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Abstract

Recent efforts of the Research Data Alliance have established a conceptual model for the
management of research data that promotes the use of digital objects, transcending the traditional
notion of files and decoupling questions of access and use from location and storage. In this context,
the need for building aggregations or collections of such objects has become an essential element.
However, contemporary work on object collections focuses on primarily describing such collections
through metadata, whereas research data management practice requires not only to describe
collections, but to make them actionable by automated processes to be able to cope with ever
increasing amounts and volumes of data. To this effect, this recommendation provides a
comprehensive model for actionable collections and a technical interface specification to enable
client-server interaction. It also reports on first adoption and implementation efforts across
communities and institutions and provides perspectives on the use of data types in connection with
collection structures, highlighting pathways for possible future work.
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1. Introduction

The management of digital objects? remains an area of interest that crosses disciplines, institutions
and infrastructures. The Research Data Alliance (RDA) has been driven by such challenges from its
beginning, resulting in multiple interrelated recommendations. In particular, the PID Information
Types (PIT) WG has defined a core model [1] and the central interface for accessing object state
information and provided a small number of example types, which were consequently registered in
the Data Type Registry (DTR) WG prototype as suggested by the corresponding RDA
recommendation for type registries [2]. Type registries, collections, PID services and other possible
components form the basis for a model dubbed the Data Fabric [3].

While the PIT recommendation concentrates on individual objects, many workflows in data
management are concerned with collections of objects. Collections are often described through
metadata, and both within and across communities, suitable collection metadata schemas exist.
Within RDA, it was however recognized that there is yet no single unified specification that enables
the whole spectrum of create, read, update and delete (CRUD) actions that provide the necessary
foundation for collection management tasks. Of particular interest were mechanisms that also
incorporate PID management as a central aspect of collection concepts, since for some uses a
persistent reference to dynamic collections is essential, and even if collections remain stable, their
referenced objects may change, which drives the motivation to use PIDs as intermediary anchor
points for collection members.

The goal of the Research Data Collections WG culminating in this recommendation was therefore to
provide a unified model and interface specification for CRUD operations on collections, with
particular observance of persistent identification and typing aspects. The recommendation allows
building collections within diverse domains and then sharing or expanding them across disciplines.
This should enable common tools for end-users and e-infrastructure providers. Individual
disciplinary communities can directly benefit if such tools are made widely available, and cross-
community data sharing can benefit from increased unification between collection models and
implementations. PID providers may benefit from marketing additional services on collections.

A common API for data management of collections will facilitate data interoperability and reuse by,
(1) making solutions for managing collections more sustainable and widely available, thus (2)
encouraging better data management practices and (3) allowing data objects in collections to be
shared and re-used across projects and domains. It is not the intent of the working group to propose
an alternative to existing well established standards for describing and archiving collections, but
rather to propose an API and implementation for creation, consumption, distribution and citation of
collections and their items that could serve as a unifying layer on top of the existing models and
which can enable producers and consumers of collections to operate on data items managed in
diverse collection models and repositories. Existing solutions, such as OAI-ORE?, BaglIT3 and the

1 The notion of Digital Objects is part of the larger Digital Object Architecture. See for instance:
https://www.internetsociety.org/resources/doc/2016 /overview-of-the-digital-object-architecture-doa

2 https://www.openarchives.org/ore/
3 https://tools.ietf.org/html/draft-kunze-bagit-08
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Portland Common Data Model% among others focus on describing collections and their semantics
with metadata, but do not offer a full set of generic, machine-actionable CRUD operations on them,
which is a key innovation of the proposed APIL.

1.1 What is a collection?

Starting from scratch, you might just imagine that you have a number of objects that belong
together. The type of these objects is not of particular concern, as long as they are in some digital
form; this can include digital documents or scientific articles, individual data files, a zip of several
files, digital images, audio or video recordings. Secondly, the specific reason why these objects
belong together can also be motivated by a variety of concerns. There may for example be a number
of files that came out of a scientific model calculation, or a number of recordings from a study
session or a heterogeneous set of data files from disparate sources grouped together for a particular
analysis.

In conclusion, the act of creating a collection is a very flexible mechanism to bind objects together
without demanding particular semantics or formats. What is important, however, is that there is
sufficient motivation to bundle the objects together for a time period and purpose that justify the
additional costs of the required collection building action. The collection will also receive a distinct
identity that persists over changes to its membership or properties, and as part of becoming such a
distinct entity, it will offer a set of precisely defined actions that can be used to modify it.

