
 

Abstract—Support Vector Machine (SVM) classifier is an 
intensive computational part of a pedestrian detection 
system. A real-time system requires the classifier to be 
implemented in embedded platforms. In this paper, a 
hardware accelerator for the SVM classifier, which is part 
of the pedestrian detection system, has been designed and 
implemented on FPGA. The accelerator, which targets low 
latency and on-chip memory use, can be scaled to different 
input image sizes. The memory usage of the accelerator 
alone is 77% of the state of the art implementation. The 
accelerator is demonstrated by being integrated into a 
pedestrian detection. It increases the system’s throughput 
by 1.9 times. 

Keywords—Support Vector Machine (SVM), classifier, 
pedestrian detection. 

I. INTRODUCTION 
EDESTRIAN detection has been one of the key 
problems to be solved during recent years for self-

driving cars. State of the art approaches employ machine 
learning to classify objects as pedestrians or not. Deep 
learning method has been used to detect pedestrians 
even though it requires costly computing platforms with 
not only many processing cores but also large memory 
bandwidth and capacity. Therefore SVM, a supervised 
machine learning method, is more likely used, especially 
in an embedded system. Unlike the deep learning 
method which uses the original input image as the 
training data, SVM learns from the image features such 
as Histogram of Gradients (HOG) [1], Scale-invariant 
feature transform (SIFT). After the training phase, a set 
of support vectors, which represents the model, is 
identified. Then, the model is used for the inference 
process that outputs confidence values for every object 
in the input image. Intuitively, a window, which 
contains support vectors, slides and calculates 
convolution at each step over the whole image features 
to generate confidence values. A threshold value is 
chosen so that an object can be classified as a pedestrian 
if its confidence value is greater than the threshold. This 
sliding window task can be easily implemented in 
software by nested loops. Its latency, however, takes 
almost 50 percent of the whole detection system time. 
The reason for this is that the CPU has to wait for the 
entire feature of the image to be available and calculate 
sequentially for thousands of sliding windows. An 
FPGA is well fitted in this sort of sliding and computing 
operation as the convolution process and the feature 
generating process can run in parallel using pipelines. 
Furthermore, the convolution is executed in parallel for 
different window positions. In this paper, we propose a 
hardware implementation of an SVM classifier on 
FPGA. The design is then integrated with our previous 
HOG extractor design to realize a real-time pedestrian 
detection system. The design has helped to double the 

detection throughput. Besides it only uses 6.3 percent of 
memory size that needs to store all the confidence values 
of an image. 
The next section will provide some key related works. 
The detail implementation of the accelerator is presented 
in section III. Section IV shows the results and 
comparisons. And finally, a conclusion is given in 
section V. 

II. RELATED WORKS 
Sliding window is the key computational part of an 

SVM classifier. It has been used as a reference 
application in [2] to compare the performance of multi-
core CPU, GPU and FPGA. According to the paper, 
FPGAs is 11x and 57x faster than GPU and CPU 
respectively while consuming orders of magnitude less 
energy. A review on SVM accelerator on FPGA for 
several applications including pedestrian detection is 
presented in [3]. Among various implementations, the 
work in [4] has reported not only a high throughput 
system but also a detail on hardware resources required 
by each main part of the pedestrian detection, including 
the SVM module. The author has created an architecture 
so that every newly created HOG feature of a specific 
block is processed at once even though the feature of a 
block contributes to the final confidence values of up to 
105 windows. Therefore, the calculation for up to 105 
windows can be done in parallel, which helps to increase 
the throughput. Besides, the limited on-chip memory 
does not need to be used for all the HOG feature blocks 
of a frame.  Actually, our SVM architecture is inspired 
by the one in [4]. However, with a memory optimizing 
target, our system’s on-chip memory usage is even 
reduced by 23 percent. A recent work, which provides a 
report on SVM hardware resource, is presented in [5]. 
The SVM implementation in this work is quite the same 
as the one in [4]. However, to keep the control circuit 
simple, the author uses on-chip memory to store all the 
confidence values for all detection windows. Our 
architecture only stores 6.3 percent of the total number 
of detection windows without any hardware resource 
overhead. 

