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In avowed imitation of the plan of the Journal, and in a similar
form (called 12mo in the catalogues, but more of tho size of & 24mo of
tho present time), the Nouwelles de la République des Lettres was
commenced as a monthly publication, “to be written as well as
printed” at Amsterdam, in March, 1684; and maintained, with
breaks, until 1718, During one of these interruptions, a similar
publication, with the title Histoire des Ouwvrages des Sgavans, was
started at Rotterdam, in September, 1687, and continucd until Juns,
1709. The last two Journals are quoted sometimes as Nvva and
Historia  Bataviee, or Nouvelles & Amsterdam and de Rotterdam,
respectivoly.

The Acta Bruditorum (Note, p. 11), which was aided by a sub-
vention from the Elector of Saxony, continued to appear in yearly
volumes until 1777. The Acta Ilelvetica, quoted p. 15, was founded
in 1751, and maintained until 1787. But, beforo the middle. of the
eighteenth century, the AMémoires of the Academies of Paris (1666)
and Berlin (1702) had become the medium for the more eluborate
essays of the analysts of the time.

Proofs of Steiner’s Theorems relating to Oircumscribed and
Inscribed Oonics. By Professor G. B, MATHEWS.

[Read Nov, 13¢h, 1890.]

The theoorems here discassed are enunciated without proof in
Steincr’s memoir, ontitled * Teoromi rolativi alle conicho inscritte
o circonscritto” (Werke 1., p. 329, or Orelle xxx., p. 97). The
most important are those relating to the maximom conics inscribed
in a given quadrilateral, and the minimum conies circumseribed to a
given quadrangle; tho others, in fact, are proliminary to these, but,
for Lho sako of completencss, proofs of them all have been given. It
will bo observed that the second principal problem admits of three
proper solutions, besides nine improper ones, so that a purely geo-

“metrical method would uecessarily involve the cmployment of curves
otlicr than conics and straight lines.
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1. Adopting ordinary trilinear coordinates referred to a triangle
ABO, let -
¢ (2, 9,2) = (u,v,w, 0,7, w Ya,9,20 =0

be the equation of any conic, and let
&m0 = (0,7, W, U, V, Wk n =0
be the equation of the same conic in line-coordinates, so that
U = vw—u? &c.

Further, let A denote the discriminant

’ ’
u, w, v
/
A=]|uw;, v, u|.
’ ’
v, o, w

Then, if T' be written for & (a, b, ¢), where a, b, ¢ are the sides of
ABC, the square of tho aren of the conic is equal to MA*/I® where
M is a constant. ,

In order to determine M, let the conic be the circumcircle of ABO ;
then we may put

u=v=w=0, v =a =0b w=c,

giving A = 2albe,
I = 20+ 2c%a* + 2a%0 — @' — b* — ¢!
=168},
where S is the area of ABC.
Hence R = M 475(1—;%;:—@
or, since B = abe/4S,

M = 478",
and the square of the area of the conic
= 4nVPSPAYTS v (D).

2. Now, let
U +my’ + %2 — 2mnyz — 2nlze— 2may = 0

bo any proper conic inscribed in ABC, and having its contre at

(“! ﬂ) 7)-
c2
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Then
l:m:n=aB+cy—aa) :b(cy+aa—0bB): (aa+bB—cy).

Suppose the sides of ABU are bisected in the points 4', B, C’;
then, if a’, 3, y" are the perpendiculars from (a, 8, v), or P, upon the -
sides of A'BC',

o’ = Sja—a = (bB+cy—aa)/2a, &e.,

so that lim:nm=a’ %0 6% evvniviniriinennnnn (2).
For the conic now considered,
A = — 4P,
I’ = 4lmn (bel+ cam + abn) ;

therefore, if I/ is the arca of the conic,
Imn
4 (bel+cam+abn)®
oy aBY
dabe (aa’ +00 +cy)®’

B=M

whenco, substituting for M its value, and observing that
aa’+bf +cy’ =8,

we find B = 4RaBY ceveiniiinnan ..(3).

8. In a similar way, if the circumscribed conic
2u'yz + 2022+ 2w'ny = 0
has its centre at (a, f3, v),
Wi i w = aad P00 cyyY cveeenniininennnn (4),

and replacing these proportions by equalities, it will be found, after
& few reductions, that

A = 2abcafyd3Y,
I' = 8Sabca’Sy'.
Hence, if F be the area of the conic,

I Y

= w’Rc‘t’ﬂqy’/a'ﬂ"y' ST () R



1890.] relating to Circumscribed and Inscribed Conies. 21

4. Now, let conics with centre at P be inscribed and circamscribed
to the triangle A'B'(", and let A”B"0” be derived from A'B’'C’ in the
same way as A’B'0" from ABO. 'Then, if B, I, are the arcas of the
two new conics ‘

B} = 4n"Ryaifivi,
I} = w'Bia,f, 4,/ i,
where R, =1iR,
ay Byn=d, 8,7,
a, Bl vi =} (@—<), $ (B—F), 3 (r—7);
sothat  Bi=4rR (a—a)(B-F)y—7),
F} = 4r*Ra’8%"/ (a— o) (B~B) (v—7)-
Hence, by multiplication,
BT} = w'Ra"3%" = 351"
and therefore, taking the absolute values of E,, F,, that is, dis-

regarding sign,
E‘=4E1Fl .uu--u-nou-u.nu--uuou-(G).

The process of derivation may of course bo repeated indofinitely.

But it is to be further observed that the conics H, I are such that
an infinity of triangles can bo drawn circamscribed to E, and in-
scribed in F. Let XYZ be any one of these, and let X,Y,Z, be
related to it as ABC is to A'B'C'; then, if E, bo the area of a conic
with centre P inscribed in X,Y,Z,, wo have

E:=4LPF,

so that the area of all such conics Z; is constant.

5. Suppose the inscribed conic F is constrained to touch the fixed
line
Aztpy+vz=0;
then v +mvh+0dp =0 (iiieennsineenand(7),
and therefore, by (2), the loens of P is the line

dpvd VA +cApy =0 i, ...(8).
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Conversely, if the centre of I/ describes the line
fa'+9B8 +hy' =0,
F will always touch the fixed line

a‘l

®
< T+ —y+-2
f g k

The triangle of reference and the line

=0.