1.2 What can we do with a collection?

A similar concept familiar from computer programming are common abstract data types such as
lists, arrays and sets. We know how to add, insert, replace or delete objects from such constructs,
and we know that there are mechanisms for this in most higher-level programming languages. But
while programming languages deal with objects in computational processes, the motivation here is
to manage research data objects that are not bound in computer code, but can, for example, be
transferred, replicated or recombined, all of which may have a collection action dimension.

But despite the differences between abstract data types and research data management, the
fundamental actions are similar: Put objects in the collection, take them out again, learn about the
number of objects and their total size, look at all objects in the collection in an orderly manner and
so on. We may also have some constraints on the collection, such as whether its objects are ordered
or unordered, or whether there are further hierarchies inside it, which are also known concepts
from collections at the programming level.

2. Requirements

While there are manifold usage scenarios for collections, the API specification, with its CRUD
operations, also adheres to several fundamental requirements. The following list of requirements
therefore applies to collections across implementations and disciplines. These requirements were
assembled from a survey done prior to establishment of the WG and ongoing discussions
throughout its lifetime.

4 https://github.com/duraspace /pcdm
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11.

12.

Collections should bear globally registered unique persistent identifiers (PIDs). The API
specification relies on identifiers being present, albeit without prescribing a specific system or
approach.

Objects in a collection must bear unique identifiers. These can be PIDs (such as Handles), but
also identifiers unique within a specific system’s context as long as they remain valid
references throughout changes in object location within the system.

Minimal state information on objects must remain retrievable using the identifier beyond the
object’s lifetime.

No assumption should be made on the lifetime of collections. Collections may be deleted at any
time or kept over long time spans, depending on the use case.

Collections may contain sub-collections, but not recursively. It should be possible to restrict
this rule for individual collections.

Objects may belong to more than one collection.

A single collection may contain objects stored at, and sourced from, different places.
Collections are finite.

Any object that bears multiple identifiers may also be referred to by multiple identifiers within
a single collection.

Collections must offer well-defined actions (such as create, read, update, delete) that can be
executed by software agents with minimal additional context required.

A software agent should be enabled to determine usage or behavioral restrictions
(“capabilities”) of a collection by querying a specific collection action. There should be no need
for a caller to know the underlying model in advance, except in the case of collection creation.
Le., the collection registry should be responsible for expressing the capabilities any given
collection model enables, and a single registry may support several parallel models for
collections.

It should be possible to record the role of an object within a specific collection, independent
from the role it has in the context of other collections.

There also some additional requirements that were discussed but did not reach consensus to
become mandatory:

1.

Objects in collections should have registered data types. The specification supports a field to
store data types, but does not make them mandatory or require a specific format. It is
recommended, however, to align with the RDA recommendation on Data Type Registries [2].
Collection service providers should offer a listener/subscription model for collection change
events. This was discussed and deemed quite valuable for advanced use cases, but introduces a
level of complexity that was considered out of scope for the general specification.

Some elements in a collection may not be named explicitly, but rather given implicitly through
a generation rule. Such rule-based collections were discussed and considered interesting as
they offer a significantly different approach to collection management, more akin to dynamic
database views. A rule-based collection could, for example, contain all objects that are of a
specific data type, and thus extend by definition also to future objects of such type. However,
the actual implementation of such a collection service is more complex than for descriptive



collections, and it remained unclear how the rules and resulting mechanisms would be
specified in an API and conceptually described in a solid way.

2.1 Implementation and Extensibility

In addition to the functional requirements, we need to consider that implementation and
extensibility requirements will vary across deployments. The API for operating against a collection
should be consistent, but it must be possible for the way in which that API is implemented, as well
as for the scope of the operations supported by the AP], to be variable.

This variability needs to be present and supported on multiple different levels: the functionality
offered by the service, and the functionality implicit in a collection itself. In both cases, the
variations must be explicitly expressed via the data model and machine-discoverable with API
operations.

2.1.1 Service Features

Implementations of the Collection Service may vary in the features they offer. We have identified the
following service-level capabilities which should be possible, but not required, of implementations:

assignment of PIDs to new collections
enforcement of access restrictions on collections 3, support for paginated requests

support for asynchronous actions

1
2
3
4. automatic generation of new collections from existing collections based upon pre-defined rules
5. expansion of recursive collections (and limits of that expansion)

6. support for collection versioning

7. restriction and expansion of the supported set-based collection operations

8

restriction and expansion of the supported collection model types
2.1.2 Collection Capabilities

Collection capabilities are those properties of any given collection which may impact the actions
that are possible for that collection. This metadata is essential for working with a collection and
must therefore be easily accessible by an implementation.

