

Abstract—Support Vector Machine (SVM) classifier is an
intensive computational part of a pedestrian detection
system. A real-time system requires the classifier to be
implemented in embedded platforms. In this paper, a
hardware accelerator for the SVM classifier, which is part
of the pedestrian detection system, has been designed and
implemented on FPGA. The accelerator, which targets low
latency and on-chip memory use, can be scaled to different
input image sizes. The memory usage of the accelerator
alone is 77% of the state of the art implementation. The
accelerator is demonstrated by being integrated into a
pedestrian detection. It increases the system’s throughput
by 1.9 times.

Keywords—Support Vector Machine (SVM), classifier,
pedestrian detection.

I. INTRODUCTION
EDESTRIAN detection has been one of the key
problems to be solved during recent years for self-

driving cars. State of the art approaches employ machine
learning to classify objects as pedestrians or not. Deep
learning method has been used to detect pedestrians
even though it requires costly computing platforms with
not only many processing cores but also large memory
bandwidth and capacity. Therefore SVM, a supervised
machine learning method, is more likely used, especially
in an embedded system. Unlike the deep learning
method which uses the original input image as the
training data, SVM learns from the image features such
as Histogram of Gradients (HOG) [1], Scale-invariant
feature transform (SIFT). After the training phase, a set
of support vectors, which represents the model, is
identified. Then, the model is used for the inference
process that outputs confidence values for every object
in the input image. Intuitively, a window, which
contains support vectors, slides and calculates
convolution at each step over the whole image features
to generate confidence values. A threshold value is
chosen so that an object can be classified as a pedestrian
if its confidence value is greater than the threshold. This
sliding window task can be easily implemented in
software by nested loops. Its latency, however, takes
almost 50 percent of the whole detection system time.
The reason for this is that the CPU has to wait for the
entire feature of the image to be available and calculate
sequentially for thousands of sliding windows. An
FPGA is well fitted in this sort of sliding and computing
operation as the convolution process and the feature
generating process can run in parallel using pipelines.
Furthermore, the convolution is executed in parallel for
different window positions. In this paper, we propose a
hardware implementation of an SVM classifier on
FPGA. The design is then integrated with our previous
HOG extractor design to realize a real-time pedestrian
detection system. The design has helped to double the

detection throughput. Besides it only uses 6.3 percent of
memory size that needs to store all the confidence values
of an image.
The next section will provide some key related works.
The detail implementation of the accelerator is presented
in section III. Section IV shows the results and
comparisons. And finally, a conclusion is given in
section V.

II. RELATED WORKS
Sliding window is the key computational part of an

SVM classifier. It has been used as a reference
application in [2] to compare the performance of multi-
core CPU, GPU and FPGA. According to the paper,
FPGAs is 11x and 57x faster than GPU and CPU
respectively while consuming orders of magnitude less
energy. A review on SVM accelerator on FPGA for
several applications including pedestrian detection is
presented in [3]. Among various implementations, the
work in [4] has reported not only a high throughput
system but also a detail on hardware resources required
by each main part of the pedestrian detection, including
the SVM module. The author has created an architecture
so that every newly created HOG feature of a specific
block is processed at once even though the feature of a
block contributes to the final confidence values of up to
105 windows. Therefore, the calculation for up to 105
windows can be done in parallel, which helps to increase
the throughput. Besides, the limited on-chip memory
does not need to be used for all the HOG feature blocks
of a frame. Actually, our SVM architecture is inspired
by the one in [4]. However, with a memory optimizing
target, our system’s on-chip memory usage is even
reduced by 23 percent. A recent work, which provides a
report on SVM hardware resource, is presented in [5].
The SVM implementation in this work is quite the same
as the one in [4]. However, to keep the control circuit
simple, the author uses on-chip memory to store all the
confidence values for all detection windows. Our
architecture only stores 6.3 percent of the total number
of detection windows without any hardware resource
overhead.

III. SVM BACKGROUND
This section provides a background on SVM that

closely relates to the hardware implementation of this
research. Basically, SVM is consist of two phases,
training and classifying. Owing to the high
computational complexity, the training phase is very
unlikely used in a real-time embedded system. In fact,
the training phase is run offline and it generates a model
for the classification phase.