Aetuy+vz=0
form a quadrilateral in which an infinity of conics, as above, can be
inscribed. In order to find the conics of maximum area, we have to
make ,
aBy
& maximum, subject to the conditions
pva’ +DPAF Ay =0 aeeiivviiei e (9),
aa’+b08 oy = 8 iivrviivrnnnnnneen (10)
The ordinary process leads to the equation
BY, yd, of
a/,lly, b’yh, G’Af‘ = Ououno-u-utno-u(11),

a, b, c

and the centres of the maximum conics are determined as the inter-
sections of the line (9) with the conic (11). The latter comic goes
through 4', B, (", through the centroid, G, of ABO (or A’'B'(’), and
through the point for which

a1 B iy =Ap
that is, by (2), through the centre of
Nz + ¥y +9°5 — 2pvyz —2v\sz— 2Apuzy = 0.
This point can be easily found geometrically. Namely, if
) - J\w+py+vz=0

meet the sides of ABC in D, Ii, I, and the points D, E, I’ be taken
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so that
(BODD') = (0AEE) = (ABFF)= —1,

then the lines joining 4, B, 0 to the middle points of E'F", F'D,
DI, respectively, will meet together at the required point O,

Since five points upon it are known, the conic can be constructed
geometrically ; the line represented by (9) is, as is well known, the
line through the middle points of the diagonals of the quadrilateral
BOEF. This being drawn, its intersections with the conic 04A'B'C'G
are the centres of the maximum conics.

6. From a geometrical point of view, the construction above indi-
cated is about as simple and satisfactory as could be expected: it is
interesting, however, to verify a remarkable metrical theorem of
Steiner’s with reference to the centres, K, K’ suppose, of the maxi-
mum conics, The theorem is that, if the line of centres meet the
sides of A'B'(’ in P,, P,, P;, and if M bisect KXK', then M is the mean
centre of P, P,, P,, and

ME* = ME" = } (MP;+ MP,+MP});

also, M is the centroid of the six vertices of the given circumscribing
quadrilateral.

In order to verify these statements, we may solve the equntions
(9), (10), (11). It will simplify the result if we write p, g,  for the
determinants of the matrix

a b ¢
A, By Vi
so that p=brv—cp, ¢g=ch—av, r.=ap—Db\............(12).

Further, let us put
Z = b\ +cfa’u® + a’bP? — abe (auv 4 bvh +chp)
=3 (@ +DPH ) i ee e (18),

an essentially positive quantity.

Then the coordinates of K, K', referred to the triangle A'B'C,
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are explicitly given by
a= 3——— (cr—bg+ /2)

A= 3L§* (ap—crE/Z) > weveriiirraennnen(14).
—_ _V__ -
Y= 3opg 1 ap /' Z)
The coordinates of M, referred to the same triangle, are therefore
= _éi — - i _ .
ik P (cr—bg), Bo=FE>- Sorp S (ap—er) vo= 5opd (bg —ap)...(15),

while those of P,, P,, P, are respectively

a, By i =0, —cpS/bp, bvS/cp
ag, By, vs = cASfaq, 0, —avS/cqg
as, By vs = —bAS/ar, apS/br,

. (16).

Hence we find without difficulty
ay = } (a, 4+ ag+ay), &e.,

that is, M is the mean centre of P,, P,, P,

Also, (“o—ax)' + (ag—ay)' + (ag—ay)*
= a:-}- a: +a:—3a:

—\ ¢ B (er=bg)?
A S, { ’q, + afri 3a’q’rﬂ }

32 A’ é; (P + b'¢* +begr)

3a. q’r’ {bsqs +cr*+ (b + 07')’} :

a 3 :(a'P +b'g*+¢*”)

_WSZ_ 3 /2\8
T3P T 2 (3aq1 v )
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From this, the two similar equations, and (14), it follows that
MP'+ MP 4+ MP' = $KE" = 6ME.

7. It is possible that the foregoing method, or something like
it, is that by which Steiner obtained his results, and that he re-
frained from publishing a proof of this kind, because he hoped to
obtain one of & more purely geometrical character. If, however, we
try to solve in a similar manner the analogous problem of finding
conics of minimum area which pass through four given points, we
are led to results of great complexity. It will be found that the
centres of the conics of stationary area are determined as the inter-
sections of a conic and a sextic, so that apparently there are twelve
solutions; it will appear, however, from a less symmetﬁcai, but
more manageable method, to be presently explained, that there are
only three proper solutions, excluding the line-pairs, and the para-
bolas of the system ; whence we infer that the set of twelve solutions
is made up by the threo proper solutions, the three line-pairs, and
the two parabolas each reckoned three times, the conic which is the
locus of centres in fact osculating the sextic where it meets it at
infinity.

8. Even the problem already discussed may be more simply
treated by the unsymmetrical method.
Taking line coordinates &, 5, {, the conic

Q+8) ML —plE—t¥En =0 evrvreeeeeene e (17),

where ¢ is a variable parameter, touches the three sides of the tri-
angle of reference, and the fixed line (A, g, v).

Asin Art. 1, it can be shown that the square of the area of the
conic is proportional to

t (1+2) [ (bgt—er)®.

For a stationary value, we have, by logarithmic differentiation,

1.1 _ _3bg _
t+t+1 bqt—cr_oorw'

It is easily seen that
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give improper solutions, namely, the point-pairs-of the system ; while
bgt—cr = 0,
correspondé to the single parabola of the system.
The remaining (proper) solutions are given by
bgt* +2 (bg+cr) t+or =0 ovvvvrvavinnsene e (18),
or bgt®—2apt+cr = 0.

Eliminating ¢ between (17) and (18), the equation of the mazximum
conics is obtained in the form

aphin®S* + bgp* P8 + crv*Ent + 280 (apuvt+bgvAn+criul) = 0...(19).

9. Actually solving (18), we get, in our previous notation,

t=‘iP-b*;~LZ s sneeneene(20),

and equation (17) becomes
(orF /) M§+bgpd+ (ap£ /Z) bn = 0.
Now, with the help of the identity
ap+bg+er =0,
it can be verified that |
(cr+ vV Z)(ap—cr+ /' Z) = ap (cr~bg+ JZ)} e (2D),
(ap— V' 2Z) (ap—cr+ /Z) = cr (bg—ap+ v Z)

so0 that the equations of the maximum conics are separately obtained
in the symmetrical form

ap (cr—bq+/Z) Myl +bq (ap—cr v/ Z) pi
+er (bq—apx /Z) vén = 0.........(22).

It is now ensy to obtain the ¢oordinates of their centres, &ec., and
thus to verify the results of Art. 6.

