nature of tho solutions in the case of those moro compli-
cated functions, might not be without interest.

It may bo remarked that the problem of electrical distribution on
an iufinite plate bounded by two straight cdges meeting at o point, is
solvable in terms of theso functions. Mehler's functions are, of
conrse, a particular case of the functious 1 have considered.

1.. If for the rectangular coordinates z, y, z we put

e Vid=b Vb —,3 Vl—ut V=
r=rt-, y=r — ey E Pt ——
be b Vet eV =1
where ¢>1b, we have Byttt =7
2 2 2

T " LA

2T '_6.' TS Tt 0,

M p— C—p

'1 _ ,,I'Z ;1 - O

v =yt ct—yt T

thus the equations » = constant, p = constant, v = constant, repre-
sent three systems of surfaces cutting ench other orthogonally, the

# Sce IHalphen'’s Fonctions elliptiques, Vol. 11., p. 482; aleo Lindemann, British
Assaciation Report, 1883,
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first being concentric spheres, and the sccond and third two systems
-of confocal cones having their vertices at the centre of the spheres.
Wo are about to consider the potential problem for spaces in which
& boundury is the half-cone for which v is comstant and positive ;
for the other half of the cone » will be negative. We observe that v
may have values of 0 to b?, and p* may have values from b* to ¢’

It is known* that Laplace’s equation V2V'= 0, when the quantities
7, M4, v are considered as the coordinates of a point, takes the form

D (s 00) OV, BV _
i ”)‘ar(’ ar)”aa Yoo
whero p=cdn(K—ce, k), v="0sn(( k),

k being -};— VE=1, and I the complementary modulus; this cquation

is satisfied by (Cr"+Dr=""") 4 (u) B (»), where A (r), B (v) satisf§*
the equations

2
%&SQ +{n (n+1) = (b + %) o} 4 () = 0,
f—lg—g&,—g’—’) —{n(@+1) ¥—(¥'+c)a}B(») =0,
a being any constant quantity.

If » is dotormined so that the solution (Cr"+ Dr-""') 4 (p) B(»)
vanishes for two given values », and r; of r, we must havo

Cri4+ D™ =0, Cry+Dr"" = 0;

]JCD.CO T:"“ _ ,.;'H-H’
or (20+1) log Z-= 2k,
2

where « =+/=1, and k is an integer ; hence

Iem
n=—%+

log 1L
og P,

* Sce Heine's Bugelfonctionen, po 354,
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Thus, as in the case of Mehler's functions, we take n of the form
—3%+p, for harmonics adapted to the case of the cone; the normal
funotions. are therefore of the form

75 e 20 4,W) B, (),

when p=logr,

and where 4, (p), B, () satisfy the equations

%’?(ﬁ) - [(P’+*)f"+(b'+c’)a] 4, (p) =0 .o (1),
LBO) L[5+ 7+ (0 +)a] B () =0 v,

which differ from Lamé’s equation only in having —}+p+v —1 for n;
thus 4, (1), B, (v) may be regarded as Lamé’s functions of complex
degree.

These equations are reducible to

(,“’_b’) (P!_c!) QI%) +p (2[4’—1)’-—6’) dl;’f}l)

+[@+Dat(P+H p] A (p) =0,

and & predisely similar equation in ».

2. In order to determine the forms of A (u), we shall put

cos ¢ = \/ i

and we observe that, in order that the normal function may be a
potential function either for the space inside the half-cone » = con-
stant, or for the space outside this half-cone, it is necessary that
A (p) should be & periodic function of ¢, the period being 27 ; the
values of the constant a will be determined for given values of p by
means of a certain convergency condition.

The equation T [(p +1) p?+ (B + %) a]A =0 .eeeenne(l)
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is equivalent, when p is the independent variable, to the equation
a4 da
$_ I (ud—gt) T4 2l =plae ) =52
(=) (=) T4 -0 2
+{(B+M)a+(P+H '} 4 =0
Putting p = (b*sin’ ¢ +c*cos’ p)},

and making ¢ the independent variable, this equation becomes
. 4’4 . a4
(b*sin’ ¢ + ¢’ cos’ ) Fro (c'—b") singcos ¢ 7
—{(®*+cMa+(p*+1)(V'sin’ g+ cos'¢)} 4 =0,

i —b?

or, writing L=
4+

Ky

(14« cos 2¢)%‘§ —«s8in 29):—:; —{2a+(p"+4§)(1 +« cos 2¢)} 4 =0.

To solve this equation, we may take A of one of the four forms
which correspond to Lamé’s four classes,

3a,+a;co8 2 +a, cos 4p +...,
a, 8in 2¢p +a, 8in 49 4-a, 8in 69+ ...,
a,co8 ¢+ a,cos 3¢l+a,cos S+ ...y
a,sin ¢ +a,sin 3¢+ a;8in Sp + ...
These series are infinite instead of finite as in Lamé's case.