We have identified the following collection capabilities which may impact how a producer or
consumer operates on and with the collection and its contents:

9. whether or not member items have an implicit ordering
10. if ordered, where new items are inserted in that order

11. whether member items can assume specific roles with respect to the collection (e.g. such as
becoming a 'default’ item)

12. whether collection membership is static or mutable
13. whether collection metadata is static or mutable
14. whether member items are restricted to a specific data type

15. whether a maximum number of a members items is imposed



2.1.3 Example

As one example of how the service features and collection capabilities might be applied, it should
not be required for every implementation to build upon the PID Types API and the Data Types
Registry. But in case these are supported, possible "allowed actions" that could be enforced would
be that the collection only supports items which are of a specific data type X, as expressed by a type
ID, or which, in addition, conform to a specific PIT profile (which requires a concrete minimal set of
metadata to be included with the item).

3. Definitions

A first coarse-grained definition of a collection is as following, taken from the RDA Data Foundation
and Terminology Interest Group's term definition tools: A collection is a digital object which bears a
unique identifier and consists of a finite number of digital object identifiers and metadata associated
with each referenced identifier.

Informally, we refer to the elements referenced in a collection through identifiers as the collection’s
content. The elements are digital objects, and collections are digital objects themselves. Elements
that are other collections are called sub-collections of the given collection. A collection and its sub-
collections define a graph. A collection is finite, if the set of identifiers generated by iteratively
resolving its sub-collections is finite, i.e., if the graph has a finite number of nodes. Infinite
collections may therefore exist in theory, but are too hard to manage in practice and therefore
considered to be out of scope here.

A collection’s elements may be arranged in a particular form, including unordered (set) and ordered
(list) form. Ordered form may be useful to describe inherent semantics of a collection, for instance,
to arrange subsequent versions of a digital object in order or capture a strict order of slices of a time
series.

3.1 Fine grained collection definition

We define the following elements within the scope of what we consider collections, with a direct
connection to how the Collection API is structured:

A collection is a 4-tuple of an identifier, capabilities, collection properties, and membership.

A Collection Identifier is a globally registered, persistent and unique identifier. No specific
identifier system is required, however.

Collection Capabilities fully comprise the set of actions that are supported by it. Actions may affect
collection properties or membership.

Remark: (1) An external agent may provide more actions than are in a collection's
capabilities, e.g. more sophisticated composite actions or actions across multiple collections.
(2) An agent submits a capability request to a collection to retrieve the action set.

5 http: //smw-rda.esc.rzg.mpg.de/index.php/Collection
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Collection properties comprise essential metadata regarding the collection, who have a primarily
informative purpose, whereas collection capabilities determine the possible actions on a collection.

Examples: General collection state information such as its creation date, ownership and
license, description, possible relations to other collections, like parent collections, or a
pointer to a more sophisticated description ontology.

The collection membership is a finite multiset of collection members. Collection membership may
either be defined explicitly or implicitly through a generation rule.

A collection member entry consists of a member identifier and multiple member properties,
which are further subdivided into general properties (the member's location, description, data type
and ontology) as well as multiple mapping properties, which are member metadata only valid in
the context of the particular collection such as member role, index, and timestamps for when the
member was added or updated within the collection. Note that a collection can become a member of
another collection by adding it to it, referencing the sub-collection's identifier. If the collection
member is not a collection itself, we call it a collection leaf.

The following figure illustrates the overall structure of these various elements.

ID
|— Capabilities location
- I
ID Properties description role
L ontology index
Membership = Member datat\fpe date added
| mappings date updated
L

Figure 1: The collection definitions hierarchy expresses the general model for a collection.

As membership is a multiset, multiple membership of identical items is possible, which can be of
practical relevance in ordered collections, for instance. The notion of mapping properties originates
in the idea that there is an inherent mapping function that points from membership to mapping
metadata elements. This function is injective, as multiple items can be related to the same metadata.

