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VIII .  The -Practical Importance of tM Confluent Hypergeo- 
metric Function. B q H. A. WEBB, M.A., and JOHtr 
R. AIREY, M.A., D.Sc.* 

[Plate u 

w 1. Introduction. 

I T is well-known that many physical and engineering 
problems depend for solution on differential equations 

of the type 

d~--~ . ~  + 4,(.~).y=o, (1~ 

wheref(x)  and ~b(x) are g'[ven functions of x. For example, 
the investigation of the periods of lateral vibration of a 
flexible non-uniform rope or chain 1", or the periods of 
vibration of a circular disk $, leads to an equation of this 
type. Again, the whirling speed of a non-c) lindrical shaft, 
or the period of lateral vibration of a non-cylindrical bar, 
such as an air-screw blade, can be found, with two-figure 
accuracy, by the solution of such an equationw and in fact 
many vibration problems in various branches of physics lead 
to such equations. To take another illustration, the crippling 
end-load of a tapered aeroplane strut, whatever law of taper 
is adopted, could be found if we could solve equation (1); 
other problems of elastic instability lead to equations of this 
type, and may be brought iilto prominence in aeronautics by 
the urgency of saving weight. 

In structures, such as aeroplanes or bridges, the liability 
to secondary failure (i. e. elastic instability) must be foreseen 
and estimated, as well as the liability to primary, or stress, 
failure. In running machinery it is important that the 
period of free vibrations shall be wall above, or below, the 
given running speed, to avoid resonance; in instruments for 
producing sound, on the other hand, it is required that the 
period of free vibrations shaii have a given value, to secure 
resonance. 

In any of these cases, the problem presents itself to the 
designer somewhat as follows. The main outlines of the 

�9 Communicated by the Authors. 
Airey~ "The Oscillations of Chains," Phil. h[ag. June 1911. 

:~ Airey, "The Vibrations of Circular Plates," Prec. Phys. Soc. April 
1911. 

w Webb, "The Whirling of Shafts," Engineering, November 1917. 
t'hil. Mag. S. 6. Vol. 36. Iqo. 211. July 1918. K 

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 2

2:
23

 2
6 

Ju
ne

 2
01

6 



130 Mr. tt .  A. Webb and Dr. J.  R. Airey on the 

design, including probably the over-all dimensions, are 
already settled by various considerations with which we 
are not now concerned. But we are allowed some latitude 
in detail design, which we are to use to avoid elastic failure, 
or to avoid, or to secure, resonance, as the case may be. We 
want therefore to be able to calculate, rougldy but quickly, 
the effect on the crippling load, or the period, of various 
possible alterations. We want in fact to make several trials-- 
the more the better--and choose the one we like best. Finally, 
when the design is complete, we wish to check it carefully by 
a more accurate calculation. 

The functions f(x) and r in equation (1) are to be 
considered, for a tentative design, to be defined by their 
graphs, which must be represented, fbr the range of values 
of x required, by empirical formulm, the closeness of the 
representation giving some idea of the accuracy to be 
expected in the solution. These empirical lbrmula~ should 
be of the simplest type, e. g. polynomials, or the ratios of 
linear or quadratic functions of x, otherwise time is wasted 
in constructing them. What is required therefore is a list 
of Suitable equations of the type (1) that are soluble in terms 
of tabulated functions. The two important characteristics 
are that (x) and r z should be of a simnle type - . f . .  . - ( ' )  r J r  , and that 
they should contain several arbitrary constants; we can then 
hope to make them fit our graphs fairly well without much 
trouble. 