III. SVM BACKGROUND 
This section provides a background on SVM that 

closely relates to the hardware implementation of this 
research. Basically, SVM is consist of two phases, 
training and classifying. Owing to the high 
computational complexity, the training phase is very 
unlikely used in a real-time embedded system. In fact, 
the training phase is run offline and it generates a model 
for the classification phase. 
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A. Training phase 
The input of a training phase is training data, which, in 

this case, is the set of HOG feature vector of every 
training image and their corresponding labels. In fact, 
every training image includes a fixed number of 
detection windows, which depends on the size of the 
image and the detection window. A label, corresponded 
to a detection window, indicates either a pedestrian or a 
non-pedestrian. It depends on whether a pedestrian is 
present in the detection window or not. Mathematically, 
training is the process of solving the Equation (1) [6], 
where 𝑥i is the HOG feature vector of the window 
number ith of the input training image and yi is its 
corresponding label which could be either 1 or -1. By 
solving equation (1), vector 𝑤 and b is determined. We 
used open source LIBSVM[7] for the training phase and 
thus obtaining 𝑤 and b. In this work, each HOG feature 
vector has 3780 elements because each detection 
window has 7x15 blocks and each block has 36 elements 
[8]. And N is the number of input training image 
including both positive and negative samples. 

 
yi (𝑤⋅ 𝑥i +b) ≥ 0 , i = 1, …, N         (1) 

 
A graphical representation of Equation (1), in which 𝑥 

is 2-dimension vector, is shown in Figure 1 where: 
 

 f(𝑥) = 𝑤⋅𝑥 + b.  
 

The key idea in solving (1) is to find a hyperplane f(𝑥) 
that separates all input positive and negative training 
data. There are possible multiple solutions for Eq. 1 and 
SVM selects the one that has the largest margin. The 
training data that are closest to the hyperplane are 
support vectors (SV).  Those are the circled ones in 
Figure 1.  

The resulting model, generated by the training phase, 
is an array of weight vector 𝑤, and b values. The weight 
vector is, in fact, the linear combination of all the SVs. 

 
Fig. 1. A 2-D example of an SVM hyperplane 

B. Classification phase 
The classification phase will then use the model to 

infer predictions. The confidence value y(𝑥) of a 
detection window, which will be compared to a 
threshold to determine an object as a pedestrian or not, is 
calculated from Equation (2). Weight vector 𝑤 and the 
bias b are provided by the model while 𝑥 is the HOG 
feature vector of the window that needs to be detected. 
 

y(𝑥) = 𝑤T⋅ 𝑥 +b         (2) 

IV. HARDWARE IMPLEMENTATION 

A. Sliding window 
The key factor making an SVM classifier’s execution 

time quite long in software is the sliding window task. 
Figure 2 illustrates the sliding window implemented in 
our design. To be more specific, the size of the input 
image is 640x480. The HOG feature of an image is 
organized in blocks. Each block is a concatenation of 4 
cells, and a cell is formed by 8x8 pixels as illustrated in 
Figure 3. To improve the detection performance, two 
consecutive blocks in either horizontal or vertical 
direction have 2 overlapped cells. Therefore, an image 
of size 640x480 would have 80x60 cells and 79x59 
blocks. 

 
 

Fig. 2. Sliding a 7x15 window over a 79x59 HOG frame 

The SVM classifier works with block unit. In Figure 2, 
the HOG feature of the input image has 59 rows and 
each row has 79 blocks.  And a detection window has a 
size of 7x15 [1] blocks. Figure 2 shows two detection 
windows drawn by dash lines with one block sliding 
step in the horizontal direction. Therefore, it takes 73 
steps to slide horizontally. Similarly, in the vertical 
direction, there are a total of 45 detection window if the 
sliding step is one block.   

At each step, all 105 blocks containing 3780 fixed-
point numbers in the detection window multiplies with 
the 3780 elements of the weight vector stored in a ROM 
memory. Then the sum of all those 3780 products is 
added to the bias provided by the model to obtain the 
final confidence value for that specific window. This 
process is repeated for a total of 73x45 detection 
windows. 

B. SVM classifier hardware architecture 
This section provides the hardware implementation of 

the SVM classifier on DE1-SOC board housing a 
Cyclone V FPGA device. 

