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Note on the Quinquisectional Equation. By L. J . ROGERS.

Received and communicated May lObh, 1900.

It has been shown by Gauss and Lebesgue that the tri- and quadri-
sectional equations for a prime p can be made to depend upon the
resolution of p into certain quadratic forms, the former depending
on an identity 4p = M8 + 27.AT2, and the latter on an identity

It is proposed here to establish a similar method for the derivation
of the quinquisectional equation for primes of the form 5X+JL.

In Vol. xvm., p. 215, Prof. Lloyd Tanner adopts the following
notation:—

Fta s
where the X'a are the roots of the quinquisectional equation and w
is a fifth root of unity. Thus Fu> = (w\ r) of Bachmann's Kreis-
theilungslehre.

Moreover, qo> denotes F(t>2/(Fu))i, whence, by the general theorem
of Jacobi's,

go>. qu>* = p .

Thus, putting qu> —

we have (see Vol. xvm., p. 217)

These give

16p = (4yo-2i-2

and (42o-2i—2a-28-
, (1)

i.e., 16> = a2 + 562 +10 (c* + <P) )
f' (2)

where a6 = —cs—4cd+<r J
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and a = 4g0—ft—g9-g8—g4 = 5g0 + l,

6 = ?i—g9—g8+?4>

d = gs —gs.

Equations (2), however, are not a unique representation of p in this
form, since the cyclic symmetry in the g's shows that similar ex-
pressions may be obtained by rotating the suffixes, so that a might
= 5^ + 1, b = ?2—?8—?4+?o> <&c- Moreover, if we were to treat the
trisectional complexes in a similar way, we should only obtain the
representation of 4p in the form m2 + 3w2, which is not definite enough
to establish the trisectional equation.

Passing on to p. 221 in Vol. XVIII., we find a modification of the
above results, depending on the fact that

X* = ao.Xo + a1.X
i
i, + asX2 + a8X8+a4.X4,

where the «'s are all integers.

The connexion between the a's and the g's is shown on p. 222, viz.,

5 a o = - 2 + 3go-4X,

5^ = 2qx + g8—4\,

5a2 = 2ga-f ft—4\,

5a8 = 2g8+ &.-4A,

5a4 = 2qt+ q%—4\,

which gives ft-ft—qs + qt = 5 fo-a,—a5 + a4) = hi, say,
2 (ffi-tfi) - (?2—(Zs) = 5 (a!-a4) = 5m, say,

(2i—2«) + 2 (g,—g8) = 5 (a,-a8) = 5», say.

Hence equation (2) becomes

16> = a> +125? + 50 (m2+n8) ) /QX

aZ = m2—4mn—»2 J

W e see then tha t every prime of the form 5 \ + 1 can be expressed as
the sixteenth of the sum of such multiples of four squares, which are
connected by a single further relation.

I t remains only to show tha t such a relation is unique, and that , if
i t has once been obtained, by tr ial or otherwise, then the quinqui-
sectional equation can be derived from i t without ambiguity. W h e n
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p is not large, (3) can be found by inspection, but, in most cases, this
paper does not profess to offer an essentially simpler method than
those established by Prof. Lloyd Tanner.

To show that the representation is unique, we may observe that, if

16>=

X {a + 5^5Z-2 ^ 5 (a>9-a>8) m - 2 N/5 (a,-a»4) ra}
= a9 + 125i3 + 50 (m?+w9) +10 Vb {al - m9 + 4>nw - u2).

Moreover, if a, /?, y, 5 be any integers, we have identically

•+• 5 V5 (aX + al—2m/t + 4mv

(w-a,4)^, say. (4)

If, then, also, 16p = a9 + 125X2 + 50 (ft9 + v9),

where o\ = /x%—4/*^ — v9,

we see that, by interchanging italic and Greek letters in the left-
hand side of (4) and multiplying the four factors together, we have

256p9 = {a9 } {

= A*+1251;2+50 (HP+N2),

where AL = M*-LMN-N*.