10. Proceeding now to the other problem, we have, in point-
coordinates,

(1+41¢) fyz—gee—thay = 0 ....o.coveeeenn....(23),
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representing & conic through the vertices of the triangle of reference,
and through the fizxed point (f, g, #). In order that its area may be
& maximum or minimum, the value of

£ (1+8)°
{(af +ch)* £ +2 (a’f*—begh+cahf +abfg) t+ (af +bg)*}°

must be stationary. -

Representing the denominator by #; for the moment, we have

2. 2 8 du
L4 =2 Z==0 .
PELEPI S 7 or ®

As before, t =0, —1, o give the three line-pairs of the system,
while % = 0 corresponds to the two parabolas of the system. Reject-
ing these solutions as irrelevant, we obtain a cubic equation in ¢,
which, written ount in full, is
(of +ch)* 84 (a*f*+ 26" + bogh +cakf —abfg) £
—(a’f*+2b%* + begh—cahf + Babfg) t—(af +bg)* = 0...(24).
Eliminating ¢ between (23) and (24), we obtain the equation of
g q
the three critical conics in the following form, where, for slmphclty,
X, Y, Z are written for fyz, gzw, hxy respectively :—
(bg+ch)! X2+ (ch+af)* T2+ (af +bg) 2
— (26%* + h* + Sbegh —cahf + abfg) X°Y
© = (b%g" 4+ 2¢*K* + bcgh + cahf —abfg) X%
— (261 + a*f* + Bcahf — abfg + begh) Y22
—(c*h*+2d%f* + Bcakf + abfg—begh) Y X
—(2a%*+ V¢ + Babfg —begh+cahf) Z2°X
— (@f* +20°¢* + Babfg + begh — cakf) Z°Y
+4(a’f*+ 0"+’ + begh +cahf +abfg) XYZ =0 ... (25).
The separate equations of the conics are to be obtained, either by
solving (24) and substituting in (23), or by applying the theory of

ternary cubics to resolve the left-hand side of (25) into three factors,
each linear in X, Y, Z.
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On an Algebraic Integral of Two Differential Equations.
By R. A. RoBerts.

[Read Nov. 13th, 1890.]

1. If 4, v denote two quadratic expressions in a variable , I pro-
pose to show that the differential equations

dz, + da, + de, _ =0,
V(“x”:) V(“a'”:) {/(u,,'v;)
dz, dz, dz,

)

+ 8 =
V() Y () Y ()

where z,, x,, 2, are three values of z, and u,, v;; u; vs; us v, the
corresponding values of %, v, necessarily involve an algebraic relation
between the variables ,, «,, 2; containing two arbitrary constants.

2. Let
u=l'+me+n, v=1ld+n'z4n’;
f (@) = (a+Pz)’u—(y482)%0 evreerrirrereenes (1),

there are evidently two relations, independent of a, 8, ¥, d, connecting
the roots of the quintic
f(z)=0.

These may be easily found in the form of systems of determinants
involving the cube roots of u, v; for, if z,, x,, @,, @, are four roots of
f@=0,
(a+Bz,) Y, — (v +0z) ¥/v, =0,

and three other similar equations, from which we get, eliminating
a, B, v, J,

then, if

we have

Vu, & Yu, Yv, ¥
Vg @ Yu Yv, @ Y/w
Vuw @, Vv, @Y,
Vo o vy Vv o ¥y

and, in the same way, we have four other dctcrminants involving
@y, 3, &4, ¥, and the fifth root ;.

=0.0ieeeeennnne(2)
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8. We may also find these relations in other forms, for, substituting
a, b, the roots of » =0, and ¢, d, the roots of v = 0, in the identity (1)
successively, we get

Vi@ <y +ia, Yi®)a y+6b} ®,
Vi) watfe, Yi@oy+ad]
from which and the relations
(a+pBz) Y= (y+0z,) Yv, =0,

&o., we can eliminate a, B, v, d linearly, and so obtain & number
of other determinants. A particular form of the two relations in this
case, when two of the roots of .

f@) =
are supposed to be given, is worth noticing. From
(a+B) Yu—(y+82) Yu, =0,
(a+Bas) ¥/us— (v +3zy) Yus = 0,

where ,, z; are the given roots, we have two linear relations connect-
ing a, B, v, 8, so that from (3) we obtain

VS (@) +p YF(0) +7 V5 () = 0} @
NVF @)+ V) +v Y (@)= 0

where A, u, v, X, gy v are known qnantltles, and f (a), f (), f(0),
f (d) are respectively proportional to

(a—2,)(a—2;)(a—2;), (b—a,) (b—a,) (b~ ‘?s)s
(c—z)(c—=,) (c-ws)s (@—z,)(d—;)(d—ay).

.'4-.> I now proceed to show that the relations between the five roots
of | f@) =
can be written in & form involving differentials.
Suppose a, B, ¥, & to bo functions of a variable ¢; then, if
S f@®)=0

is a relation connecting the variables 2 aud ¢, we obtain, by
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differentiation,
@ +3(a+B~’ﬂ)’ («'+B2) u—3 (v +8)' (v'+02) v = 0......(5),

where o, 3, ¥, ¢ are the differential coefficients of a, B, y, § with
respect to £. Dividing out now by ¥/(uv®) f’ (2), we get

1 +4a+ﬁw)’(a+ﬁ) s
Y(w) dt f (2)

_3 (7+afm)z é)y'+é”w) \/(%) =0,

(a+Bz)u = (y+dz)°v,

which, since

becomes
1 dm+3(-y+3w)" (a+B2)—3 (v+&)(a+Pz) (v +3%2) _
YV (uv') dt f (@)

’Il.l.'l'.llllllnl(s)l
Now, let z take successively the values of the five roots of the

equation f@=
then, summing with regard to these five quantities, we obtain

1 4@ _,
2y a i =0

where ¢ (z) is an expression of the third degree in z; but the
expression on the right-hand side, na.mely

x¢()
f
vanishes, in accordance with a well-known theorem. Hence we have
de _
3 W =0.iieenns B ¢ B

omitting the variable ¢.

In precisely the same way, by dividing (5) by ¥/(u%)f (z) and

summing, we get
da

S = R )
= 3/ (uv) )
5. Tf wo supposo now that two of the roots z,, 2, of f(x) are con-
stants, these quantities will bo eliminated in the differential equations,
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as there result

dm, dzgy do,

=\
Yw) Y (uv) Y ()
da, _ da, dz,

: + =0
Y)YV Ve
which aro the equations that we proposed tp show were equivelent to
two algebraic couditions conuecting @,, z,. These latter may be most
simply written in the forms (4), namely,

Nf (@) + 3 (D) +v ¥/ f () =0,
N Yf(a)+ 1Y) +vYF(d) = 0.

6. The forcgoing results are a special application of the general
theorem of Abel concerning tho comparison of transcondents; but
seem worth noticing on account of their simplicity. The algebraical
relations are thus consistent with the transcendental equations, in
consequenco of the integrals belonging to the class called Abelian.
It seems, howover, worth giving some special attention to the
integrals involved.

Let J denote the Jacobian quadratic of u, »; then wo have

wdv—vdu = Jdic;

lu wdv —vdu
£ Ll | wdv—vdu
therefore D) [ T ()
but by a known relation, we have

J? = aul+yuwv 4 Bo?,

where «, 3, v are functions of the cocflicients of «, v, and, in fact, a, 8
aro proportional to tho discriminants of v, u, respectively.

5 e [ o wdo—vdu
Y (wv*) ¥ (w*) (av’+ yuwv + o)

Henco

which bocomes

dz
8 g s (9),
Vs ©
by putting v = u’.
In the same way

adz

de  _of oz
[ V(;ﬁ)_.s[ PO o SN )
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Now, these integrals in z are apparently of the first class of hyper.
elliptic integrals, but can be reduced to clliptic integrals, which are,
however, not necessarily real, as I procced to prove.