In addition to the definitions listed above that comprise the structure that is also reflected in the
API, we can also take a conceptual viewpoint focused on what comprises the collection's dynamic
state and internal mapping relations. This results in an alternative approach to structuring, which
may help to understand the concept and is captured in the following two brief definitions: (1) the
collection state is defined as the 3-tuple of collection membership, collection capabilities and
collection metadata; and (2) the collection metadata comprises the collection properties, all
member mapping metadata and the mapping function.

4, Use Cases

Throughout the life of the RDA Working Group, use cases from multiple disciplines were discussed
and analyzed for their potential of applying the common Collections API and relevant requirements.
Out of the many use cases that were considered, the following three use cases are described in more
detail in Appendix A:



. Perseids data management, where collections are a key part of the data model and a
systematic application of the specification enables transparent workflows and efficient
management across the publication lifecycle

e  GEOFON seismological data management, where the use of collections can address storage
and reproducibility issues posed by complex data requests

. DKRZ climate data management, where collections give a unified structure to aggregated
data products and can help with reproducibility and provenance concerns as part of data
processing workflows

5. Additional collection operations

As explained until now, the conceptual model for collections and the Collection API specification are
flexible enough to support a variety of usage scenarios. The specification expresses this flexibility
through collection capabilities, properties and methods, which can be used quite freely. While the
API specification aims to provide the most common operations on collections, some of the possible
operations are only valid for specific collection models. A collection model is understood as a specific
configuration of a collection through its capabilities or properties that restricts usage beyond these.
An alternative interpretation that was also discussed within the group was that of traits related to
trait-based programming, where the main point would be that such traits are not defined
orthogonally to each other and that the combination of traits is a key aspect.

By introducing these extended limits, additional operations become possible. These operations are
listed in the descriptions below. The API specification defines capabilities and properties that
together describe such models. However, the API specification does not describe the resulting
additional operations as they were seen as exceeding the basic API scope, and should therefore be
understood as suggestions to implementers for further extensions.

The following are some examples for collection models:

1. Ordered collection: If a collection is ordered, a getSlice operation can be introduced, with start
and end index parameters. For a collection with modifiable membership, a replace method
with indexes may be useful.

2. Limited size collection: If a collection has a maxLength set in its properties, a calculateTotalSize
operation becomes feasible. Note that such an operation could always be offered, even if
maxLength is not set, but might be expensive.

3. Hierarchical collection: If a collection is finite and has member collection items, operations
such as calculateMaximumDepth and calculateNumberOfDirectChildren are possible.

This list is notedly not considered exhaustive; depending on specific usage scenario or special cases,
e.g. within specific disciplines or running infrastructure and services, further models may be useful
with even more detailed special operations. The main reason for not including them in the API
specification was that the additional value they provide was judged to be too much limited to
specific user groups so that including them as base functionality would make the generic API too
heavy. This, of course, does not preclude going down such a route in future revisions once usage
scenarios widely demand particular model behavior.



One further operation of potentially high interest is in case of hierarchical collections a
getParent/getParents operation. The feasibility of such an operation depends on whether
hierarchical parent collections are actually recorded within the properties of child collections, which
requires the actor who adds a collection as member to another collection to be able and allowed to
modify the parent collection's properties. There are multiple potential issues with such an
approach, including security and scalability, which is why it was not considered eligible for the
general API specification.

6. Data Types and Data Type Registration of Collection Elements

The structure of collections, their elements, properties and all other relevant components need to be
defined in a transparent way to enable programmatic interaction. Because a major goal identified by
the group is to facilitate automated processing of collections, these definitions have to be
transparent for machines in particular, which requires machine-actionable registries that store and
provide access to such definitions. The concept of data type registries (DTRs) promoted by RDA is
one feasible way for achieving this. This means that the definition of a structural collection element
becomes a data type referenced by a persistent identifier and described in a DTR. A typical data type
in such a registry has beside its PID a name, a description, applicable standards, some provenance
information and can express named dependencies from other types. As part of the collection group's
efforts, the structural elements of the collection API have been registered in a DTR instance. A more
detailed description of these types and the contextual discussion around them is included in
Appendix B.

7. Permission Management

We expect implementations of the Collections API to have differing requirements and solutions for
enforcing access on collections and their member items. The API specification does not presume
anything about the mechanism through which access control is enforced, but allows the
implementation to declare whether or not it enforces access via a Service feature property.

The OpenAPI specifications we have used to document the API provides the means through which
an implementation can specify a SecurityScheme?’ for individual API operations. This supports
standard OAuth2 workflows, as well as basic authentication and API keys. The Collection API also
specifies use of the standard HTTP 401 response code for unauthorized requests on any operations
which might be subject to access controls.