When f(z)  and ~b(x) are constants, the solution in terms of 
circular and exponential functions is well-known. A useful 
list of equations soluble by Bessel functions, with appropriate 
tables, has been given by Jahnke and Erode*. I t  is the 
object of this paper to show the value, from this point of 
view, of the confluent hypergeometrie function, tables and 
graphs of which are given in w 4. For quick work graphs 
are more convenient than tables. A list of differential 
equations likely to be useful to designers, and soluble by 
means of these tables and graphs, is given in w 3. Some 
properties of the functions that were used in constructing 
the tables~ and would be useful in extending them, are given 
~ n w  

It  may perhaps be argued that few engineers have the 
mathematical ability for such scientific methods of design. 
But it should be remembered that many engineers acquire at 
~heir technical college or university a high degree of mathe- 
matical skill; and if they lose it afterwards, it is because 

-Funktionentafeln, Teubner~ 1909. 
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Confluent Hypergeometric Function. 131 

r find mathematical works of reference rather indigestible, 
and gradually cease to consult them. For example, an 
excellent summary, from a purely:mathematical point of 
view, of the properties of the function we are going to 
Consider is given in Whittaker and Watson's 'Modern 
Analysis '*; but it would be hard reading for engineers. 

Or if it is objected that the engineer can hardly be 
expected to be familiar with the function theory of linear 
differential equations and may get into trouble over singu- 
larities, he might reply, if sufficiently well read, that the 
equation can't have singularities in the range of x considered, 
unlessf(.v) or ~b(x), or both, become infinite, and he would 
notice that from the graphs. Or he might say that he is not 
looking for a rule to which there are no exceptions. He 
wants a rule that generaUy works quickly, and he is prepared 
to risk an occasional failure, because he intends to refer the 
finished design for a final check to an exper~ mathematician. 
Divergent series have often been used by physicists in much 
the same spirit, and with few, if any, failures. Finally, 
many expert mathematicians have come into contact with 
engineering work recently" under war conditions ; they may 
have opportunity and inclination to assist in design on the 
lines we have indicated. 

w 2. Pr(q:)erties of the confluent hypergeomet~.ic function. 

We define the function ~I(a, 7, x) as follows : - -  

v., t .2 .v(v+ 
+ . . . . .  to infinity�9 

The series is absolutely and uniformly convergent for all 
values of a, % and ~., real or complex, except only when 7 is 
zero or a negative in teger ; th i s  case is supposed to be 
excluded. 

The function M(a, 7, a:) has been discussed under various 
notations by several writers ~. The following is a list of 
such properties of the function as are of use for our purpose; 
most of them are easily verified from the definition (2). 

* Second edition, 1915, Chapter XV1. 
Jf For a list of references see Whittaker & Watson~ loc, c~t. 

K 2  

(2) 
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132 Mr. H. A. Webb a~,d Dr. J .  R. Airey on the 

I. .V= M(~, v, x) 
satisfio~ the differential equation 

d~,d d~ 
x-/~ + (v--x) ~,V -~ ,y=0 . . . . .  (3) 

I I .  The complete solution of the differential equation (3) is 

y----A. M(a, % x) + B .  x~-~. M(a--,y + 1, 2--% x), (4) 

which we shall write for brevity 

y =  M(~, v,  x) ,  . . . . . .  (5 )  

where A and B are arbitrary constants of integration ; except 
only when 7 is a positive integer, in which case * the coefficient 
of B is either infinite or identical with the coefficient of A.  
In this case the complete solution of (3) may be written 

y =  [ A + C l o g  x~.M(a ,  % x) 

t_ ,,/,,~ ',-- 1 -} 7(~/+ 1) 1.2 \ a  + a + l  7 7 + 1  I - -  

~(~+ 1)(~+2) x 3 (1 1 1 1 1 1 
+ " / ( ~ / + 1 ) ( 7 + 2 ) ' 1 . 2 . 3 _ ~ + ~ + ~ + 2  7 ,',/+1 7,+2 

i I i )  
2 

+ . . . .  to infinity] . . . . . . . . . . . . .  (6) 

where A and (J are arbitrary constants of integration. 

m .  M(=, V, x) =e~. M(V-  =, V, --x) . . . . .  (7) 

x t - v M ( a - - 7 +  1, 2--7,  x ) = e L x ~ - ' . M ( 1 - - a ,  2--% --x). (8) 

From (7) and (8) it follows that tables will not be required 
for negative values of x, if the tables cover wide enough 
ranges of a and 7. 