Substituting the first of these series in the differential equation,
arranging the result of the substitution in a series of cosines of
nmultiples of ¢, and equating the coefficient of the general term to
zero, we find

— 41, ~2(1n—1)*kgn_s —2 (0 +1)? kg a+ (3 +1) €850 13— (5 —1)K0ga.s
—(2a+p'+1) a3y~ (p'+1) Fr¥020.a—(p"+1) 0200 =0,
and in particular @, (2a+p'+3)+«a, (p’+3) = 0.
Arranging the above result, we have for the equation connecting
Q2n's2y Qany A2n-2y
Ganea {(P'+1) Ir+(n+1) 20 +1)x} + @y {4n*+ a+p'+1)}
+ag-3 {(n—l)(Zn-—l) x+(p’+*)} =0,
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Write —B=2a+4p’+}, I (P+)=7;
then, changing # into n—1, we have
aau {y +0(20=1)} +020 {4 (a—1)'— )}
+ i {(n—2)(2n—=3) k+y} =0 ... (3)
a8 the equation connecting ay,, @yuz, Gyu-s

By means of the n equations obtained by giving = the values
1,2, 3 ... n, we can express a,, in terms of a,, the value of a,/a, being
a rational integral expressionin 3 or in a of degree #n. The condition
of convergency of the series is that the limit of a,,, when « is indefi-
nitely increased, may be zero; this condition gives the values of 3 or
a as the roots of a transcendental equation which it is neccssary to
examine.

If any one of the other three series is substituted in the differential
equation, we shall obtain in & similar manner & relation connecting
the coeflicients, and thence a transcendental equation for the deter-
mination of B or a, as the convergency condition of the series. It
will, however, be sufficient for us to examine the first class of solu-
tions, as the treatment of the other three classes is precisely similar.

3. It will now be shown that all the n roots of the equation a,, =0,
in the quantity B, are real and unequal.

Writing down the equations (3) for the values 1, 2, 3, ... n of n, we
see that, when 8 =—o0, the functions a, a, a,, ... a;, have only
changes of sign, and when 8 = + o, they bave only continuations;
thus, as 8 changes from o to — w0, n continuations of sign are lost.
When a,, = 0, where r<u, we see that a,,; and ay,_; bave of)posite
signs; hence, as in the case of Sturm’s functions, a continuation of
"signs is lost only when a,, goes through the value zero; it follows
that the number of roots of the equation a,, = 0 in 8, between any
two given values of f3, is equal to the number of continuations of
sign in the series a, a,, a,, ... @;, which are lost as 8 goes from the
larger of the two values to the smaller one, and that all the roots
are rcal and unequal,

Again, if f =4 (n=1)3% we sce that a, and a.,_, have opposite
signs; hence a,, = 0 has one or more roots lying between w and

4 (n-1)
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Next reduce —= - to a continaed fraction of the form
2n~-3
1 1
B—4(n-1)~ -
( U {P"4' (n—2)"} = v, {ﬁ—4 (71—3)*}4— &e.,
where o, = — (2n—1)r+y asl g,

(n—2)(2n—38) k+v’ Yner = u,

If we put 5=4n% it can be seen that each denominator in the
continued fraction is greater than 2, and thus that the whole
expression is positive. The same is the case if /3 has any value greater
than 4#%; hence for the value 8 = 44* the signs of au,, Gy Cuueg, ...
are all the same, and thus there is no root of the equation a,, =0
greater than 4n’. When f3=4 (n—1)% the series a,, .y @Gy,.q ... aro
all of the same sign, and thas there is only one change in the series
Gy @2y-9y Bay-r ... ; A0d therefore the equation a,, =0 has one and
only one root lying between the values 4»’ and 4 (n-—1)% of 8; this
root i the greatest one which the equation has.

We shall next show that the equation a,, = 0 has » roots less than
4. In the series ay, a,, ... a;, there are only continuations when
B = 4»"; houce in the series a,, a,, ... a,, there are n—r changes; thus
there are n—7 roots of a,, = 0 greater than 4% and therefore r roots
less than 4+°. It has thus been shown that, of the roots of the equa-
tion a,, = 0, one lies between each of the numbers 0, 27 47, . (2n)’
The roots of a_ = 0 are therefore compriscd between 0 2 4,
one root being in each interval.

In the special case x = 0, we have b= ¢, and the differential

eqnation reduces to
74 4 B4 =0;

in this case the values of 5 are 0, 2', 4%, ..., and the corresponding
values of the functions of this class are O, a,cos2¢, a,cosdy,
ag cos 6¢, ... ; these are the functions for the circular cone.