From the hardware point of view, there are 2 main 
problems to be tackled so as to speed up the execution 
time in compared to software implementation. Firstly, 
since blocks are generated sequentially, it is more 
efficient to process every block immediately after its 
being generated instead of waiting for the whole 105 
blocks. 
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Fig. 3. Size of a detection window, a block, and a cell 
 

It is worth noting that the latency for a full detection 
window blocks to be available is not just  105 times the 
latency for one block. This is because blocks are created 
row-wise and each row contains 79 blocks as in Figure 
2. This approach can also save the precious on-chip 
memory because once the block is processed, it is no 
longer necessary to be stored.  

Besides, the hardware design needs to consider the fact 
that one block is possibly used for multiple detection 
windows. For example, the block at position (0,1) in 
Figure 2 belongs to 2 detection windows. On the other 
hand, the block (6,14) contributes to 105 different 
detection windows. 

 

 
 

 

 
 

Fig. 4. SVM classifier hardware block diagram 
  

The design, shown as block diagram in Figure 4, is 
structured to solve the problems mentioned. Although 
the hardware design is pipelined for high throughput, the 
pipeline registers are not shown in the figure for the sake 
of clarity. Each hardware components will be briefly 
described in the following paragraphs. 

MAIN CONTROLLER: it is a finite state machine 
(FSM) that orchestra the whole design. Once a block is 
finished, it will check if a new block is available before 
fetching it to the pipeline. Knowing the block position, 
the FSM can infer how many detection windows that the 
block belongs to. Besides, the FSM generates 
appropriate addresses to access ROM and RAM 
memory. 

ROM: this memory stores all the elements of the 
weight vector. If the model has any change, this ROM 
must be reloaded with the new weight vector. The size 
of this ROM is 3780 x10 bits. It means that each 
element of the weight vector is represented by a 10-bit 
fixed-point, in which 8 bits are fractional bits.   

RAM: there are 2 RAM instances in Figure 4 to 
distinguish between the reading and the writing process. 
Physically, there is one unique RAM module in the 

design. The memory, which has a size of 30x73x19 bits, 
stores temporary sums for final confidence values. Each 
word is 19-bit width including a 12-bit partial sum and a 
7-bit counter. Each resulting confidence value of a 
detection window is a sum of 105 partial sums. 
Therefore, the counter is used to signify that the 
detection window’s confidence value is valid. The 
win_done signal is active when 105 partial sums of a 
detection window are fully accumulated. Furthermore, 
to optimize the on-chip memory usage, the memory 
location storing that window’s value will be reused for 
other detection windows. Therefore, the design only 
uses 30x73 RAM locations to effectively store 45x73 
detection windows’ temporary sums.  

MULTIPLY: this module takes a hog block and 
multiplies it with appropriate elements of the weight 
vector stored in the ROM memory. One-cycle 
multiplication will generate 36 products because a block 
contains 36 elements. Depends on the position of the 
block, it might belong to multiple detection windows. It 
would take 105 cycles to finish processing a specific 
block if that block belongs to 105 detection windows. 



ADD: This module simply sums up 36 products from 
the MULTIPLY module. 

ACC.: Since a detection window’s confidence value is 
the sum of 105 partial values. This module accumulates 
the temporary value stored in the RAM memory with the 
new partial sum. 

BIAS: This module adds the bias value to generate the 
final confidence value in fixed-point representation.  

FIX2FLOAT: Fixed-point confidence values are 
converted to 32-bit floating-point numbers by this block.  

From the right side of Figure 4, we can see that each 
confidence value is accompanied with a valid signal and 
an address indicating the position of that detection 
window in the image. This coordination is used by the 
HPS software to draw the rectangular if the confidence 
value is higher than the threshold. 

C. Number representation 
In this work, we used fixed-point numbers for all the 

calculations to achieve high accuracy in the detection 
system. The inputs to the MULTIPLY block are two 
fixed-point numbers, which both have 8 fractional bits. 
Although, the MULTIPLY generates 16-bit fractional 
fixed-point numbers, only 8 fractional bits are kept and 
provided to the ADD module. This is reasonable since 
keeping 16-bit fractional number increases the system 
resources without adding any significant difference in 
the system accuracy. 

