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was engaged in revising the first edition of the Principia. The refer-
ence to prop. 7 cor. 3 looks at first sight as if the manuscript were
subsequent to the second edition ; but I think that this reference
relates merely to the manuscript of his proposed addition to that
proposition, of which the three rales mentioned above are, I believe,
a rough draft. On the other hand, the numerical calculation re-
lating to book in. prop. 4 gives a number as occurring on page 406,
line 25, and cnn refer only to the first edition; moreover many of
the remarks alluded to above in art. 3 would be meaningless if
written subsequent to the publication of the second edition in 1713.
Altogether I feel no donbt that the manuscript was written before
the issue of the second edition.
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The harmonic functions for the circular cone were introduced by
Mehler ; an account of his theory is given in Heine's Kugelfunctionen.
In the present communication, I give some indications of a theory of
the more general harmonic functions which are required for tho
corresponding potential problems connected with the elliptio cone ; I
propose to call these harmonics elliptic conal harmonics.

It is (irsfc shown that tho normal functions arc of the form

where r is the radius vector, and fi, v are elliptic coordinates, the
latter referring to the elliptic cones, and p is a constant; the
functions Ap (/i), Bp (v) satisfy differential equations which are the
samo as Lame's, except that tho degree n is no longer a positive
integer, but a complex quantity — h+pc, so that the functions are
really Lamp's functions of complex degree. I have next considered
tho forms of the solutions of the differential equations satisfied by
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Ap (/u), Bp (v) which must be taken for the potential problem. There
are no solutions, as in Lame's case, which can be found in finite1

terms. The constant parameter which occurs in tho differential
equutions is determined from the condition that Ap (n) must be
periodio with respect to a certain angle <j>, of which ft is a function;
it appears that Ap(n) falls into four distinct classes corresponding to
Lamp's four classes, and that the constant is determined as a root of
one of four transcendental equations. I have next considered the
nature of the roots of these equations, and shown that these root's are
all real and ivro contained between certain intervals. It is next •
shown that two solutions Bp (v), Bp ( — v) of the equation satisfied by
B, exist, ono of which is finite everywhere within the cone, but
infitiito over a certain spaco lying in a principal plane of the cone
produced beyond the vertex.

So far ns 1 am aware, Lamo's equation has boen hitherto studied
only in tho case in which n is a positive integer (by Lam6 and
Hermito), and in the caso in which n is half an odd positive integer.*
It appeared to me that the indications I have been able to give
as to tho nuturo of tho solutions in tho case of those moro compli-
cated functions, might not be without interest.

It may bo remarked that the problem of electrical distribution on
an infinite plato bounded by two straight edges meeting at a point, is
solvable in terms of these functions. Mehler's functions are, of
course, a particular caso of the functions 1 have considered.

1.. If for the rectangular coordinates .T, y, z we put

be

where c>b, wn have .u2+ ?/•' +z* = r2,

-T-+- VI 5 l _

thus tho equations r = constant, fi = constant, v = constant, repre-
sent throe systems of surfneos cutting each other orthogonally, the

• Soo IIftlplicn'8 Fnnetiom elliptiquc,*, Vol. 11., p. 482; nleo Lindcmnnn, British
ssicitrfiiii) Ihfinrf, ISS.'i.



1892.] Harmonic Functions for the Elliptic Cone. 233

first being concentric spheres, and the second and third two systems
of confocal cones having their vertices at the centre of the spheres.
Wo are about to consider the potential problom for spaces in which
a boundnrj is the half-cone for which v is constant and positive ;
for the other half of the cone v will be negative. We observe that v
may have values of 0 to 6s, and /i* may have values from b8 to c\

It is known* that Laplace's eqnation V2V= 0, when the quantities
r, fi, v are considered as the coordinates of a point, takes the form

"whero n = c dn (K—ce, k), v — b sn (£, 1c),

k being — v c2—&2, and Jc the comi)lemcntnry modulus ; this equation
c

is satisfied by (Crn + Dr-"-') A (fi) B (v), where A (/u), B (v) satisfy^
the equations

{n (n + l)^s-(6s + c8) a} A (?) = 0,

a being any constant quantity.

If n is dotormincd so that the solution (Crn + Dr~n~l) A (/u) B(v)

vanishes for two given values r, and r2 of r, wo must havo

Cr[+I)r;n-X = 0, C^+Dr.;"-1 = 0;

1 ? » • ! 2.1 + 1

Juouco ?i = 92 ,

or

where i = v — 1, and k is an integer; hence

, JCTT

i, ] i . 3; j l .
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Thus, as in the case of Mehler's functions, we take n of the form
"~ 2 +lP> f° r harmonics adapted to the case of the cone ; the normal
functions, are therefore of the form

when p = log r,

and where Ap (/i), Bp (v) satisfy the equations

c>)a]Ap(h)=O (1),

(2),

which differ from Lamp's equation only in having — f + p v — 1 forn;
thus Ap (fi), Bp (?) may be regarded as Lamp's functions of complex
degree.