In addition to service and operation level access controls, the API enables the declaration of whether
an individual collection itself has access restrictions, and the license and ownership of the collection,
via Collection level properties.

For information on how to implement authentication and authorization solutions, we recommend
turning to Single Sign On standards such as OAuth24, Shibboleth? and SAML°.

6 https://swagger.io/specification

7 https://swagger.io/specification /#securitySchemeObject
8 https://oauth.net/2/
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8. The API

We used the OpenAPI 2.0 Specification?! (formerly known as Swagger 2.0) to document the
Collections API. Using this standard enables use of a wide range of open source tooling to develop
interfaces for, and client and server code that implement, the API. The open source Swagger-UI tool
is deployed on the GitHub pages for the working group output?? and presents a user-friendly view of
the API.

Service ™

| “ /features Getsthe service-level features. A successful request returns an HTTP 200 response code with the ServiceFeatures object in the response body.

Figure 2: Screenshot of the Swagger Ul view of the features operation.

Collections ~

‘ “ fcollections Geta listof all collections provided by this service. A successful request returns an HTTP 200 response code with a CollectionResultSet object in the response body. |

‘ m f/collections Create one or more new collections. Successful requests will return an HTTP 201 response code with an array of the newly created CollectionObject(s) in the response body. a8 |

‘ “ fcollections/{id} Getthe properties of a specific collection. A successful request returns an HTTP 200 response code with the requested CollectionObject in the response body. |

‘ “ fcollections/{id} Update the properties of a Collection Object. A successful request returns an HTTP 200 response code with the updated CollectionObject in the response body. ™ |
DELETE fcollections/{id} Deletea collection. A successful request returns an HTTP 200 response code with an empty response body. i I

‘ ﬂ feollections/{id}/capabilities Get the capabilities of this collection. A successful request returns an HTTP 200 response code with a CollectionCapabilities object in the response body. |

q q - Find member objects in a collection which match the supplied member object. A successful request returns an HTTP 200 response code with a
‘ m Eclestions AIGH Sy S RN AR RS CallectionResultSet object in the response body. i

Retrieve the members at the intersection of two collections. A successful request returns an HTTP 200 response code with a i
CollectionResultSet object in the response body.

‘ “ fecollections/{id}/ops/intersection/{otherId}

‘ “ [/collections/{id}/ops/union/{otherId} Retrieve the union of two collections. A successful request returns an HTTP 200 response code with a CollectionResultSet object in the response body. i |

‘ “ fcollections/{id}/ops/flatten Flattens the collection. A successful request returns an HTTP 200 response code with a MemberResultSet object in the response body. i |

Figure 3: Screenshot of the Swagger Ul view of the collections operations.

9 https://shibboleth.net/

10 https://en.wikipedia.org/wiki/SAML 2.0

11 https://github.com/OAI/OpenAPI-Specification /blob/master/versions/2.0.md
12 http:/ /rdacollectionswg.github.io/apidocs /#/
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Members v
fecollections/{id}/members Getthe members in acollection. A successful request returns an HTTP 200 response code with a MemberResultSet object in the response body.

Add one or mare new member items to this collection. A successful request returns an HTTP 201 response code with an array of the new added Memberitems in the a
response body.

fcollections/{id}/members

fcollections/{id}/members/{mid} Getthe propertiesofa member item in a collection. A successful request returns an HTTP 200 response code with a Memberitem in the response body.

[ e the properties of 1m r item. A successful request returns 2 L pi erlt 1e respon
/collections/{id}/members/{mid} ;géijh the properties of a collection member item. A successful request returns an HTTP 200 response code with the updated Memberitem in the response a

| fcollections/{id}/members/{mid} Remove a collection member item. A successful request returns an HTTP 200 response code wiht an empty response body. ﬂ

Get a named property of a member item in a collection. A successful request returns an HTTP 200 response code and the requested

/collections/{id}/members/{mid}/properties/{property} . - = = = onse Ty

Update a named property of a member item in a collection. A successful request returns an HTTP 200 response code and the

/collections/{id}/members/{mid}/properties/{property} Tl e e e s s

Delete a named property of a member item in a collection. A successful request returns an HTTP 200 response code and empty

|m fcollections/{id}/members/{mid}/properties/{property} response body.

Figure 4: Screenshot of the Swagger Ul view of the collection members operations.