P

A low-cost SVM classifier on FPGA for
pedestrian detection

Vinh Ngo, Arnau Casadevall, Marc Codina, David Castells-Rufas, and Jordi Carrabina Bordoll

A. Training phase
The input of a training phase is training data, which, in

this case, is the set of HOG feature vector of every
training image and their corresponding labels. In fact,
every training image includes a fixed number of
detection windows, which depends on the size of the
image and the detection window. A label, corresponded
to a detection window, indicates either a pedestrian or a
non-pedestrian. It depends on whether a pedestrian is
present in the detection window or not. Mathematically,
training is the process of solving the Equation (1) [6],
where 𝑥i is the HOG feature vector of the window
number ith of the input training image and yi is its
corresponding label which could be either 1 or -1. By
solving equation (1), vector 𝑤 and b is determined. We
used open source LIBSVM[7] for the training phase and
thus obtaining 𝑤 and b. In this work, each HOG feature
vector has 3780 elements because each detection
window has 7x15 blocks and each block has 36 elements
[8]. And N is the number of input training image
including both positive and negative samples.

yi (𝑤⋅ 𝑥i +b) ≥ 0 , i = 1, …, N (1)

A graphical representation of Equation (1), in which 𝑥

is 2-dimension vector, is shown in Figure 1 where:

 f(𝑥) = 𝑤⋅𝑥 + b.

The key idea in solving (1) is to find a hyperplane f(𝑥)
that separates all input positive and negative training
data. There are possible multiple solutions for Eq. 1 and
SVM selects the one that has the largest margin. The
training data that are closest to the hyperplane are
support vectors (SV). Those are the circled ones in
Figure 1.

The resulting model, generated by the training phase,
is an array of weight vector 𝑤, and b values. The weight
vector is, in fact, the linear combination of all the SVs.

Fig. 1. A 2-D example of an SVM hyperplane

B. Classification phase
The classification phase will then use the model to

infer predictions. The confidence value y(𝑥) of a
detection window, which will be compared to a
threshold to determine an object as a pedestrian or not, is
calculated from Equation (2). Weight vector 𝑤 and the
bias b are provided by the model while 𝑥 is the HOG
feature vector of the window that needs to be detected.

y(𝑥) = 𝑤T⋅ 𝑥 +b (2)

IV. HARDWARE IMPLEMENTATION

A. Sliding window
The key factor making an SVM classifier’s execution

time quite long in software is the sliding window task.
Figure 2 illustrates the sliding window implemented in
our design. To be more specific, the size of the input
image is 640x480. The HOG feature of an image is
organized in blocks. Each block is a concatenation of 4
cells, and a cell is formed by 8x8 pixels as illustrated in
Figure 3. To improve the detection performance, two
consecutive blocks in either horizontal or vertical
direction have 2 overlapped cells. Therefore, an image
of size 640x480 would have 80x60 cells and 79x59
blocks.

Fig. 2. Sliding a 7x15 window over a 79x59 HOG frame

The SVM classifier works with block unit. In Figure 2,
the HOG feature of the input image has 59 rows and
each row has 79 blocks. And a detection window has a
size of 7x15 [1] blocks. Figure 2 shows two detection
windows drawn by dash lines with one block sliding
step in the horizontal direction. Therefore, it takes 73
steps to slide horizontally. Similarly, in the vertical
direction, there are a total of 45 detection window if the
sliding step is one block.

At each step, all 105 blocks containing 3780 fixed-
point numbers in the detection window multiplies with
the 3780 elements of the weight vector stored in a ROM
memory. Then the sum of all those 3780 products is
added to the bias provided by the model to obtain the
final confidence value for that specific window. This
process is repeated for a total of 73x45 detection
windows.

B. SVM classifier hardware architecture
This section provides the hardware implementation of

the SVM classifier on DE1-SOC board housing a
Cyclone V FPGA device.

From the hardware point of view, there are 2 main
problems to be tackled so as to speed up the execution
time in compared to software implementation. Firstly,
since blocks are generated sequentially, it is more
efficient to process every block immediately after its
being generated instead of waiting for the whole 105
blocks.

+
+

+

+ +

+

+

+ +

-
-

-
-

-
-

-

-

- f(�⃗�
)

margin

Fig. 3. Size of a detection window, a block, and a cell

It is worth noting that the latency for a full detection
window blocks to be available is not just 105 times the
latency for one block. This is because blocks are created
row-wise and each row contains 79 blocks as in Figure
2. This approach can also save the precious on-chip
memory because once the block is processed, it is no
longer necessary to be stored.

