122 Dr. H. ¥. Baken [(July 14,

AN BEXPRESSION OF (1—2)"' BY MEANS OF POLYNOMIALS
By H. F. Baxexr.

[Rend January 13th, 1910.—Received July 14th, 1910.]

It is well enough known (see, for instance, Bovel, Séries divergentes,
1901, p. 164) how to deduce a Mittag-Leffler star expansion of a mono-
genic function from a given explicit expansion of (1—2)~! of the same
character. Some readers may be interested in having such an expansion
actually set forth ; the method is, in part, merely a development of the
original method of Runge (4dcta Mathematica, vi, 1885, p. 287).

Given in the plane of the complex variable z any region of finite
dimensions containing no point infinitely near to any point of the real
axis from z =1 to # = + o, it will be shewn how to form a series of
polynomials converging uniformly in this region and representing (1—2)~"
therein.

Taking first a complex variable {, = £+1n, enclose the points {=1,
¢ = 14c¢, wherein ¢ is an arbitrary real positive quantity, by a closed
curve consisting of (i) the straight lines 5= 1« from £=1 to
£ = 1+c, the quantity @ being real and positive and arbitrary (<< 1),
(1) a semicircle convex to the origin { = O satisfying the equation

-1+ = &,

(iii) a semicircle concave to the origin, of equation (—1—c)’+7* = a’.
Keeping ¢ and a fized for the present, take a positive integer r so that
¢/ra is less than unity, = o say; it is supposed that a is less than ¢, so
that » > 1; and take

o=1, cl=l+%, 02=1+%, e e =14,

so that the segment from { =1 to { = 1+4c¢ is divided into » equal parts.
If n,, 1y, ..., n, be positive integers, the rational function

= {1-E2)")
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is finite at { =1, but hasa pole of order 2, at {=1¢, ; the rational function

1 ((5 —1\"} Cy—e \ M)t
= (et 4.1_(1 1)
1= 1 01—§> b "~_’_§> '

is finite at (=1, { = ¢, but has a pole of order nn, at { =¢,; in
general, writing .

— [Ci—Csy i L R
Ly = ( cs—f) s=1,...,n,

the rational function of ¢ expressed by the product

U= l_ig‘ \1‘—«51)(1—1?3)"‘ (1 _‘Eg)n,n, L (1—.E,~)"lw" nr_l,
has a pole only at { = 1+4-¢, of order n n,... n,.
The difference -1—1;-§ —-U

is of the form (L—¢)~'P, wherein, if py, py, ..., p. denote, in turn, ,, <,
repeated n; timmes,* x; repeated 1,1, times, and so on, P is of the form

1—1—=p)(1—pg ... A—pw),
that is of the form Zp1—2Zp1ps+Zp1paps—-.. ;
hence, if r; = | p; |, we have
| P| € Zr+Zrirg+Zrpryry+ ...
L (14r)d+r) ... 14+r) -1

But, when ¢ is without the closed curve above described round the
segment from { =1 to { = 1-4c¢, we have '

‘L’<—1—, G| o
1-¢ a cs—¢ @
Wherefore .
‘ _lif— U ‘ < % {Q4+a)A4a™)M (14o™)un . (L4gh)teba—1

Now, let € be an arbitrary real positive quantity; take then u a posi-
tive number, such that e*—1 < ea; suppose further that the positive
integers ny, ..., n, previously used are chosen, so that

"y

ny __.'u'__ .
oM < or <
1+M ' 1—g™ Hes
2. 2n L, 1 3n TN 1 ’it
<< —0oM oL —0a" .. o'r<——uyc"";
[ Ny Ny MMy ... Nry

* S0 that (1—z5)™ is replaced by (1—pg)(1—p,) ... (1—pu,+1)-
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then, as 14z < ¢*, the modulus of (1—{)~'—U, is less than

) v

= {exp (@™ +n a2+ mnga™+...+nng ... 2p_ya™) —1},

and thus less than % {exp (e"+*™+...4+0™)—1},

L 1 o N\ _¢1.
which is less than w | ‘p< ) 1}’,

1 a_n]

and therefore less than the arbitrary quantity e.
Now make a change of independent variable, putting

- _d
f T IFe—¢
equivalent with {= (lc_:_(jz;

thereby the points ¢{=0, {=1, {=14c become respectively the
points z=0, z=1, 2z = o, z being real and positive so long as ¢ is
real and positive and { <14c¢; also

(1—2)' = 1+c(1 f)‘“l'm

the function U becomes a rational function of z with a pole only at 2 =
that is, it is & polynomial in 2z ; this we write in the form

polteg 1
c
. . 1
equivalent with H=—U+ i¥e’

so that H is also a polynomial in z; thence

(1——z)-’—H_W{(1 ) 1—Ut.

Further, the extreme points of the closed curve, namely,
f=1—a, =0, and £=14c+a, =0,
become respectively, if z = z+14y, the points
z=c(l—a)/(c+a), y=0, and z=—c(l+c+a)la, y=0;

a8 a approaches to zero the limiting positions of these are respectively
=1 y=0,andc=—o, y=0. The lines = ta become por-
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tions respectively of the two circles
1
@+a'+y' = c(c+ )y,

of which the former can be written

($+0) +(Z+C) +[/‘2 (z—}—c)z]‘}‘?

wherein u = %c(c+1)/a ; thus, for a given value of z, by taking a
sufficiently small, ¢ being kept fixed, the ordinate y can be supposed
arbitrarily small.

With these materials we can now recapitulate as follows:—Take in
the plane of z any region of finite dimensions which does not include any
point infinitely near to any point of the real axis from z = 1 to 2.= 4 ®;
take ¢ an arbitrary real positive quantity (<< 1); take a, also real and posi-
tive, so small that the region enclosed as above by portions of the circles

@+o+y* = £ ele+ 1 yla,
and curves passing through the points
z=c¢(l—a)/(c+a), z=—c(l+ecta)a,

does not include any point of the originally given region ; then take r so
that o = ¢/ra is less than unity ; and, taking an arbitrary real positive e,
take the positive integers =y, 7y, ..., #, by the rules previously given.
We can then form a polynomial in z, say H, of order n;n,...n, such
that throughout the originally given region

|Q—2)"1"—H| <e.

If, then, e, e, €5, ... be an aggregate of real positive numbers with
zero as their limit, and the polynomial H corresponding to the case when
e is replaced by e, be denoted by H., the series of polynomials

H,+(H,—H)+(H,—H) + ...,

whose sum to 7 terms is Hy,, has a sum converging to (1—2)~! uniformly
for the whole interior of the given region.