7. First, s‘uppose that a and 8 have the same sign, that is, that the
discriminants of », v have the same sign, in which case %, v have their
factors both real or both imaginary ; then, writing

a= @i,

the foregoing integrals become

]’ dz I zdz
V{B@+K)+y2} ] V{BE+E)+yR}

. K
Putting now z+ 7 =9
K s
we have 24 = =Y —3k'y,
and 2z = /(y+2k) £/ (y—2F),
2 = v+ F /-2,
2ds _ __dy dy
8o that Vi = J—2h) =+ 7y £
2kds _ __ dy - T dy
V2 /(y+2k) T J(y—2k)
Hence
g1 % 757
P+ +v2} ) /P ¥
Vv {B( )+72'} \/{ﬁ(z’+z')+7}
_1 J' { dy . _dy } 1
2k ) UV =2 " W+ /(B (s =3k y)+v)
and dz dz

J «/{a(z’:-k")‘i-')'?} =[ Jz\/{ﬁ (z‘+ §)+7}

-_-;.l!‘{”dy + dy,} 1 .
2 ) UV y+20 " Yu—25) ) v{B (F—3Ky)+7}
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We see thus that (9) and (10) are made to depend upon the
elliptic integrals
dy

v {(y +2k) (B’ — 3By +v)}

dy
J v {(y—2k)(By =3By +7)}’

which are real if, as we have supposed, a, 3 have the same signs ; but
if the latter have not, that is, if u, say, has real factors, and »
imaginary ones, then k is imaginary, and the elliptio integrals are also,
and cannot be resolved into their real and imaginary parts, except by
means of the more general hyper-elliptic integrals from which they
were derived.

8. Some integrals which come under the preceding forms may be
noticed. If
u=ug, v=az+bztc,

and we then put # = z%, we have
[ _dz__ =3 I _dz
Y (utv) (a4 b2 +c)V
[ _dv__ _g [ __wds
Y(w®) ~ ) (aP+bP+c)V
Thus, from what we have proved, the integrals on the right-hand
side can be expressed by means of elliptic integrals.

9. An application of the preceding results may be made, so as to
obtain the differential equations of a certain system of lines in space
satisfying two conditions.

Let @, y, 2, » be quadriplanar coordinates of a point; then, if we
have the system of cubics

RN T
a——7\+b—)\+c—1\+_d—-)\—0’

the coordinates of any point in space can be expressed in terms of
the parameters A, Ay, A, of the three cubics of the system which pass
through the point, as follows :

28 = (a'—xl) (a""'}‘a)(a'_ka) 8 (b—Xl)(b—-)\._.)(b—Xa)
(e=t)(a=c)(a=d) * ¥ = “(b=a)(b—c)(6—d) ’
B =N =) e=A) 4 (@=A)(d=2)(d=Dy)
(c—a)(c—b)(c—d) ’ (d—a)(d—b)(d—c) '
VOL. XxIit.—No0. 401. D
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so that, if

dA dA d\
14 3 -+ 8 = =0,
2/("11’:) 2/(“3"’5) 2/(“3”3)
d)\; + d);9 + dk",, =0,
V(ww)  Y(uv) Y (ugvy)
where u = (a=A)(b—=X), v=(c—17) (d—A),

the integrals (4) will give
le+my+nz =0, lz+my+ns =0,

where I, m, u, I, m’, #' are quantities involving the two constants
introduced by intcgration; that is, the differential equations represent
a system of lines in space,

Some Theorems in Elementary Geometry. By Mr. OscEer Ber.
(Read Nov. 13th, 1890.]

L. To describe a square which is equal to three given equal squares.
Place the squares side by side as in the figure.

A i K
1 4
4 Y

D c H

Take E on OL so that OF = CB,
w ¥, OL LF = 0B.
“Then cut out the figures
AEOD, HELF, AEB, HFG, BEL, OFG.
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The angles have all been numbered.
The angles 1, 1’ are equal ; 2, 2’ are equal, and &0 on.
The parts can now be arranged thus:—

M N
5 £
A
6
y 9.,
o u
3 ryé
H— 13
6]
8
2’ ' by
5 0

The angles 3, 10’ make up two right angles, and so do 3, 10.
The angles 4, 7, 9,—t.e., ADG{,v ABE, BEL,—together equal

- ADO + ABO+ COBE+ OBE+ ECB.
Now ' AC’B =CF;
therefore CBE = CED;
therefore 4, 7, 9 together = ADC+ABC+ CBE + OEB+ ECB
= 4/ right angles.
The side 57 = side 1 4.
The side 67 = side 89.
The angles 6, 8, 2’ togother = BEA+ EBL+ LFH
= BEA+EBL+AL0
= BEC+EBL
= CBE+EBL -
= CBL = a right angie.
The angles 1, 5 together = 1, 5" together = a right angle.
The sides 1 2 and 5 6 aro cqual.

Hence the figuro MNOP is n square cqual to three given equal
squarcs, '

D2

35



36 Mr. Oscher Ber on [Nov. 13,

2. On an area equal to a given semicircle.

Inscribe a regular hexagon ABCDEF in the circle ABCDEF,

‘With A as centre, and AC as radius, deseribe & circular arc CE.,

Then the figure bounded by the straight lines AC, AF, and the
arc CGE is equal to half the whole circle.

For the trinngle A0 = half the hexagon.

It remains, therefore, to show that the segment OGEC is half the
sum of the six segments of the circle outside the hexagon.

Consider the segments OG0 and the segment of the circle cut off
by DE. ,

The ave of the segment OGEC subtends at.the centro 4 of its
circle an angle eqnal to the angle of an equilateral triangle.

The arc of the segment DI subtends at centre O of its circle the
same angle. '

Hence tho segments are similar.

Hence area of segment CEGQ: aren of scgment out off by DE

wOE;DE*::3:1;

therefore aren of segment CEGC
= 3 (aren of scgment cut oft by DE)

= 4 sum of 6 segments ontside hexagon ;

but triangle AJiC' = § of hiexagon ;
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therefore figure bounded by straight lines A, AC, anda rc CGE

= 1 of whole circle.

3. If with F as centre and EO as radius the arc OPIF be drawn,
if with B ” s BO s bs 0Q4 »
and if an equal arc be described on AF':

Then these three circular arcs touch where [they meet, and form a
triangular figure OQARFPO.

Now, each of the scgments 0QA0, ARFA, OPFO is equal to each
of the segments outside the hexagon.

Therefore their sum is equal to the segment CGEOQ.

Also triangle AOF = triangle CED.

Hence the figure 0QARFPO (bounded by three arcs and triangular)
= figure CDEGC (bounded by two straight lines and one arc).