Besides, the hardware design needs to consider the fact
that one block is possibly used for multiple detection
windows. For example, the block at position (0,1) in
Figure 2 belongs to 2 detection windows. On the other
hand, the block (6,14) contributes to 105 different
detection windows.

Fig. 4. SVM classifier hardware block diagram

The design, shown as block diagram in Figure 4, is
structured to solve the problems mentioned. Although
the hardware design is pipelined for high throughput, the
pipeline registers are not shown in the figure for the sake
of clarity. Each hardware components will be briefly
described in the following paragraphs.

MAIN CONTROLLER: it is a finite state machine
(FSM) that orchestra the whole design. Once a block is
finished, it will check if a new block is available before
fetching it to the pipeline. Knowing the block position,
the FSM can infer how many detection windows that the
block belongs to. Besides, the FSM generates
appropriate addresses to access ROM and RAM
memory.

ROM: this memory stores all the elements of the
weight vector. If the model has any change, this ROM
must be reloaded with the new weight vector. The size
of this ROM is 3780 x10 bits. It means that each
element of the weight vector is represented by a 10-bit
fixed-point, in which 8 bits are fractional bits.

RAM: there are 2 RAM instances in Figure 4 to
distinguish between the reading and the writing process.
Physically, there is one unique RAM module in the

design. The memory, which has a size of 30x73x19 bits,
stores temporary sums for final confidence values. Each
word is 19-bit width including a 12-bit partial sum and a
7-bit counter. Each resulting confidence value of a
detection window is a sum of 105 partial sums.
Therefore, the counter is used to signify that the
detection window’s confidence value is valid. The
win_done signal is active when 105 partial sums of a
detection window are fully accumulated. Furthermore,
to optimize the on-chip memory usage, the memory
location storing that window’s value will be reused for
other detection windows. Therefore, the design only
uses 30x73 RAM locations to effectively store 45x73
detection windows’ temporary sums.

MULTIPLY: this module takes a hog block and
multiplies it with appropriate elements of the weight
vector stored in the ROM memory. One-cycle
multiplication will generate 36 products because a block
contains 36 elements. Depends on the position of the
block, it might belong to multiple detection windows. It
would take 105 cycles to finish processing a specific
block if that block belongs to 105 detection windows.

ADD: This module simply sums up 36 products from
the MULTIPLY module.

ACC.: Since a detection window’s confidence value is
the sum of 105 partial values. This module accumulates
the temporary value stored in the RAM memory with the
new partial sum.

BIAS: This module adds the bias value to generate the
final confidence value in fixed-point representation.

FIX2FLOAT: Fixed-point confidence values are
converted to 32-bit floating-point numbers by this block.

From the right side of Figure 4, we can see that each
confidence value is accompanied with a valid signal and
an address indicating the position of that detection
window in the image. This coordination is used by the
HPS software to draw the rectangular if the confidence
value is higher than the threshold.

C. Number representation
In this work, we used fixed-point numbers for all the

calculations to achieve high accuracy in the detection
system. The inputs to the MULTIPLY block are two
fixed-point numbers, which both have 8 fractional bits.
Although, the MULTIPLY generates 16-bit fractional
fixed-point numbers, only 8 fractional bits are kept and
provided to the ADD module. This is reasonable since
keeping 16-bit fractional number increases the system
resources without adding any significant difference in
the system accuracy.

At the end of the pipeline, final confidence values are
converted from fixed-point to floating point to avoid that
task being implemented in HPS software.

D. Pedestrian detection system

Fig. 5. SVM classifier in the pedestrian detection

The SVM classifier is integrated into the pedestrian
detection system built in [8] as in Figure 5. Input images
from the sensor are entirely processed on-fly by FPGA
hardware pipeline. Only the final confidence values are
written to the external DDR3 memory.

The confidence values are written to the external
DDR3 SDRAM memory by a custom Avalon Memory-
Mapped Master via the f2h_axi_slave bridge. Similarly,
another custom Avalon bus master is used to send image
pixels to the DDR3 memory. These two memory
locations are set to be dedicated to FPGA. This transfer
method provides good performance because data are
transmitted in parallel with the HPS’s CPU execution.

In the opposite direction, pixels in the memory and
detection results are sent to the VGA controller to
visualize in real time.

