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A NOTE ON THE CONTINUITY OR DISCONTINUITY OF
A FUNCTION DEFINED BY AN INFINITE PRODUCT

By G. H. HARDY.

[Received October 15th, l'J08.—Read November 12th, 1908.]

1. Abel's well known theorem on the continuity of power series
naturally suggests the question as to whether a similar theorem holds
for infinite products. Does the convergence of the product

(1) P = n(l + an)
o

involve the absolute convergence of the product

(2) 0

for all values of x whose modulus is less than unity, and the truth of the
equation p ^ _^ p

as x -*• 1 ? The path along which x -> 1 is here supposed to be any
such path as is permitted in Stolz's extension of Abel's theorem, that
is to say, any path which lies inside the unit circle, has a tangent at
every point, and does not touch the circle. Such a path we shall describe
for brevity as a standard path.*

This question immediately suggests another : does the convergence
of (1) involve that of

(3) P.2(x) = I I ( l+awz)
o

for all values of x, and the truth of the equation

(4) P2(x) -» P
when x -> 1 in any manner "?

2. If the product (1) is absolutely convergent, that is to say, if the
series Sa(l is absolutely convergent, it can be shown at once that all these
questions must be answered in the affirmative.

* Paths which have no tangents may be dismissed from consideration ; no interest
attaches to them, and the only result of admitting them is a little unnecessary complication
of our definitions.

The question stated above was, if I remember rightly, first suggested to me personally by
Prof. V. Ramaswami Aiyar of Gooty, India, in a letter which I received from him a year or
two ago.
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The simplest proof of this depends upon what Mr. Bromwich has called
Tannery's theorem—viz., that, if

| gn(x) | < Mn,

where Mn is independent of x, and 2ilfn is convergent, throughout any
region D of values of x, then

(5) Tl\l-\-gM}

is uniformly convergent throughout D. If every gn{x) is continuous, the
product is, of course, also continuous.

We shall denote by Dt any region bounded by a standard curve
beginning and ending at the point x = 1 ; and by D2 any region bounded
by a closed curve and including the point x = 1. Then

| anx
n | < | an |

throughout A ; and \anx\ < R\an\

throughout D2, R being the greatest distance of any point of D2 from
the origin ; and it follows at once that Px{x) and P2(x) are uniformly
convergent throughout D1 and D2 respectively, the boundaries of the
regions included.

A theorem similar to Tannery's, rather more general, but rather less
simple and natural, was given by Arzela.* This theorem asserts that, if

(i.) gn(x) tends uniformly to zero, as n -*• oo, for all values of x in D ;
n

(ii.) 2 | gv(x) | < K for all values of ti and x ;\

then the uniform convergence of 1*gn(x) is a sufficient condition for that
Of

* Mem. di Bologna, ser. 4, t. iv. (1883), p. 427 ; Stolz und Gmeiner, Einleitung in die
Funktionentheorie, bd. n, p. 431.

+ If Tannery's condition |<7,i(a;)| < MH, where 2il/» is convergent, is satisfied, it is
evident that Arzela's two conditions are satisfied. The converse is not true. Suppose, for
example, that

go(x) = 1 (0 ^ x < 5), (lo(x) = 0 {otlierwise);

0i (*) = k (i < x < l)» !/i (x) = ° {otlierwise);

(x) = _J_ ( i -2-» ^ o;< 1-2-'-1), </,,(a;) = 0 (otherwise),
n + l

Thon it is cletu: that 2 \g»{x)\ < 1, and that Qf,,(cc)->0 uniformly ; but Tannery's condition
v = 0

is not satisfied, since 2 (1/n) is divergent. There is no difficulty in constructing a similar
example in which every g,, is continuous.

; If x and g,, (x) are restricted to be real, the condition is also necessary.
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It is plain that our results concerning the products IL(l-\-anx
n),

U(l+anx) can be deduced at once from Arzela's as well aB from Tannery's
theorem.

8. We may now pass on to consider the more interesting case in
which the product (1) is only conditionally convergent. So far as I am
aware, the only general tests of any importance that have ever been given
for the conditional convergence of a product are Cauchy's test—viz.,

the product 11(1 -\-an) is convergent if 2an is convergent and Hal
absolutely convergent;

and Pringsheim's extension of Cauchy's test—viz.,

the product is convergent if HaM 2a^, ..., S a ^ 1 are convergent and
2ajj absolutely convergent.*

A product which is convergent in virtue of Cauchy's or Pringsheim's
tests we shall call a regularly convergent product.