On the Analytical Representation of Ileptagrams.
By L. J. Roazrs.

[Read November 13th, 1890.]

CoNTENTS.

1. Hermite’s Conditions that ¢z should represent a
Substitution. ' ’

. New Forms of Reducts.

. Vertex-shifting.

. Reciprocal Polygrams.

Skew-symmetry and Self-reflexion.

. Line-and.dot Polygrams.

. Isoscelism and Parallelism. -

. Character.

fo JES B~ NN I SN

1. In the standard works on the Theory of Substitutions—I allude
to Jordan’s T'raité des Substitutions, Netto's Substitutionentheorie, and to
those scctions in Serret’s Algebra roferring to the sanme—there is an
extract made from a paper of M. Hermito’s, which appeared in the
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Oomptes Rendus, Vol. LviL., on the method of analytically expressing
a substitution of a prime number of letters by means of a congruence-
quantic of order two unitics less than the prime in question. Since
the subject is dealt with in greatest detail by Serret, it will be best
to make.all references to his work in preference to the other works
mentioned above.

To explain this more fully, let us take p symbols, which we may
adequately represent by the numbers 0,1,2,3...(p—1), and
suppose that p is prime. Now, suppose theso symbols subjected to
8 substitution so that the arrangement becomes shifted into
a, B, ¥ ..., which are tho samo symbols in a different ordor. Then
it is proved in Serret’s Algebra, § 474, that an algebraic function ¢z
can always be found, sach that

¢0=qa, mod. p, ¢l =8, ¢2=1y, &c,

for the whole set of symbols, and this function can by Fermat's
theorem always be reduced to degree (p—2), at the highest.

For instance, if p = 7, and the substitution be that of rearranging
0,1,2,3, 4, 5,6 into 2, 4, 1, 5, 6, 3, 0, we shall find that

¢z = 32" +4a’+ 2z +2.

However, the converse is not always true, that every quantic of order
not greater than (p—2) should represent a substitution. For, since
we must have the final set of symbols identical with the first, though
not in the same order, it is obvious that the only conditions we
must and nced but have, are that ¢0, pl, ¢2, &c. should be con-
graent non-respectively with 0, 1, 2, 3 ... &c., or, in other words, all
differecnt. Thus, for moduius 7, the function a*4 2" does not repre-
sent o substitntion, for its values got by giving « the values 0, 1, 2...
are 0, 2, 5, 1, 3, 3, 0, which are not all different. )

Now, in genoral, it is obvious from this considcration, that if ¢»
represonts a sﬁbstitution, so also will ¢z+%, where & is independent
of 2. Hence, in testing these forms, it is sufficient to test those in

which $0=0,

The nccessary and sufficient conditions have been discovered by M.
Hermite, and put into the simple and- elegant form, that the (p+~3)
cocflicients of 27!, obtained in calculating the values of the powers of
“px, viz. :

(92) (¢2)"... (92)""",
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and reducing by Fermat’s theorem all powers greater than the
(p—1)™, should be severally congruent with zero (see § 476).

As I intend to deal in detail with quantics representing substi-
tutions of seven letters, I shall now leave the general case, and take
all congruences according to the modulus 7.

It is also my object to refer especially to the geomectrical signifi-
cence of these guantics, and to show how a substitution of seven
letters may be adequately represented by a seven-point polygon or
heptagram, understood in its most general form ; either as o complete
heptagon, or as a triangle and & quadrangle, or as a pentagon and a
line, &c. This may be done by arranging seven dots, exactly or
approximately at the vertices of a perfectly regular heptagon, and
numbering them 0, 1,2, 3,4, 5, 6, in order. We will agree, moreover,
to place the zero-vertex vertically highest, so to speak, and arrange
the others symmetrically about the wertical line through the zero-
vertex, ascending in value in the direction of the hands of a clock.

If then pa=p

for any particular values a, B, we shall join the vertex a to the
vertex 3, and when all vertices are thus joined, we shall get & com-
plete seven-point figure. With this convention, it will not always be
necessary to number the vertices.

For instance, if
pr=32"+42"+2x+2,

we shall easily trace the figure from the
values of ¢0, ¢l, &c., given above, namely,
2,4,1,5,6, 8,0, to be that given in Fig. 1,
while the arrow-head marks the direction in
“which we draw the lincs. This is obviously
necessary for ench sub-polygon, except in the
case of o single line or dot. Hore we need
only place an arrow-hend on one side of the pentagon.

Fig. 1.

M. Hermite has found that all substitutions of 7 letters may be
represented by the functions

az+j3, or af (z4+3) +7,
where 0z =232 .o (1),

or P25 e (2),
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or P +az’+3a%, where a’'—a =0 ..........eevee... (8),
or P4 a8+ +3a’, where a*=—1 .. ......oceene(4);

giving in all 5040 forms, as is shown in Serret’s Algebra. These
simplified forms he refers to as formes réduites, or reducts.

2. I propose, however, to rearrange these in seven classes, on the
principle that, if 6z be any form, then every reduct of the same form
may be congruent with ABpz, where A, u are constant. This will
necessitate dividing 2°+az*+ 8a’z into three new classes, according as

a=0, a=1.0or d=-1L
If we give 0z the following va,iucs—
24+3m%, £42m%0, P, P+miP+3mbz, L—m't+3mb,
2 4 3m?2® 4 m* + 6m'z,

we shall obtain, by generalizing, the same 5040 forms as obtained by
M. Hermite.

Now, these reducts may be replaced by others, equally general, and
of such forms that M. Hermite's conditions may be immediately
verified.

Thus, it can be easily shown that

2+m% 4 3m's = dm'% (¢'+m’),

and that 2P—mi®+ 3miz = 42° (24 +AY)",
where A = dmd.
Similarly, 2+ 38mz = m®z (2° +4m")?,
and 2 +2m? = 58 (F—4m?)’.

M. Hermite's last reduct can be brought to a simpler form. For
2+ 3m¥%®+mP%? + Omz = 6m* {(z +2m)°+ 4m°} 84 md,
which, without loss of generalization, can be replaced by the reduct
(&2 +m")"

1 shall therefore substitute the following seven reducts in place of
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those given by M. Hermite :—

R VOSRRUPRTR @ §
B s e e sesnee e (2)

B (BT 1erereee e erereesennenene (4),
(2 +4m®)? i (8),
2 (B +H4AmY)? e (6),

) ARSI ¢ ) ¥

If these be generalized in the manner indicated by M. Hermite, we
shall obtain the same 5040 substitution-functions as can be derived
from his reducts.

It is interesting to notice that all the reducts except (7) can be
written in the form

o (f)o 0,

where » is prime to and less than p—1 (4., 1 or 5), and f2' is &
rational integral function of #* which can never become zero, and is
not a perfect power of any function of 2', and where s is a factor
of p—1.