These equations are reducible to

dp

and a predisely similar equation in v.

2. In order to determine the forms of A (/*), we shall put

and we observe that, in order that the normal function may be a
potential function either for the space inside the half-cone v = con-
stant, or for the space outside this half-cone, it is necessary that
A (p) should be a periodic function of <f>, the period being 2n; the
values of the constant a will be determined for given values of p by
means of a cortain convergcncy condition.

Tho equation ^ - [ ( ? s - H V + (&8 + cs)a]i l = 0 (1)
(IE
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is eqaivalent, when /i is the independent variable, to the equation

*) | £ +/i (2/x
a-6a-c8) ^

Patting /ti = (6a sina ^ + c8 cos8 9)',

and making <j> the independent variable, this equation beoomes

or, writing

d(p

To solve this equation, we may take A of one of the four forms
which correspond to Lamp's four classes,

as sin 2<p+a4 sin 4^>+afl sin

^cos ^ + a8cos

a,sin ^ +

These series are infinite instead of finite as in Lamp's case.

Substituting the first of these series in the differential equation,
arranging the result of the substitution in a series of cosines of
multiples of <p, and equating the coefficient of the general term to
zero, we find

— 4n,aa2(1—2(n-l)8j:oj(,_a-2(n+l)a«:ai(,0+(n + l)K02n+a—(n—IJKO^.J

~(2a+jp '+4) oto-(jp»+i) b'thn-i-W + Dfrchm = 0,

and in particular a0 (2a+pa + i)+*a» (j>9 + i ) = 0.

Arranging the above result, we have for the equation connecting

= 0.
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Write _/3 = 2a+*•+-}, £<c (

then, changing n into n—1, we have

+ «u-«{(n-2)(2n-3)ic + y} = 0 (3)

as the equation connecting ain, a2n_2, a,in.t.

By means of the n equations obtained by giving n the values
1, 2, 3 ... w, we can express a.in in terms of a0, the value of ain/a0 being
a rational integral expression in ft ov in a of degree n. The condition
of convergency of the series is that the limit of ain, when n is indefi-
nitely increased, may be zero; this condition gives the values of ft or
a as the roots of a transcendental equation which it is necessary to
examine.

If any one of the other three series is substituted in the differential
equation, we shall obtain in a similar manner .a relation connecting
the coefficients, and thence a transcendental equation for the deter-
mination of ft or a, as the convergency condition of the series. It
will, however, be sufficient for us to examine the first class of solu-
tions, as the treatment of the other three classes is precisely similar.

3. It will now be shown that all the n roots of the equation ain = 0,
in the quantity /3, are real and unequal.

Writing down the equations (3) for the values 1, 2, 3 , . . . n of n, we
Bee that, when /3 = — oo, the functions a0, <&,, a*, ... a2n have only
changes of sign, and when ft = + oo , they have only continuations ;
thus, as ft changes from oo to — oo, n continuations of sign are lost.
When a2r = 0, where r<n, we see that a2r+2 and a-Jr_2 have opposite
signs; hence, as in the case of Sturm's functions, a continuation of
signs is lost only when a,,t goes through the value zero; it follows
that the number of roots of the equation a2lt = 0 in /3, between any
two given values of ft, is equal to the number of continuations of
sign in the series a0, a,, a4, ... a2n which are lost as ft goes from the
larger of the two values to the smaller one, and that all the roots
iuo real and unequal.

Again, if ft = 4(?i—])3, wo see that ain and a^^ have opposito
signs ; hence n,n = 0 has one or more roots lying between co and
4 ( » - ] ) ' .
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Next reduce —— to a continued fraction of the form

u» {/3-4 (w-2)aj - v,,., {/3-4 (n-3)2} — &c,

, n (2n — l)«.*4-y '*«-i p
where «» = 7—-7775 nr—•—> vn-\ = 1 &c.

(w — '2) (2?t — 3) K + y «„

If we put /3 = 4n8, it can be seen that each denominator in the
continued fraction is greater than 2, and thus that the whole
expression is positive. The same is the case if /3 has any valuo greater
than 4<7ja; henco for the value fi — 4ua tho signs of a.,ni &>,,_2t rta,,_4, ...
are all the same, and thus there is no root of tho equation au = 0
greater than 4raa. When /3 = 4(w — I)8, the series ain.n a*>n-i ••• are
all of the same sign, and thus there is only one change in the series
^2,,, G;>».-2> O-JH-II ••• » a n d therefore the equation cuin = 0 has one and
only one root lying between the values 4»a and 4 (w—I)8 of /3 ; this
root is the greatest one which the equation has.