The swagger documentation of the complete 1.0.0 version of the specification is provided in
Appendix C.

9. General Purpose Implementations

9.1. Perseids Manifold

Perseids Manifold is a research data collections server developed by the Perseids Project at Tufts
University, Boston. It fully implements the specifications in this document and functions as a
demonstrator for the Working Group API.

Perseids Manifold has been implemented in Python using the Flask HTTP Framework. It is designed
in a layered architecture spanning from the HTTP interface to the database drivers and thereby
provides separation of concerns and intermediate-level programming interfaces across all layers.

The Python data models and database interface in particular are shared across implementations and
are meant to simplify queries across different database types, thus enabling addition of new
database drivers and reuse of drivers for customized front-ends.

The database interface has been formulated in terms of the application models for collections and
items, filters and cursors. A translation into database specific queries happens inside the individual
database drivers. It is up to the driver implementation to either interpret and apply the filters and
cursor to query results, or to translate them directly into the respective database query language
and run them natively on the database.

In the recommended configuration, Perseids Manifold uses a triple store with SPARQL endpoint to
save collections data.

9.2 The Reptor Software

Reptor is a PHP application which turns a web server into a data repository. It demonstrates the
functionality of a modern data repository along multiple recommendations of the Research Data
Alliance.



Beside other features, it contains an implementation of the RDA Collection API. A collection is
represented by any kind of items (links, strings, numbers, PIDs, ...) in a file with a defined name in a
folder. The path to the folder represents the name of the collection. Collections can be managed by
an user friendly web interface or via RESTstyle calls on the command line or any programming
language.

For example, the following RESTstyle call to Reptor's collection API will list all existing collections in
the current Reptor instance:

curl -X GET http://example.com/collections/api.php/collections

Reptor is free software under the Apache license and can be downloaded together with
documentation?3. Test instances are available.

9.3 European Persistent Identifier Consortium services (ePIC)

The ePIC Collection Registry Implementation is a Python Flask-based implementation. It uses
registered types and allows multiple prefix-based registries. It is backed by the Handle System and
stores object contents through a regular file system. It will be available soon under https://coll-
reg.pidconsortium.eu.

10. Adoption Efforts

10.1 RPID Test Bed

The Perseids Manifold implementation?4 of the Collections API is included in the RPID Test Bed 5.
The RPID testbed is intended to stimulate and enable evaluation of the complementary outputs of
RDA in PID oriented data management. The testbed includes a Handle Service, a Data Type Registry,
a PIT AP], along with the Collections AP], and is available for research, education, non-profit, or pre-
competitive use through 2019.

10.2 Perseids Project

The Perseids Project (whose use case is described further in Appendix A.1) currently uses the
Perseids Manifold implementation of the Collections API to manage its collections of annotations.
When an annotation data object is created on Perseids, it gets added to: (1) the collection of all
annotations created by the that user; (2) a collection representing the specific publication to which
the annotation data object belongs; and (3) if the annotation identifies a canonical text source via a
CTS URN!¢ as its primary topic of interest, the data object gets added to one or more collections of
annotations about that topic depending upon the granularity of the CTS URN identifier.

Future enhancements would be to extend the use of the Collections API through the entire lifecycle
of the publication, as set forth below:

13 http://reptor.thomas-zastrow.de
14 https: //github.com /RDACollectionsWG /perseids-manifold
15 https://rpidproject.github.io /rpid

16 http://cite-architecture.github.io/ctsurn/overview/
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Figure 5: The Perseids Data Collection life cycle
10.3 GEOFON Project

GEOFON (whose use case is described further in Appendix A.2) has worked on an implementation of
this specification since its early stages in order to manage the definition and storage of pre-
assembled datasets, to register the user requests, and to offer the capability of downloading these
datasets.

We have even extended the specification with methods to download members of the collection and
also the collection as a whole. The latter can be done either by concatenating the members of the
collection, what is very useful in the case of the file format used for seismic waveforms, or by
downloading a zip file with all its members.

The only methods which have not been implemented are the operations on the collections
(/collections/{id}/ops/) and the ones to add and remove the properties of members.

This implementation is being used internally at GEOFON (in beta stage) with more than 6000
collections and 1.5 million members.