It is, moreover, easy to see that such an expression always satisfies
the required conditions for a substitution-quantic. For, if the reduct
be raised to & power other than the s, we shall have a set of terms
whose indices are of the form ns+r; and, since 7 is prime to s and
p—1, this can never be equal to a multiple of p—1. Again, if it be
raigsed to the s* power, we get, by Fermat’s theorem, ", which can-
not = a1, since 7 is prime to p—1.

The seventh reduct is obviously a substitution-function, for it is
the result of the operation of 6 on 62+ m", where

0z = 2",

3. Isomorphism and Vertex-shifting.

It is proved in all works on Substitutions that ¢z and any function
of the form f-'¢ fz represent similar or isomorphous substitutions, if
f2 also represents & substitution. For instance, if ¢z represent
Fig. 1, § 1, then f~'¢ fz will represent some heptagram consisting of
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a pentagon and a line, and moreover f (z) can be chosen to make it
represent any such heptagram.

The geometrical meaning of f-'¢ f& can be very simply demon-
strated. :

Lot ¢2 be represented by Fig. 1. Then the congruence
y =9z,

shows to what point any vertex  must be drawn.

Fig. 1. Fig. 2.

Now, suppose f0, f1, f2... have the values 3, 5, 0, 2, 1, 4, 6, and
let us re-number the vertices according to this substitution, so that
any vertex formerly marked a is now called fa. Now, draw the
polygram of Fig. 1 exactly as before, as in Fig. 2. The method of
tracing it is now given by the congruence

fy = ¢f=,
for the same relation now holds between fy and fz as before held
between y and .

Now rearrange the vertices in their
proper order, and we get Fig. 3, which is

/

represented by 6
fy = ¢fa,
i.6., y=flofr. 5\_//2
The geometric method of deriving f-'¢fz M 3
from ¢z shows that the two figures are iso- Fig. 3.

morphous or like-membered.
With this section, ¢f. Serret, § 413.

If Je=ax+n,

wo have to shift ench vertex back n places without moving the
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figure, which, on restoring 0 to its proper place, means that we shift
on the figare n places.

Thus ¢ (z+7%)—1n denotes the same figure as ¢z, rotated back n
places.

4. Reciprocal Polygrams.

The most important investigation in the theory of polygrams is
that of finding the reciprocal of any quantic, by which is meant that
quantio whose figure is the same as that of the given quantic, with
the arrow-head turned in the opposite direction. Or, analytically
speaking, if »

Y= ¢,

where ¢ is known in form, the problem is to find the form of ¢-'z.

Let y = Aa*+ Ba*+ 02 + Da? + B,
go that | . ¢0=0,
and suppose ® = ay’+By + vy + 0y +ny.
Then oy = A+ Ba*+
=a+0y 4.

Now, by Hermlte’s conditions for a valid quantio, we know that, if
&= 0, then y, 3", 3%, 4% ¥* all =0, so that we get

@=A ....ciicciivrnnnnnirncaseennnenneaa (1),
Again, oy =ay+P+yy+... '
' = o (42 +Bat+...)%

Putting 2 = 0 after reducing the last expression by Fermat, we see

that
_B coefficient of 2* in (¢x)*;
' imilarl = ” ”» s
N = s (®)
) = ” » N (‘Pw)‘ ’

n= » ” » (px)°
Tlus, if ¢0=0,

the reciprocal of ¢z may be dlrectly calculated, though in the general
case the process is laborious.
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If y = ¢z+b,
it is obvious that =P (YD) rriierrnnciienenns SR () 8

:80 that the reciprocal of every substitution-quantic may be deter-
mined. This, by rotation through b points, can be brought into the
form ¢-'y—b.

I shall now proceed to the calculation of the reciprocals of the
several standard forms given in § 2, but it will be advisable for the
sake of greater generality to multiply each of these reducts by a
constant, say «a.

In the first place, the forms (1), (2), (7) present no difficulty,

since, if Y = az,

then z=ad%;

if Y = ud,

then % =ay’;

and if y= a (@ +md),
then P = o (*+m°),
8o that z = o (yP—a*m®)"

The reciprocal forms corresponding to the other reducts have, how-
-ever, to be obtained according to the method indicated above.

Thus, if y = a» (z'+m*)?,
then Y = o2,
.80 that B=46=0;

y* = o’ (2’ + m?)°,

so that v =a®.3m?;
¥ = o’ (2’ +m'),
8o that n=a® (14m?);

while the coefficient of 2* in 2y is a.3m".
These results give 2 = o’y (y’+a'm’)?,

as may be easily verified.
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Similarly, if y = am’® (2t +-m*)®,
then ‘ = am’y® (y*+a*m*)"

‘In form (5), we have y = az (a®+4m®)?,
go that 3 = o'z’ (3+2'm?)? = a'2’ (P —4n*)’,
and y* = oa® ,

and finally, applying the method explained above,
o = a (y*—4a’m®)’.
Similarly, from form (6), where
y = a® (2 +4m°)’,
we get 2 = ay® (y°+4a’m?)?,
as may be obtained from the last by changing  into 2"

Collecting the above results, we get the following seven pairs of
reciprocal equations :—

Y = ag, z = d', w=d,
j = aa®, z = a1, p=1,
y = az (' +m?)}, z = a® (y*+a'm?)?, W= al

y = am’s® (2*+m')’, 2= am® (y*+a'mt)’, = d,
y = ax (2P +4mb)}, z = d’y (y*—4a’m?)?, p=—d,
y= a2 (@P+4m?),, o =ay (P+bamd),  pP=d
y = a (" +mP)}, = o° (3P —a’m")", p=—d

One remarkable fact is to be noticed concerning these reciprocal
quantics. If

Yy = ¢z,

where ¢z is & reduct, then in every case ¢~'z can be reduced to the
form uguz, where u is a constant. In other words, if

Y = ¢,
then T = popy;
that is, if 2 = guy,



46 Mr. L. J. Rogers on the - [Nov. 18,
then x = pz,
80 that Y = ¢puz;

which shows that ¢pz is a self-reciprocal quantic, a species which
will be treated of further on. The congruences giving the values of
p for each form are to be found in the third column above, each
placed on the same line as the form to which it refers.

More generally, if y= J2=¢ (s—a)+b,
where ¢z is a reduct, then evidently

g =¢""(z—-b)+a.

Now ¢ 'a = pppx;
therefore ¢~ (x—b) = ppp (z—b).
But ¢z+b = ¢ (2+a), by hypothesis ;
therefore ¢ (pz—pb) +b = Y (uz—pb+a).
Hence ¥z = p (ue—pb+a) —pb+a,

a congruence giving & general connexion between & quantic and its -
reciprocal.

It pb—a = pc,
then yte = pgp (x—c) —pe.
Let Yu (z—c) =2,
so that the above congruence gives us
yolz = p(z2—c).
Then z=4Yp(z—c),

so that z, 7 are connected by a self-reciprocal relation.