IV.  The asymptotic expansion of M(a, % x) for large 
values of x is 

* The situation is ~imilar to that which arises with B s~1'.~ ~ . . .~ ,~  
when n is a positive iuteger, and a new function is required for the second 
solution. 
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Confluent Hypergeometric Function. 133 

M(~, 7, :4 

r(7) { - r ( 7 - ~ )  (-x)-~. 1 -  ~,(~,-7+1).1 
�9 1 x 

+ ~,(,, + 1) (~-  7 + 1)(~,- 7 + , ~ ) 1 . 2  "J1-  ... } 

+ F - ~ "  r(7) ex" x~-~ { 1-t ( 1 -  a) (7 -- "xl 

+ (1--,~)(2--~)(7--,z)(7--,z+l) 1 } 
�9 1 . 2  . x - ~ +  . . . .  ( 9 )  

Both these series diverge for all values of x, but they have 
the property that the error involved in taking the sum to n 
terms to be the value of the series, is less than the nth term. 

V. t M  

M ( a , % x ) = ~ / . M ( , ~ + l ,  7 + l , x  ). . . (10) 
dx" 

(1- , , ) .  ~'M(,~, 7, x). dx= (1 - 7). M(,~-- 1, 7-- 1, x) + (7-- 1). 
�9 --o (11) 

Hence the function can easily be differentiated or in- 
Cegrated. 

VI.  The following difference relations would be useful for 
extending the tables :--  

-~. M(a+  1, 7 +  1, x) = M ( a  + 1, 7, x)--M(a, 7, x), o/ 
~. M(~+ 1 , 7 + 1 ,  x ) =  (a - -7) .  lV[(~, 7 + 1, x) + 7 .  M(~, 7, x), 

( a + x ) .  M(a+  1, 7 +  1, x) = ( ~ -  7 ) .  M(a, 7 +  1, x) 
+ 7.  M (~ + 1, 7, *), 

a 7 . M(a + 1, 7, x) =7(~ + x) .  M(a, 7, x) 
- -  x ( 7 -  a ) .  M (a, 7 + 1, x ) ,  

a .  M(= + 1, 7', x) = (x + 2~--7) .  M(a, 7, x) 
+ (7-~,). M(~,-1, % x), 

~'-~'. ,~. :M(,,, 7+  1, x) = ( , + 7 - 1 ) .  M(,,, 7, *) 
7 + ( 1 - ~ ) .  M(,,, 7 - 1 ,  ~). 

.(12) D
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134 Mr. H. A. Webb and Dr. J .  R. Airoy on tl~e 

VII .  I f  a=~% M(a, % x) can be expresaod in terms of a 
Bessel function. In fact 

x 1-- 7 
1V[(1~/,~/,.~)-~-2 7 - 1 .  F ( ~ l ) . e 2 - . x  T .  I g _ l ( 1 . g  ) . ( 1 3 }  

2 

VIII .  The .Error Func t ion=  dp(x) 

- ~ , , ~ .  �9 

2X - - 2  = v / g . e  �9 M ( 1 ,  4}, x ' )  . . . . .  (14:) 

The Incomplete 7 "Functi~ x)  

~ i  x -- t n-- I 
= e . t .d t  

1 - x  
: - . e  .x~. iVl(1 ,  n +  l , x )  . . . .  (15) 

9~ 

Sonine'  s Polynomial  = T~(x) 

- -  ( - - 1 ) " .  M ( - - n ,  m +  1, x ) . .  
m ! n! 

06) 

The Function o f  the Parabol ic  Cyl inder 

=D (.v) 

=(-i) n. e "dx'---' 
= (if n is even) 

(_~; .~(n?l)_,x~ ~( ~, ~, #),  ( . . )  
~/Tr 

and = (if n is odd) 

n -1 2 
'2~ 1x2 �9 (17 b), 
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Confluent ttypergeometric Function. 135 

We will also, following Jahnke and Erode *, define Zp(x) 
~B 

where A and B are arbitrary constants, and~Jp (x), Np(x} 
are Bessel functions, in the usual notation. So that 

y=Z~(x) . . . . . .  (18), 

is the complete solution of the differential equation 

d=y + 1 d y p= 

Reference should be made to Jahnke and .Emde's tables 
and graphs of these functions t, which are presented in a 
form convenient for engineers. 

w 3. Soluble differential equations. 