At the end of the pipeline, final confidence values are 
converted from fixed-point to floating point to avoid that 
task being implemented in HPS software. 

  

D. Pedestrian detection system 

 
 

Fig. 5. SVM classifier in the pedestrian detection 
 

The SVM classifier is integrated into the pedestrian 
detection system built in [8] as in Figure 5. Input images 
from the sensor are entirely processed on-fly by FPGA 
hardware pipeline. Only the final confidence values are 
written to the external DDR3 memory. 

The confidence values are written to the external 
DDR3 SDRAM memory by a custom Avalon Memory-
Mapped Master via the f2h_axi_slave bridge. Similarly, 
another custom Avalon bus master is used to send image 
pixels to the DDR3 memory. These two memory 
locations are set to be dedicated to FPGA. This transfer 
method provides good performance because data are 
transmitted in parallel with the HPS’s CPU execution. 

In the opposite direction, pixels in the memory and 
detection results are sent to the VGA controller to 
visualize in real time. 

V. RESULTS 
The SVM classifier can be parameterized to work with 

different input image size. The hardware resource 
reported in Table I is for an input size of 640x480. The 
SVM classifier itself only occupies 97 Kbits on-chip 
memory which is the smallest in the state of the art even 
though fixed-point numbers are used for the design. The 
maximum operating frequency of the design is 87 MHz, 
which is high enough to be integrated into the detection 
system. In fact, the design could be optimized to work at 
a higher frequency by inserting more pipeline registers 
into the critical paths. However, the operating frequency 
of the detection system, in which the SVM classifier is 
integrated, is just 68 MHz. Therefore, we keep the 
design working at this frequency to save hardware 
resources. 

 
TABLE I 

COMPILATION REPORT FOR CYCLONE V DEVICE. 

 
Design Block 

memory Kbits  
Adaptive 

Logic 
Modules 
(ALMs) 

DSP 
blocks 

Registers Fmax 
(MHz) 

SVM 
classifier 

67 
(2%) 

716 
(2%) 

0 
 

684 87 

Detection 
system 

340 (9%) 13,755 
(43%) 

40 
(46%) 

17,655 68 

 
A comparison of hardware resource usage to other 

implementations is given in Table II. 
Our design uses less resource in the number of LUTs, 

DSPs, and Registers. Since the memory usage is 
apparently affected by the input image width, we divide 
the memory usage by the input image’s width and get 
the results in the column “Memory per width”. 
According to this metric, our design saves 23% and 73% 
on-chip memory compared with the two references.  

Based on the fact that the pedestrian detection system 
works at 50MHze clock frequency, the SVM classifier is 
only constrained to work at 87 MHz. However, we could 
totally optimize the clock frequency to operate at a much 
higher frequency by inserting pipeline stages. 

Besides, we opt to use logic cells for implementing the 
multiplication circuit instead of DSP blocks. Therefore 
the design does not use any DSP block. 

The SVM classifier is demonstrated in the pedestrian 
detection system. It speeds up 1.9x the detection speed. 
The system's throughput is 11 FPS and 21 FPS 
corresponding to the system with software SVM 
classifier and the system with SVM accelerator 
respectively. 

 
 
 
 
 
 



 
 
 

 
 
 

TABLE II 

RESOURCE COMPARISON. 

Design Frame size FPGA 
Max frequency Memory per 

width 
(Kb/pixel) 

FPGA resources 

(MHz) Memory (Kb) LUTs DSPs Registers 

[4] 1920x1080 Virtex 7 266 0.13 252 1,246 37 1,534 

[5] 1920x1080 Cyclone IV 140 0.37 706 1,251 36 1259 

Ours 640x480 Cyclone V 87 0.1 67 716 0 684 

 
  

VI. CONCLUSION 
An SVM classifier accelerator has been designed and 

integrated into the pedestrian detection. The detection 
system achieves 1.9x higher throughput thanks to the 
accelerator. The design is optimized to save the precious 
on-chip resources, especially the memory. While 
keeping high accuracy through fixed-point number 
representation, the memory cost is only 77% compared 
to the best implementation reported.  
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