Hence, if Yz represent any heptagram, two constants u, ¢ can
always be found, such that yu (2—c) is a self-reciprocal quantic.

5. Skew-symmetry and Self-reflexion.

A polygon is called skew-symmetric when its geometric form is its
own reflexion in some line, but the dircction-arrows are reversed. If
the nuniber of vertices is odd, the axis of symmetry must pass through
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one of the vertices. The polygon is then said to be symmetric about
that vertex.
A polygon is called self-reflective when both its geometric form and
" the direction-arrows are reflected in some line.
‘The condition for self-reflexion about the zero-vertex is obviously
that .
R ] Gl IR PPN ¢ 5 B

that is, that ¢z should only contain odd powers of =, as is the case in
the first four reducts found in.§ 2.

The test for skew-symmetry depends upon the form of the
reciprocal quantic, the general law being that the reciprocal figure
should be the exact reflexion of the original figure in some line
through a vertex. If the axis pass through the zero-vertex, we get

R 1 ) NP ') B

The reciprocating constant, therefore (§4), is congraent with —1.
We can, moreover, dednce the very important fact that, if the reduct
¢z gives a skew-symmetric figure, so also will ¢z+b. For the
reciprocal of the latter is ¢~! (z—b), which, rotated back through b
vertices, becomes ¢~'z—b. But this is —¢ (—=)—b, which is the
reflexion of ¢z+b, the original figure.

Now the vertex of symmetry for the reduct ¢z is zero, while, for
¢x+b, we must shift back the reciprocal b places before we get the
reflexion of the original. A little consideration will show that the
vertex of symmetry is that whose number is congruent with 3,
.e., 4b.

The skew-symmetric reducts are the following :—
ez, af, *z(@®+m?)’ Lm’2d (@t+mt)d,
+ 2 (2 +4m®)3}, az® (2+4m®)® where a®=-—1,
and | (2®+m®)®.

Except for —, we get seven different figures from each of these
forms by adding a constant b, so that the totality of skew-symmetric
heptagrams* is

1474424424424+ 14442442 = 232,

# 1t is interesting to note that all pentagrams can be repreaénted by the two
congruences
y=06z+b, y=ar’+5, mod. b



48 Mr, L. J. Rogers on the [Nov. 18,

6. Self-reciprocal or Line-and-Dot Polygrams.

If a polygon is its own reciprocal, it is evidently made up of lines
and dots.

Now, if ¢~ =¢a,
the reciprocating constant u is =1, and the self-reciprocal forms are
ag follows :—

+z, arf, xz(P+m')’, o'z (@4+n'), —o(P+4m")),
a2’ (2*44m®)* where a®=1, and —(2"+m®)%

Their totality is :
246+6+6+2+64+6 =34

It may be noticed, as is geometrically obvious, that, if gz be skew-
gymmetrical about the zero-axis, then —¢x is self-reciprocal. More.
over, if gz be both self-reflective and skew-symmetric, it must be also
self-reciprocal.

7. Metrical Properties, Sets.

The seven figures corresponding to the guantic ¢z 4 b, where ¢z is
a reduct, and b has the seven values 0,1, 2. .., I shall call a sef of
figures, or the figures belonging to the same set. It will be found in
general that figures of the same set apparently differ very much in
their geometric properties. There arc, however, properties possessed
by each member of a set, which it is my object now to point out, and
which will give us a method of detecting, by mere inspection of the
geometric figure, the reduct to which the figure belongs. It is, of
course, always possible to find the quantic of the given figure, and
reduce it by so rotating that its second term vanishes; but this
method is tedious, and furnishes no clue as to the connexion between
geometric and analytic similarity.

(see SERRET'S Algebra, §486). Moreover, if a be not =1,

y=az+b
“may be rotated into y = az,
which is self-reflective ; also y=z+0b

is regular, while the reciprocal of
y=a®+d is z=a(y—5)3
which can bo rotated into z=ays-5,

" which shows that all -figures belonging to this congruence are skew-symmetrical,
Combining these results, wo sce that— AU pentagrams formed by joining the angulay
puints of a vegular pentagon are symmetrical.
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The most important property possessed by all members (or none) of
& set is skew-symmetry, as we saw in § 5.
~ However, since each kind of reduct was found to include skew-
symmetric formns, this property will not serve to distinguish
different kinds, though it will differentiate sub-specics, such as are
marked by the coefficient of the leading term being a residue or a
non-residue. . .

Wo may, in fact, subdivide the spccies already found into twenty-
fourin all, and we may geometrieally distinguish these (1) by observing
the number of equal sides, and (2) by the number of parallel sides in
any figure. Now, the analytical condition for equality of two or more
sides is that ¢z —ax should have the same value for two or more values
of x, while the condition for parallelism is that ¢z + 2 should have the
same value for two or more values of @, The first fact is easy to see,
and the second is obvious when we consider that 1 (pz+=z) is the
number of the vertex halfway between z and ¢w; for these two sides
have the same midway vertex, that is, are parallel.

‘We have to notice one or two special cases :—

(1) Isolated dots must be looked upon as sides of equal length.

(2) An isolated line must be trentcd as a pair of parallel lines.

(8) An isolated dot midway between the extremities of a side

must be considered as a sido parallel to that side.
_ It is very easy to see that every member of a set has the same
equality of sides and parallelism of sides. For, if ¢z, 2, and
¢z, k= z, have equal valuos, so also have ¢z, +cd2, and ¢z;+c L2,
This may be expressed by saying that the isoscclism or parallelism
of a set is ¢, 7, 8... if we wish to stato that the figures have each a
group of ¢ equal or parallel sides, and another group of r equal or
parallel sides, not equal or parallel to tho last, &c. )

It may be worth noticing that there is a kind of reciprocal relation
connecting equality of sides and parallelism in the figures represented
by ¢z and —¢w, or, as we may say, in any figure and its negative.
For groups of parallel sides depend upon the groups of congruent
values in ¢z + =, that is, upon groups of congrueut values in — ¢px—u,
which shows that they are equivalent to the groups of equal sides in
—¢z. For instance, 2°+24*+ 5z+ b has five equal sides for all values
of b, and, consequently, 6 (a*+2a°+ 52 +b) has five sides parallel.

8. Descriptive Properties of sets of Polygrams.
Besides symmetry, we have hitherto only considered the metrical
properties possessed by every member of a set, t.e., those properties,
VoL, XX1i.—No. 402, R
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such as isoscelism and parallelism, which depend on geometric
lengths and directions. We have now to consider a property which
refers simply to the number of lesser polygons into which a polygon
may split up, and which we may call a descriptive property.

The fundamental theorem is as follows :— .