4. THEOREM A.—If the product (1) is regularly convergent, all the
questions of § 1 may be ansioered in the affirmative.

This result I shall deduce from the following general theorem:—

THEOREM B.—If tJie seriesi

2gn(x), 2gl(x) SjJ^fc), 2|^(x)|

are uniformly convergent throughout any region D in the plane of x,
then the product IP 14-a lx)\

is uniformly convergent throughout D.

This theorem is very easy to prove. We can choose nQ so that, for
n^nQ, \gn\ < 8 < 1, for all. values of x in question. We can then
ignore the first ?i0 factors, so that nothing is lost by supposing | gn \ < S

* Pringsheim, Math. Annalen, bd. XXII., p. 482 ; Stolz und Gmeiner, i.e., p. 436. The
latter test may be stated in the more general form " the product is convergent if

is convergent and 2 a* absolutely convergent," but the extension seems of but little interest.
If a,, is real, 2aj; can, of course, only converge absolutely or diverge to + oo ; the product

converges or diverges to 0 accordingly. In this case Pringsheim's extension cannot be needed.

t More generally, if 2 ( gn - fc£ + ... ± -i- - 0* - ' ) , 2 | </* |

are uniformly convergent.
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for all values of n and x. Then

so that |0n| < UjL (1+W2+...) <

Hence 2^r t is uniformly convergent, and so therefore is 2 log(l + <7H).

5. From Theorem B the truth of Theorem A follows almost immediately,

(i.) Let gn = anx'\ and let D be the region Dl of § 2. Then

are convergent, and therefore, by Stolz's extension of Abel's theorem,

k\\rkn\\\x I

are uniformly convergent throughout Dx.

(ii.) Let g,,, = artx, and let X) be the region D2 of § 2. Then

2<x 2 , ..., Saji-V-1, 2 | a J | | x f c |

are uniformly convergent throughout D2.
It is easy to deduce, from Theorem B and from the known extensions

of Abel's theorem, more general results concerning products of the types

IL\l+anfM\;

but the cases in which fn (x) = x* or x seem so much the most interesting

that it is hardly worth while to set any others out at length.

6. There still remains the case in which the product (1) is convergent
but not regularly convergent, or, as we may say, irregularly convergent.

As regards such irregular convergence one may distinguish two
possibilities.

(a) It is possible that the product l l ( l+a i l ) may be convergent,
although the series 2 a,,, is not convergent, and indeed even if the series
diverges to + oo . The following examples of this are interesting, and we
shall have occasion to make use of them later on.
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(i.) Consider the product*

for which a-2l. = — r , a*iv+\ =
vv—2 \

Here (l+a2v)(l+aov+i) = 1, so that the product is convergent, and has the
value 1, although 2(a2V+a2v+i) or

diverges to + x .

(ii.) The product 11 ( l + V '
\ \/nJ

is convergent, unless 6 is a multiple of x,+ since the series
pn$i -2n8? i

V » )l H\/?l

are convergent.
It follows that

(7) n
y/n ' n

T. ^ /'I cos uO . 1 \
is convergent. But LI— - . 1 )

plainly diverges to + ac .
The product may also converge when some of the later members of

the sequence of series v, „ 2 v /• i
la,,, Xai, ..., Sat"1

oscillate or diverge. All such cases afford illustrations of our first
possibility with respect to irregular convergence.

(6) The second possibility with respect to irregular convergence is that
it should not be possible to find a value of k for which

is convergent. Suppose, for example, that
en0i

logw.

where 6/TT is irrational. Then 2 ^ is convergent for all values of k, but

* This product is used by Pringsheim (Math. Annalm, bd. xxxm., p. 154) for another
purpose.

t The product diverges to infinity if e is a multiple of 2n, to 0 if 0 is an odd multiple of w.
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never absolutely. And, so far as the tests at our disposal at present go,
the question of the convergence of the product

(8) n i+A
V log n.

remains open.

7. I shall return to the second possibility in a moment. But first I
wish to show, by means of examples drawn from the first class of
irregularly convergent products, that the mere convergence of the product
(1) is not sufficient to ensure an affirmative answer to the questions
of § 1.