The following differential equations are soluble by means 
of Bessel functions or 35 functions, a, b, c, a, % l, m, n, p ,  
q, r, s, t being any numerical constants whatever. 

d2y dy (A) ~ + p ~  +l.~=o. 

d~y q dy m 
(B) 3 ~  + x ' d x + x ' g = 0 "  

�9 3~i + l+  g=o.  ,~ 

d2y q dy 1 (D) ~ + ,v" + .':~(lx~" +n)g=O" 

d~v '~ + (m~ + n~, v =o.  (E) ~ +(px+q) ;tv~ 

q~dv ( l+  ~,)y=o. (F) ~ + (p + ~! ~ + ~" 

d2y 
(G) dx~. + (px + q) ~ + (lx ~ + , ,x + ~)j  = O. 

d~,, i p  , ~ d v + ( l + , ~ + n )  
(H) ~ +  +xldx ~ ~ y=O" 

�9 JLoc. cit. p. 165. 
t Zoc. cit. pp. 10~-168. 
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(g )  

(~) 

Mr. H.  A. Webb and Dr. J .  R. Airey  on tlte 

dx 2 V x + q +  x]dx  + p x + n +  

1 , dy 1 er 
(L)  ~,v~ + x(TX +q)~x + ~.(lx +mx + n ) y = 0 .  

The solutions are as follows : - -  

d~y 
+ p ~ + (~2 + ~p~)y = 0 <A) ~ 

x 

~J --- e-  '~p (A cos nx -F B sin nx). 

d2:~/ p + l dy + m ,~ (B) ~-~ + - 
x ~lx x "y="" 

y = x -~p. Zp(2 ~/mx). 

2 2 

y = ~". Zp(~x). 

d'y + l - -  2~ @ 1 

v =*=. z (~,,9. 

d:y d.~/ [ 4aq + P=--q:m2 + 2~x(p + qm) ] ----0 (E) -~xx~ + 2(p+ qx) ~x + y 

,j=~-<~+~'~>/. :M[~, +, -q(x-m)2]., 

y = e  -(p+t)x . M(~; % i t  x). 

d~y (G) ~ + 2 ( p + q x ) ~ + u [ q + ~ ( 1 - 4 = )  

+ (p + ~ ) 2 _  ~2(x_ m)2] = o 

v=~ -~=-~=~-~~ . . . .  )~. ~[~,  �89 c(~-m)~]. 

~ +  2p+ ~.  

+yEp2 _ t 2  + 1 1 x (pq+Tt--2~t)+ ~x ~ (~/--q)(2--q--~)]----0 

~ ' -_~q  _ _  

y = e  -<~+t)~. x ~ �9 M(a, 7, 2tx). 

(D) 
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Confluent Ilypergeometrie Function. 137 
1 + + 

~0  

- -e  -=~'-ibr Mza c:d). Y- -  �9 t , %  

d2Y l(2px,'+ qr__r + 1) ~ (L) d~ ~ + 

+ ~ [(p~- t~)X~, + r(p7 + ~/t- 2<<t).~, 

+ Ir~(~,- q) ('2- q-,y)] =0  
- ~ + ' )  ," " ( , . ,  2t A y=e  ..-.~ .,~.~<r-q).~\_,~/,g.x). 

w 4. Tables and Graphs of M(a, 7, x). 

The following tables of M(a, % x) wore calculated, for 
~mall values e[ x, from the series in ascending powers of 
lhis ar.gument, and for large values, from the asymptotic 
expansions. When a and ,)1 are positive integers, two or 
three, values of M, for a particular value of x, are required 
te give the other results by me'ms of suitable recurrence 
formulae. The last two tbrmutae of (12) were employed to 
find further values of M along vertical columns "md hori- 
zontal rows; the first four, to " turn th, corners" and fill 
in the results in the rectangle of values thus obtained. 
When a is a negative integer, the M function is a pely- 
xiomial which is easily evaluated. A similar procedure 
was adopted in the case of a equal to half' an odd positiw; 
or negative integer, only two preliminary calculations of M 
being required to give the remaining 47 for each value of 
the argument x. 