10.4 Fedora

The working group chairs initiated discussions with the Fedora Repository?” development team to
explore the feasibility of adding support for the Collections API to Fedora. We believe that in order
to achieve our goals of enabling widespread data sharing, RDA outputs like the Collections API must
be implemented by the infrastructures researchers are already using for managing their data and
collections. Repositories like Fedora are an obvious candidate for this. The work the API-X

17 http://fedorarepository.org/
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community?8 has done to implement an API Framework for adding services to Fedora should
provide the hooks needed to fairly easily implement the RDA Collections API as an added-value
service. Further, the Perseids Manifold implementation has already confirmed that it is possible to
use the API to manage collections of data which are expressed according to the Linked Data Protocol
model used by Fedora. We have issued a call to both the RDA Collections Working Group and the
Fedora Community development community to identify stakeholders for this effort?”.

10.5 CAU Kiel: Collections based on IGSN real world objects

Christian-Albrechts-University Kiel (CAU) is investigating the use of the conceptual framework and
API to describe collections of real-world objects, physical samples which carry an International Geo
Sample Number (IGSN29). The collection of samples from the marine environment is expensive and
therefore it is a long tradition to store such samples for later use in core or sample repositories. The
importance of these samples increased over the last years and the IGSN e.V. consortium is pushing
for more transparency and reproducibility concerning samples and scientific materials.

CAU is therefore looking towards implementing the RDA recommendation on PID collections as
soon as possible. Samples can have many relations and can become part of increasing amounts of
collections over the years. The management and description of samples from the marine
environment carries a multitude of relationships and contexts:

Samples from one scientific cruise belong to the collection of cruise samples
Rock samples within the cruise collection belong to collections of rock types
The sampling gear is another collection combining all samples collected by the same method

The person responsible for the sampling forms a collection of collected samples

i W

Within the bigger context of the institution samples belong to a geographical collection based
on their origin

Samples of the same rock type create a collection overarching all field expeditions

All samples analyzed within one lab belong a lab collection

All these collections can be nested or become parts within or across each other. A sophisticated
concept of how to deal with all these different collections in a consistent way was not yet available.
Adopting the collections framework as soon as possible may help to overcome these challenges.

11. Conclusion and Outlook

The general concept of collections and the facilities the common API provides can also serve as a
point for interfacing and integration with Linked Data and ontology usage in general. In line with
considerations by the RDA Data Fabric IG, the foundation for research data management is seen at
the level of digital objects, with enabling technologies such as persistent identifiers and type
registries. Collections provide a layer on top of these, and they express some essential relations
between individual objects. The Collection API also offers some anchor points to extent this notion

18 https: //wiki.duraspace.org/display /FF/Design+-+API+Extension+Architecture

1% https://groups.google.com /forum/#!topic/fedora-community /FFFGrjq54x0

20 http: //www.igsn.org
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of inter-object relations further. These relations should be integrated into a further Linked Data
layer, and certainly enriched with more relations that go beyond the collection scope to provide an
encompassing, seamless metadata view, which is described in more detail by the Data Fabric
group?’. An underpinning of formally encoded ontologies can then provide the semantic dimension
needed for agents to make autonomous decisions based on both Collection API actions and Linked
Data.
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Appendix A: Detailed collection use case descriptions

A.1 Perseids Project

The Perseids Project?2 provides a platform for creating, publishing, and sharing research data, in the
form of textual transcriptions, annotations and analyses. The platform itself uses a collection-centric
data model, where each dataset produced on the platform is treated as a vertical collection of
heterogeneous data objects. In addition, each item in a dataset can be thought of as belonging to one
or more other global collections of data objects, grouped by data type, primary topic, community, or
other criteria.

For example, User A, a member of Community B, creates a dataset that includes a data object which
is a treebank?3 of a set of passages from a canonically identified text, Homer's Iliad Book 1, lines 1-
10. Community B has editorial process which enables annotations from members of the community
to pass through a peer review process before publication. This data object might belong to:

. the collection of all Ancient Greek treebank data

e the collection of all annotations about Homer's Iliad

e the collection of all annotations about Book 1 Lines 1 through 10 of Homer's Iliad
e  the collection of all data created by User A

e  the collection of all data approved by the Community B editorial board

As an open platform, we want all data we produce to be easily shared and reused by the larger
community, at all stages of the publication lifecycle. Our requirements call for each data object, as
well as the collections themselves, to be able to be persistently identified, versioned, carry fine-
grained provenance metadata and be validated against a profile, schema or other verifiable criteria.
To facilitate reuse, we must be able to:

. describe collection items as machine-actionable data types, independent of their identifier
schemes, and the properties of the collection to which they belong.