V. RESULTS
The SVM classifier can be parameterized to work with

different input image size. The hardware resource
reported in Table I is for an input size of 640x480. The
SVM classifier itself only occupies 97 Kbits on-chip
memory which is the smallest in the state of the art even
though fixed-point numbers are used for the design. The
maximum operating frequency of the design is 87 MHz,
which is high enough to be integrated into the detection
system. In fact, the design could be optimized to work at
a higher frequency by inserting more pipeline registers
into the critical paths. However, the operating frequency
of the detection system, in which the SVM classifier is
integrated, is just 68 MHz. Therefore, we keep the
design working at this frequency to save hardware
resources.

TABLE I

COMPILATION REPORT FOR CYCLONE V DEVICE.

Design Block

memory Kbits
Adaptive

Logic
Modules
(ALMs)

DSP
blocks

Registers Fmax
(MHz)

SVM
classifier

67
(2%)

716
(2%)

0

684 87

Detection
system

340 (9%) 13,755
(43%)

40
(46%)

17,655 68

A comparison of hardware resource usage to other

implementations is given in Table II.
Our design uses less resource in the number of LUTs,

DSPs, and Registers. Since the memory usage is
apparently affected by the input image width, we divide
the memory usage by the input image’s width and get
the results in the column “Memory per width”.
According to this metric, our design saves 23% and 73%
on-chip memory compared with the two references.

Based on the fact that the pedestrian detection system
works at 50MHze clock frequency, the SVM classifier is
only constrained to work at 87 MHz. However, we could
totally optimize the clock frequency to operate at a much
higher frequency by inserting pipeline stages.

Besides, we opt to use logic cells for implementing the
multiplication circuit instead of DSP blocks. Therefore
the design does not use any DSP block.

The SVM classifier is demonstrated in the pedestrian
detection system. It speeds up 1.9x the detection speed.
The system's throughput is 11 FPS and 21 FPS
corresponding to the system with software SVM
classifier and the system with SVM accelerator
respectively.

TABLE II

RESOURCE COMPARISON.

Design Frame size FPGA
Max frequency Memory per

width
(Kb/pixel)

FPGA resources

(MHz) Memory (Kb) LUTs DSPs Registers

[4] 1920x1080 Virtex 7 266 0.13 252 1,246 37 1,534

[5] 1920x1080 Cyclone IV 140 0.37 706 1,251 36 1259

Ours 640x480 Cyclone V 87 0.1 67 716 0 684

VI. CONCLUSION
An SVM classifier accelerator has been designed and

integrated into the pedestrian detection. The detection
system achieves 1.9x higher throughput thanks to the
accelerator. The design is optimized to save the precious
on-chip resources, especially the memory. While
keeping high accuracy through fixed-point number
representation, the memory cost is only 77% compared
to the best implementation reported.

ACKNOWLEDGMENT
This work was supported by Spanish projects TEC2014-
59679-C2-2.

REFERENCES
[1] N. Dalal and W. Triggs, “Histograms of Oriented Gradients

for Human Detection,” 2005 IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit. CVPR05, vol. 1, no. 3, pp.
886–893, 2004.

[2] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance
and energy comparison of FPGAs, GPUs, and multicores for
sliding-window applications,” Proc. ACM/SIGDA Int. Symp.
F. Program. Gate Arrays - FPGA ’12, vol. 9, no. 4, p. 47,
2012.

[3] S. M. Afifi, H. Gholamhosseini, and R. Sinha, “Hardware
Implementations of SVM on FPGA : A State-of-the-Art
Review of Current Practice,” Int. J. Innov. Sci. Eng.
Technol., vol. 2, no. 11, pp. 733–752, 2015.

[4] M. Hahnle, F. Saxen, M. Hisung, U. Brunsmann, and K.
Doll, “FPGA-Based real-time pedestrian detection on high-
resolution images,” IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit. Work., pp. 629–635, 2013.

[5] J. Dürre, D. Paradzik, and H. Blume, “A HOG-based Real-
time and Multi-scale Pedestrian Detector Demonstration
System on FPGA,” pp. 163–172, 2018.

[6] T. Joachims, Learning to Classify Text Using Support Vector
Machines, vol. 29. 2001.

[7] C.-C. Chang and C.-J. Lin, “Libsvm,” ACM Trans. Intell.
Syst. Technol., vol. 2, no. 3, pp. 1–27, 2011.

[8] V. Ngo, A. Casadevall, M. Codina, D. Castells-Rufas, and J.
Carrabina, “A High-Performance HOG Extractor on FPGA.”