Again, if we change w into <o9, we get

16>= { a -

x {a

Now, if instead of w = e$ni, we suppose that

wi+(os+ull + u> + l = 0, mo&p,

and A/5 = w + w*— w9—w8,

it is clear that one of the factors in each of the products representing
16p must = 0.
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"Without loss of generality, we may assume

a + 5 A/5 I = 2 A/5 (W8-W8) m+2 V$ (w-o>*) w,

a—5 -v/52 = 2 N/5 (W-a>*) m—2 \/5 (a>8-w8) w,

and, similarly,

a + 5 v/5 \ s 2 -/5 (w8-w8) ̂  + 2 A/5 (w-a>*) v,

a - 5 A / 5 \ = 2V5 (w-a.*) ^ - 2 A/5 (U»S-W8) v.

From these four congruences, we see that

= 5 {4 (a,2-(.>8)8 + 4 (w-a.*

i.e., aa+125ZX+ 50 (mp+nv) = 0,

while (a+5 A/5 Z)(a + 5 A / 5 X ) - ( a - 5 v/5 Z)(a-5-/5Z)

= 4 0 (w9 — a>») (w - w*) (mv

+ 20 {(w9—w8)2—(w-w*)8} (mp-nv)

= — 40A/5 (WV+/AW) +20v/5 (m/u—nv),

i.e., oX + aZ + 4 (mv + yun)+2HI/H—2nv = 0.

Thus A s 0 and i = 0,

and, since, in consequence,

Jkf+2^ = 0 and iP-lMN-N* = 0,

we see that M = 0, N = 0.

Let jl=Z7p, i = Zjt>, ilf = Yp, N=Zp,

so that 256p8 =jp9 (Dr>+1252? + 50r+50^«),

256 = CT9+125Xa+5Oril+5OZs,

where ^ Z = Y 9 -4Y^-^ 2 .

The only possible solution for these equations is

U = 16, X = Y = Z = 0,

so that aa+125ZX + 50 (w/i+nv) = 16p, (5)

while L = M=N = 0.

These last three equations give the ratios of a, X, /*, v uniquely in
terms of a, Z, TO, n, and, by inspection, we see

o = ka, X = hi, /u = A;TO, V = fen.
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But this reduces (5) to

k (a9+125P+50m8+5(k') = 16>;

therefore h = 1.

Hence we see that the representation of 16p is unique.

2. We may now obtain the quinquisectional equation in terms of

a, Z, m, n. On p. 227, Vol. xvin., it is given in the form

Y5-10p. r8-5pSga»Y9 + 5p (p-2ga>ga>8) Y-p2qu>qu>qu>* - 0, (1)

where Yhas for roots 5XOH-1, 5X1 + 1, &c.

Since qi» gw* = p ,

we may put qto ~ Vp e9l<, gw4 = «/p—e~*li,

and, similarly, gw8 = Vp ehi, qufl = Vjp e"^',

where we may suppose -/p to be the positive square root. Then

2 gw = 2 Vp (cos 0, + cos 09)

Sgcogw3 = 4p cos 0, cos 08

2 gw gw gw1 = 2p Vp{ cos (25,+0,)+cos (0, - 208) } \ • (2)

= 2p v/p {(2 cos 0, cos 0,— 1) (cos 0, + cos 08)

—2 sin 0X sin 09 (cos 8l—cos 08) },

Moreover, if Ĵ w = Vp e*1', JPw4 = \/pe "*•'',

then equations (8) and (9) on p. 217 are equivalent to

2 ^ = 0, + <pv

2^8 = et-(pv

whence <px = -| (20, + 0S),

while Yr = u

where r = 0, 1, 2, 3, 4.

This shows that any equation of form (1), whether quinquisectional
or not, whose coefficients depend on (2), can be solved trigonometric-
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ally by the quinquiseotion of an angle 26l-j-6i or 2$i-$l depending
on the coefficients.

Now </p 61*' = go* and </p e'*' = gw8,

whence

/jp sin Bl = (g, - g4) sin ~ + (g, - qa) sin -~,

x/jp sin tf8 = (g, - g4) sin — - (q% - g8) sin ~ ;

therefore jp sin0, sin ̂ 8 = ~ (c8 - cd - d?) [v. § 1 (2)1
4

By these relations the equation (1) reduces to

Y

= 0. (4)

We may now return to our supposition that numerical solutions
for a, Z, m, n have been found in the equations § 1 (3). In applying
them to (4), it will readily be seen that a certain ambiguity arises as
to the proper sign to be taken for a and Vmn. The choice, however,
can be easily determined from the following considerations. Since

a = 5go+l = 1, mod 5,

there is no ambiguity in its value; and, if (I, m, n) is a correct
solution of § 1 (3), the only other sets of solutions are (I, —in, —n),
(—Z, w, — wi), and (—Z, — n, w), all of which yield the same product
Imn, so that (4) is not altered by these alternative choices.