. create reusable templates of collection types with standard descriptive properties and
capabilities

. express relationships between collections, items within a collection, and items across
collections using one or more standard ontologies

. perform simple CRUD/L operations on collections and items in a collection

. perform more complex discovery operations on collections based upon the properties of
individual collection items, such finding all items across all collections that match or don't
match or contain a specific item.

22 http://perseids.org

23 https://en.wikipedia.org/wiki/Treebank
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A.2 GEOFON use case: seismological data center

The German Research Centre for Geosciences (GFZ) provides valuable seismological services in the
form of a seismological infrastructure named GEOFON to research and better understand our
complex system Earth.

GEOFON is not only one of the fastest earthquake information provider worldwide, but also one of
the largest nodes of the European Integrated Data Archive (EIDA) for seismological data under the
ORFEUS umbrella, which is a distributed data center established to (a) securely archive seismic
waveform data and related metadata, gathered by European research infrastructures, and (b)
provide transparent access to the archives by the geosciences research communities.

GEOFON has archived seismic waveforms since 1993 and currently archives around 10.000 streams
daily from seismic stations sending data in real-time from all around the world.

The standard way in which seismological data centers provide data to users is based on
specifications provided by the International Federation of Digital Seismograph Networks (FDSN24).
An API is available, which let users define the contents of the dataset and create them on-the-fly, but
the specification does not contemplate the idea of pre-assembled datasets.

Data requests could be classified in two big groups: the ones related to an earthquake and the ones
related to an experiment. In general, most of the data requests are related to the time and location of
an earthquake. After any big earthquake thousands of data requests are received with a
considerable overlap of data between them (similar short time window and variable set of stations),
but quite rarely exactly the same dataset.

But there are also some users who request all data produced in an experiment, or all data recorded
by a station. This results in a big amount of data requested (with long time windows and a fixed set
of stations) to be later processed and not particularly related to any earthquake.

Only at GEOFON, we have more than 6 million successful requests/year, which are created
dynamically (not predefined). It would be impossible for us, mainly due to storage limitations, to
replicate the requested datasets by keeping a copy of each dataset. Therefore, there is no way for a
user to reference the dataset for future use (publication, share with someone else). Today, the user
can only share the request definition, but if there are new data in the requested time window or new
streams in the set of stations defined the resulting dataset will be different from the original one.
Quite rarely it could also happen that some data were deleted.

From the data center perspective it is also difficult to offer big pre-assembled datasets to be
downloaded, due to the resources needed for their storage.

In this context, we find very appealing the idea of using a Data Collections System in order to define
and save both types of data requests. In the case of the big pre-assembled datasets we can define
collections containing only "pointers” (e.g. PIDs, URLs) to the files which are included. This would

24 http: //www.fdsn.org/
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imply almost no extra storage, as only the pointers are saved. Therefore, we could also expose our
archive through the definition of big datasets with a marginal increase in the space needed.

In the case of the dynamic datasets we could follow the same approach. Namely, for each request we
could define a collection with the PIDs of the files which fall into the range of values defined by the
user. If new data comes in the future it will not appear in the collection, because the content of the
dataset will not be recreated based on the original query, but on the files which originally formed
the dataset.

In both cases, once a collection is created it is possible for the user to reference it for later use (e.g.
share it with others or use it as supplementary information for publications).

A.3 DKRZ use case: Climate data management

Scientific groups and research institutions around the globe, including those at the German Climate
Computing Center (DKRZ), develop individual climate models which are run on their respective HPC
systems. However, there is no perfect climate model, and all of them model the physical world in
different ways. To assess the quality of climate models, a large exercise is therefore needed:
Running the various models with same input and boundary conditions, producing data that can then
be analyzed and compared to assess the differences between models or to generate aggregated
“ensemble” data products (basic statistics). This exercise is called the Coupled Model
Intercomparison Project (CMIP22).

CMIP is in essence a cyclic activity, with each phase running for several years. The previous phase,
now finished, was CMIP5; the current phase is called CMIP6. The insights resulting from CMIP data
are eventually also used to back the Assessment Reports of the Intergovernmental Panel on Climate
Change (IPCC), and therefore, the community workflow of CMIP is also intertwined to some extent
with IPCC processes.

A.3.1 ESGF data collection perspectives

Throughout its phases, CMIP data have grown rapidly in volum