Four significant figures are given in the tables. The 
numbers, however, must be multiplied by the power of 
ten indicated by the figure after the comma. Thus, 

~ (4 ,  1, 4) =2603;  M(-3, 2, 10)=132"200; 

and M(--�89 4, 10)=  ~3"419. 

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 2

2:
23

 2
6 

Ju
ne

 2
01

6 



138 Mr. H. A. Webb and Dr. J. R. Airey on the 

"TTTT~Z~TT~T~ ~?T"?TTTTT~TTT 

T,TT ? TT T , ~ ~%~TT TT 

~ ~ ~ ~  ~ ~ ~ ~ ~ .  

"TTTT~T~TT~T~ TTT~TTTTT~T~T 

I I  

~ ~ = ~ 1 7 6  ~ ~T ~ T ~  ~ T ~ T  = ~ T ~  �84 

l i l l  

. " ? T T T ~ ? ~ ~  TTT?T?TTTTTTTT 

I I I I  I I I I I I  

~ ~C'J ~ ~"} (=I ~ (:~ ~': ~ C~ ~'J C:I ~r ~ ~ ~L'J ~ ~r ~ ~': ~ ~"~ ~"~ C' ~s i=~ ~-:'~ ~" 

I I I I I I I I I I I I 

�9 T = x  " ~ = x  
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140 Mr. H.  A.  W e b b  and Dr.  J.  R.  A irey  on tlte 

TTTTT"TTTTTTTT TTTTT"T"TTTTT~ 
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Confluent Hypergeometrlc _Function. 141 

7777777~711~1i  ~  
~ ~ ~ ~ ~  ~ ~ ~ ~  

l i l i t  I 1 [ ~  

T777777777717~ ~ 1 7 6  

I I 1 1 1  I ~ 1  

~ ~176176176 
~ q ~ ~ ~ s  ~ q ~ q q ~ ~  

~176 

I I I  

lllllllll 

~ ~ ~  ~ L ~  
I I  

li II 

/ |  / / | / I  i I I l I I I I 

z l  1 l i  i l  

lllllS 

I I  I 1 I I  

I I I i I I  i I i I i I 
~ -  - y  

"8 ~ x "Of = 

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 2

2:
23

 2
6 

Ju
ne

 2
01

6 



I I I I I J ~ I 

g "/=5 

7 = 4  

2 

9'=7 

I 

0 

J I I I I f } 

FIG. 1. 

5 

2 

I 

0 

- 1  

- 5  - 2  - I  0 I 2 3 4 

I I I I I I I I 

FI~. 2. 

h,1 
4 

5 " / " i  i-,'+2 / v - 4  / - y :~  

-2  
o( 

- 5  - 2  - I  o I 2 .5 
I I / I I I 

Fro.  3. 

2• 
D 5 = 4  

i !  

- 0  

"/=2 

-5 -2 - 0 

F I I I t I I I 

Fla .  4. 

i i i i i ~ i 

iV] 3( :=5 

o 

- - 4  

Or, 
~ 5  + 2  0 

I I I I I I I I 

FIe .  5. 

F io .  6. 

b4 

0~= - ~ -  

t 

FIG. 7. 

'1' I 1 l 

- 0 1 = 2  

Fie .  8. 

: ~ J "  - -  i . . . . . . . . . .  V I I I  I I 

I M cx= 2 

I 

-I 

-2 

-5 

- 4  

I ' 0  

O-S 

0 " 0  

I ~ T 1 I I 

- O / f f i 2  

- 0 . 5  -0-5 

( 

Fie .  8. 

Phil. Mag. Ser. 6. Vol. 36, PI, VI. 

I I I I i 

2 

1.0 

0"5 

0.0 

-0-5 

FIG. 9. 

1,0 

0"5 

0.0 

i I 1 i i 

- o ~ = 3  

F Io .  10. 

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 2

2:
23

 2
6 

Ju
ne

 2
01

6 