In the ¢ase of the functions A of the second class, it is shown in a
similar manner that there are an infinite number of values of S,
corresponding to any one of which a function is determined, and that
these values of 3 lie between the same intervals as in the case of the
first class.

In the functions of the thivd and fourth cl.sses, the v.l.lm.s of 8 lio

in the intervals between 0, 13, 32, 5%



238 Mr. E. W. Hobson on the [Jan. 14,

In the case of the circular cone (x=0), the four classes of functions
A are cos 2n¢, sin 2n¢, cos (2n+1) ¢, sin (2n+1) 9.

4. Wo have next to consider the form of the function B, (»), a
having a value corresponding to & particular function 4, (u) as above
determined.

We have to integrate the equation

=)= D) 1, iy )

+[@+)at+ (P +H ] B() =0,

in a form suitable for values of » numerically less than b. The
singular points being v =xb, v =g, the equation has an integral

of the form .
aftva(3)va(5) 3

+B,% {~1+b, (%)'+ b, (%)‘+} '

which is convergent when »<b, 4,, B, denoting arbitrary constants,
and a,, a,, ..., by, b, ... quantities which can be determined. When
v=+4b, each of the series becomes divergent, but it is possible to
choose the value of 4)/B, so that the whole expression will be con-
vergent for » = b; for this value of 4,/B, the expression will he
. infinite when v = —b. Taking for A4,/B, the same value as before,
but with opposite sign, we obtain & solution which is convergent for
v=—0> but divergent for v=>. Denoting this value of 4,/B, by
1/A, we see that the equation has two solutions

Ao{(1+a, Lap +...)+)\'Z—(1+ba +hog +)}

AQ{(1+a,%: +a.;—:+...) (1+b, +b 2 +) }

the first of which is finite when v = b, and is infinite when v =—},
and the second of which is finite when v =— 18, and infinite when
v=">. If we denote the expression

(1+a,—z;+a,;;:+,,_)+x (Hb, AR +)
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by B, (v), the complete solution of the equation is
B (v) = 0B, (v)+0'B, (—»).

" The function B, (») is finite throughout the space which contains the
infinite triangle v = b, and is infinite in the external space which
contains the infinite triangle v =—1>b. There exists one such function
B, (v) corresponding to each function 4,(u). The constant A is &
transcendental quantity to be determined ; in the case (b = ¢) of the
circular cone, its value can be determined.*

In this last case the functions B, (»), B,(—») become Mehler's
fanctions K (cos §), K (—cos@), the first of which is finite for § = 0,
and the sccond for 6= =,

5. As in the case of Lamé’s functions, it can be shown that, if
A, (p), 4,, (1) be two functions corresponding to a given value of p,
and both belonging to the same one of the four classes, then

[ "4, 4, de=0.

0

To expaud a function of u in & series of the-functions 4, we divide
the function iuto four parts

AW+ VE=V =@ fi(0)+ V= fi(w) + V= fi(w),

corresponding to the four classes of 4 functions; where f, (u), f, (n),
S5 (1), fi () arerational functions of u ; then, ugsuming the possibility
of the expansions, the coeflicients in the expansion may be determined
as in the case of Lamé’s functions.

6. Suppose it is required to find a potential function, inside the
space bounded by the semi-cone » = v, whichshall have a given value
over the surface of this boundary. Let

v="r0m
be the given value of ¥ when » ='y,; then

:;;f (r, p) = 27;17- j.:, (11»[:./'(0', ) cosp (r—o) dv

7

% Sce Camb. Phil. Trans,, Vol. xtv,, p, 218,
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for all values of » between 0 and «. Next,suppose f (o, u) expanded
in & series of A functions corresponding to the value p, say 3 a, 4,,;
rel

we have then

Z ) =5 [ dpj S, 4, cosp (r—0) do;
the required value of the potential function within v =, is

1 I? {v)
d AN A _— 3
v 5 pJ By cos p (r—o) do
The potential function for the space outside the houndary v =,
which has the same valno as before over the boundary, is

1 0° g DBu(=7)
e dj Sa, -4 cosp (r—oa)da.
2”‘/7]-°° PL "B pr( ¥o) P p( )

Next consider the space bounded by two spheres » = a, » = }, and
by the conal surfaco v = »;; suppose the potential function V is to
have the value zero ovor each of the spherical boundaries and to have
prescribed values over tha conal boundarvies. Iu this case the values

ke . .
of pare —-- , where k is an integer.
lo

=~

114
o

=

The value of ¥V must be of tho form

[kvr log '%1..:. ’)

k

3 7;“‘"11‘?]:. “Aratoram.s (K )-U("o)

the constants « being determined from the assigned values of V over
tho conal surface v = v,