For instance, 16 x 331 = 61* +125.18+50 (58+2s),

where 61 = 5 8 +4 .10-4 ,

so that a = 61 = 1, mod 5.

Let then I = 1, w = 5, n = — 2,

80 that Imn = — 10;
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we see by the above reasoning that all other possible choices of
values for I, TO, n would have given the same value for the product.

3. It may be noticed that the representation of 16p in § 1 (3)
depends upon the fact that p, a rational quantity, is found to be the
product of two irrational factors qu>. gw4, which in general, for un-
restricted values of the q's, would involvo terms containing the square
root of 5.

The result may be generalized by supposing a case in which some
rational quantity can be expressed as the product of two linear func-
tions of a quadrisectional equation.

Let n be any prime of the form 4k+l whose quadrisectional
roots are

+...,

where r = e(2Wn)'",

and g is a primitive root of n; and let us suppose that

and the s's are rational.

Let i7o+7hi'" + *72l'"' + 1?a*3'" be written JFV1", where

m = 0, 1, 2, 3, mod 4 ;

so that Fl = — 1,

and 4<r]0 = - 1 -t- Fi+F? + Fi\

4/,, = - 1-iFi - Fv + Fi*y

417, = - - 1 - Fi + Ft*-FP,

4r/8 = - 1+iFi- FP-FP.

Moreover, if «0 + s1i'"+Sji<2"l-M8&
<3m be written si'n, where

m s 0, 1, 2, 3, mod 4,
we have

16P = 16

= ( — si + si lFl + s#FP+siFP) (-si-

= (-s
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Now Fi is the (w*'""1', g) of Bachmann's Kreistheilungslehre, p. 84, and

JW = Vo+%—-^i — 9, = Vp,

while (JV)"=(a+W).R\

where a2 + ft9 = p,

and K.JV>=(-l)»(-1>j».

Hence 16P = ( - d + O T V p ) 9 - ^ ) 3 (a+ &»Vp-(«)" («-&*) Vp

Eqnating rational and irrational terms, we have

16P = (so+Si+

( ) { ( ^
while

(sQ+s,+s9+s8) (s0—s,+sa—st)

= a{O,-s8)
3-Oo-ss)

8} "̂ 26
These equations may be written in the form

16P = ^9+wJ3a-27j(-l)*<'-1> (O2+I>2) 1

J
Two cases of these relations obviously present themselves.

Firstly, we may take the product

(a._r)(a5_r*
4)(aj_r«

8) ...

X (a-rs) (a : - / ) ( a - / ) - - . ,

which can be written in the form

while (OJ—rs*)(aj—r4*)

becomes

where s0, «,, 5S, «8 are rational integral functions of x. Hence
16 (&"—l)/(a;—1) can be written as in (1). For instance,

while.
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while 17 = P + 43.

Secondly, we may apply (1) to the theory of n-sectional equations
in general, where n = 4A;-f 1 and is prime, and more especially when
n = 5, mod 8. The results will have a close analogy to the theorems
contained in chapter xx. of Bachmann's Kreistheilungslehre, though
it is not easy to see how far the result of p. 290 et seq. can be
generalized.

For instance, when nM. 5, mod 8, and P is a prime of form kn+1,
we shall obtain a relation similar to (19), p. 2S7, viz.,

where AB = a(D2-O2)-26OD,

and it is probable that in all cases the numbers A, B, 0, D contain as
a common factor some power of P, reducing the identity to one
analogous to (24) on p. 290, the representation being unique.

Again, in what we may call the two-square representation of
primes or their powers treated of in this portion of Bachmann's
work, the primes of form 4&-f 1 are omitted as leading to forms
which are ambiguous in consequence of the Pellian equation

1 = a>s — ny*.

In the present four-square representation, we can include some such
primes unambiguously, viz., those which. •== 5, mod 8, but -shall
probably meet with a new Pellian ambiguity when the prime = 1,
mod 8, depending on possible integral solutions of

where AB = a(Di- Gl) - 2bCD.

It would be interesting to know how far the integral solution of
these equations is possible, both when n = aJ + 63 is prime and when
it is composite, and whether any algorithm similar to continued
fractions can be employed to determine such a solution.