(i.) The convergence of (1) does not necessarily involve the convergence
ofTL(l-\-anx)for any value of x other than x = 0 and x = 1. We saw
above that the product

is convergent. But

n((11 x \d x V

is convergent only if IT (1H—^~)

is convergent, where av = i~(x—^)2;

and this is so only if av = 0, i.e., if x = 0 or x = 1.

(ii.) The convergence of (1) does, of course, imply the absolute con-
vergence of 11(1+0,,/) for any value of x numerically less than unity.
But it does not imply the truth of the equation

as x -*• 1, even by real values and when an is real.

We saw in § 6 that the product

(7)

is convergent, provided 6 is not a multiple of TT. Let us denote its value
by sr. Then I shall prove that if

2 cos w0 , 1
an =

\/n n
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then

(8) n(l+anx
n)^2vr

i

as x ->1 by real values.

In order to prove this we observe that since II (1H—— I is regularly
convergent

9i 6i

as x-*l. It follows that the same relation holds between the products
formed by taking the modulus of every factor, and therefore that

n ( i+ x c
/
osn -+—) -+rs.

Our conclusion will therefore be established if we prove that

| - , 2a;71 cos n6 , x^

i - , 2a;'1 cos nd . xln

y/n n

where /3n = x \i x)

tends to the limit 2 as x -> 1. Now j8« is positive and less than iT/?i, and
so the series 2/3; is uniformly convergent for 0 ^ x ̂  1. Hence also
the series

is uniformly convergent, and so

We therefore require only to show that

Zj8H-*log2.

But, if yn = xn(l—xn)/n,

, « xn(l— xn)
we nave y>i—pn =

n
n +

so that | yn—fin | < Kn~K

Hence 3*{yn—fin) is absolutely and uniformly convergent, and so



1908.] THE CONTINUITY OR DISCONTINUITY OF A FUNCTION. 47

x" x2n / 1 \ / IBut 2 y n = S £ — = log )— logfq—
ft/ IV \ X w / \ X

= log(l+a;)->log2;

and so our conclusion follows, viz., that

as x -*• 1.

8. In conclusion, I wish to say something about the second possibility
mentioned in § 6. This possibility seems to me very interesting. But I
know of no example of such a product, and I am unable to construct one.
Indeed, I cannot determine whether the product (8) is ever convergent or
not; and the considerations which follow show, I think, that the question
is not one which can be settled without considerable difficulty.

Let us consider first a simpler product, viz.,

Let k be the least integer such that ka > 1. The series 2a£ is abso-
lutely convergent, the series

2 a*, 2 a\, ..., 2 a*"1

are convergent unless one of 0, 20, ..., (k — 1) 0 is a multiple of 2-7T. Thus
the product is regularly convergent unless 6/TT has one of a limited
number of rational values; if, e.g., a = } , k = 3, it is regularly con-
vergent unless Bjir is an integer.

Now, let us consider the product (8), for which

and let us suppose that 6/ir is a rational fraction p/q. The series

is conditionally convergent except for such values of k as make kQ\tr an
even integer.

First suppose p even. Then q is odd, and So-J; is convergent, except
f o r / o Q

A; = q, 2# , 3 ^ , ...,
while 0% = (log n)~'d.

Also log(l-}-a-n) = an—%al-\-... al~l-\ c

where en -> 0 with n. It follows at once that the product (8) diverges (its
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associated product oj'moduli diverging to +00) whenever Qjir is a rational
fraction with an even numerator.

Secondly, suppose jp odd. Then 2 a* is convergent, except for

k = llq, 4q, 6q, ... ;

and an argument similar to that used above shows that the product (8)
diverges to 0 whenever O/ir is a rational fraction with an odd numerator.

Thus the product (8) is certainly never convergent when Bj-n- is
rational. Is it ever convergent ? That, it seems to me, is a very inter-
esting question; but I must confess myself entirely unable to answer it.
I can only suggest the problem : to find a product 11(1+ «•„), such that
2a(; is always convergent, hut never absolutely, ami whose convergence,
divergence, or oscillation is capable of proof.

It is hardly necessary to point out that the argument given above
applies to any product ll{l + ane"ei), where aR is a positive function of
n which tends steadily to 0 as n -> 00, and which is such that

is divergent for all values of k.