We shall next show that the equation a^ = 0 has r roots less than
4r2. In the series o0, crs, ... a2r, there are only continuations when
fl = 4ra; hence in the series o0, a2,... a,u there are n—r changes; thus
there are n—r roots of ain = 0 greater than 4r2; and therefore r roots
less than 4ra. It has thus been shown that, of the roots of the equa-
tion ain = 0, one lies between each of the numbers 0, 2a, 43, ... (2n)a.
The roots of ax = 0 are therefore comprised between 0, 2a, 4a, ...,
one root being in each interval.

In the special case *: = 0, we have 6 = c, and the differential
equation reduces to „

d'A , n A t\
— V',

in this case the values of /> are 0, 23, 4a, ..., and the corresponding
values of the functions of this class are 0, a., cos 2f, a.jcos<l^,
rt8cos 6<p, ... ; theso are the functions for the circular cone.

In the case of the functions A of the second class, it is shown in a
similar manner that there am an infinite number of values of /5,
corresponding to any one of which a function is determined, and that
these values of ft lie between the same intervals as in the case of tho
first class.

In Mit! l'uiiet.i >ns of the third and fourth cLsses, Lhu values of (1 lio
in the intervals between 0, V, 'A'1, 53, . . . .
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In the* case of the circular cone (* = 0), the four classes of functions
A are cos2n^, sin2»^, cos (2n+l) 0, sin (2n-

4. We have next to consider the form of the function Bp (v), a
having a value corresponding to a particular function Ap (/i) as above
determined.

"We have to integrate the equation

dv

in a form suitable for values of v numerically less than 6. The
singular points being v — ± fe, v — ± c, the equation has an integral
of the form

which is convergent when v<b, Ao, Bo denoting arbitrary constants,
and Oj, av ..., 6S, 64, ... quantities which can be determined. When
v = ± b, each of the series becomes divergent, but it is possible to
choose the value of Ao/Bo so that the whole expression will be con-
vergent for v = b; for this value of AJB0, the expression will be
infinite when v — — b. Taking for AJB0 the same value as before,
but with opposite sign, we obtain a solution which is convergent for
i>=— b but divergent for v = b. Denoting this value of AJB^ by
l/X, we see that the equation has two solutions

? +h4 +

the first of which is finite when v — b, and is infinite when v = — 6,
and the second of which is finite when v= — b, and infinite when
v = 6. If we denote the expression
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by Bp (v)> the complete solution of the equation is

The function Bp (v) is finite throughout the space which contains the
infinite triangle v = b, and is infinite in the external space which
contains tho infinite triangle v = — b. There exists one such function
Bp (v) corresponding to each function Ap(n). The constant A is a
transcendental quantity to be determined ; in the case (b = c) of the
ciroular cone, its value can be determined.*

In this last case the functions Bp(v), Bp( — v) become Mehler'a
functions if (cos 0), if ( — cos 0), the first of which is finite for 0 = 0,
and the second for 0 = TT.

5. As in the case of Lame's functions, it can be shown that, if
ApXf1)) A-aOO k° two functions corresponding to a given value of p,
and both belonging to the same one of the four classes, then

I APi Apde = 0.
Jo

To expand a function of p in a series of the functions A, we divide
the function into four parts

corresponding to tho four classos of A functions; where / , (/i), /„ (/i),
fa (̂ )> f* (fO a r e rational functions of /*; then, assuming the possibility
of the expansions, the coefficients in the expansion may be determined
as in the case of Lame's functions.

6. Suppose it in required to find a potential function, inside the
space bounded by the Bemi-cono v = v0, which shall have a given value
over the surface of this boundai'y. Lot

be the given value of V when v — v0; then

1 1 f00 f"
->- / O'I /0 = -A—r (ll> I O> fl) cosjp (r - (r) da-

* S e e Comb. I'/tit. TIUUB., V o l . x i v . , p . 1218.
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for all values of r between 0 and oo. Next, suppose /(<r, ft) expanded

in a series of A functions corresponding to the value JD, say 3 arApr;
r-1

we have then

1 1 f" f"

^ . / ( r » ^ ) = 2 T / W I d l ] 2 r t^
the required value of the potential function within v = v0 is

o-;Vr r d p r 5 n " t ^ ^ c ° s i ? (r"<r} d<r-
The potontial funotion for tho space outside the boundary v = i'o,
which has tho same valno as bet'oi-o over the boundary, is

J I ap f Zar~f(~"' Ap, COBp (r-a) dcr.

Next consider the space bounded by two spheres r =z a, r = b, and
by tho connl surface v = vo\ snpposo tho potential function V is to
have tho value zero ovor each of the spherical boundaries and to have
prescribed valuns over th«.) conal boundaries. Iu this case the values

of p arc —-- , where k is an integer.

f
Tbe value of V must bo of tho form

: l .
i — Bin -

i-l VT

/.-Trlog —

b )

• 2 uAk,l{logalb)it 0 0 7.T:.~V »

tho constanta a being determined from tho assigned values of Fovc r
the conal surface v = >'..