If gz consist of m members, and fz cousist of » members, then fyz
or ¢fz will consist of » members, where

r=m+n—1, mod. 2. ‘

As this is a theorem known to those who have studied the proper-
ties of substitutions, I need only refer to Mr. Asquith’s paperin the
Quarterly Journal for October, 1889, p. 114, in which the proposition
stands in the form: A cycle is always added to or subtracted from
substitution by a transformation. Now, every substitution can be
mado up of a certain number of transformations, which are repre-
sented by figures consisting of one line and p—2 dots, where p is the
number of sides (prime) of the polygram. It thercfore consists of
an even number of sub-figures or members, so that we shall call it an
even polygram.

Now, it is casy to infer that an odd polygram will be made up of
an even number of transpositions, and vice versd.

Hence the theorem, as ro-worded above, follows casily.

For instance, if
fe=a+X,

then fx is a complelo or one-membored polygram, so that ¢z and
Sfexz—ri.e., ¢34+ A—aro both e¢ven or both odd, or, as we may say, of like
character. Hence all members of a set arve of like character.

This may bo veadily verified, e.g., in the cnse of, say, 3°, which
has four members, and is thereforo cven. It will be found that
82* 41 has two, 3¢®+2 has four, 32°4 3 has six, &e.

We may further notice that g and —¢a have nnlike characters, if

r=1,
since, in Lhis case, /(@) =—a,

which consists of & dot and threo lines, and is therefore even.

It is in many cuses easy from analytical considerations to discover
the form and character of the reducts given in § 2.

Jiet ms first driw. heptagrams corresponding to z4X, —x+A,
az+A (whero a is a primitive root), and —az+A. .
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It will be found that x+\ gives a completo heptagon; —z+A
gives three lines and a dot; av+A gives a hexagon and a dot;
—an+A gives two triangles and a dot.

Now, let us consider the seventh form

a (af +m")5
or, a8 we may write it,
{ur’ (2 +m?) } 5,
If fa=a',

we may write this
£ f - um),

which, by § 3, is isomorphous with
o« (z+w°).
It is casy to see then that
a (2% 4+ m")"
will represent a complete heptagon, three lines and a dot, a dot and a

hexagon, or two triangles and a dot, according as a=1, =-1,
= a primitive root, or =2 or 4.

Again, let ox = az (* +m?)®;
then ¢'z=a’z (@ +m?)® (4 m)) =g, if *=1,
so that +a (24 m),

gives sclf-reciprocal heptagrams. Morcover
‘Psw =d’z (m’ +m‘z)s (a“az’+m’)” (a4w2+m2)a
= -z, if &= -1

Now, ¢’z consists of threo lines and o dot, so that it is easy to sce
that g2 must cither consist of a dot and a hexagon, or must be self-
reciprocal. The latter caunot be truc unless = 1; therefore, if « be
o primitive root, gz nust consist of a dot and a hexagon, and is
therefore even in character.

In similar ways we may establish the fact that if a®=—1 in any
reduct, then the character of the covresponding heptagram is even ;
but it is scavcely necessary to prove the statement in the cnse of
every reduct. It ig juteresting to notice that if

gz = am’x’ («* +m')’,
then ¢*x in all cases =, so that ¢ must, if not self-reciprocul, con-

sist purtly of a quadrilateral fignre.
E2
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The following Table represents twenty-four subdivisions in the
different spccics of heptagrams, arranged according to their analytical
forms, and with the geometric properties appended which are common
to every member of the corresponding sets. The descriptive properties
of symmetry and character have been, or. can be, found directly by
analysis. The motrical properties of isoscelism and parallelism bave
been found by inspection.

It has been found convenient to use the symbol {/1 for a quad-
ratic residue, and — 3/1 for a non-residune ; a for a primitive root.

MeTrICAL PROPERTIES.

Desciurrive ProrrrTIES.

Isoscelism. | Parallelism. | Character. | Symmetty.
7 0 odd symmaetrical
0 7 aeven sym.
0 0 "odd (self-reflective)
0 0 cvon (self-refloctive)
3.2.2 2.2 odd sym.
2.2 3.2.2 aven |ym,
(T e L 3 5 odd sym.
Form | =2 (#2+m®)? ... 6 3 even sym.

3 —ax(24+m®) ... 2.2 2.2 odd unsym.
az (X240 L. 2.2 2 even unsym,
m2b (oA 4 a0)d L 2.2 3.3 “add Aym.

Form | —m2 (x4 mi)d . 3.3 3.2.2 even sym,

4 l —anite® (2t 4 mh)? 2.2 3 odd unsym.
amS (Zh+mi)d L 3 2.2 evon unsym,
(P +4m™)? L 2.2.2 0 odd sym.

Form ] —% (W3+4m3)? ... 0 2.2.2 even unsym.

i —ar (P4 4n)2 L 4 2.2.2 odd unsym.

ar (2 +4md): .., 2.2.2 4 even unsym.
Form { VARE A CLE X TS L 3 3.2 odd unsym,

6 — Y125 (e3 4 4m3,., 3.2 3 even sym.

(25 4+ mh)8 4.2 2.2 odd Rym.
Form | — (® +m®)? 2.2 1.2 avon unsym.

U —a (P+ud) 2.2 3.2 odd unsym.

a(rH+m)d o 3.2 2.2 even unsym.
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December 11th, 1890.
Prof. GREENHILL, F.R.S., President, in the Chait.

The following gentlemen were elected members :-—F, S Carey,
M.A,, late Feliow of Trinit) College, Cambridge, Professor of Mathe-
matlcs, University College, Liverpool; M. W. J. Fry, M.A., Fellow
of Trinity College, Dublin; H. S. Romer, M.A., late Scholar of
Trinity Hall, Carbridge; and Hari Dis Sastri, M.A,, Dlrcctor of
Public Instruction, Jaypur State, Rajputana.

The Auditor made his Report. Upon the motion of Sir J. Cockle,
seconded by Mr. S. Roborts, the Treasurer's Report was then
adopted. A vote of thanks was unanimously accorded to Mr. Heppel
for the trouble he had taken in auditing the accounts.

The following communications were made :—

On the Stability of a Plane Plate under Thrusts in its own
Plane, with applications to the * Buckling” of the Sides of a
Ship: Mr. G. H. Bryan (communicated by Mr. Love).

On the Extension to Matrices of any Order of the Quaternion
Symbols S and V: Dr. Taber.

On the Reversion of Partial Differential Expressions with two

- Independent and two Dependent Variables: Mr. E. B. Elliott.

Newton’s Classification of Cubic Carves: Mr. W. W. R. Ball.

Steiner’s Poristic Systems of Spheres: Prof. G. B. Mathews.

On the q-serics derived from the Elliptic and Zeta Functions of
1k and }&: Dr. Glaisher.

The following presents were received :—

¢ Educational Times,” for December.

‘¢ Proceedings of the Physical Society of London,”’ Vol. x., Part 1v.; Nov,, 1890,

“Proceedings of tho Cambridge Philogophical Society,” Vol. vir., Part 1.

¢ Nautical Almanack,’ for 1894,

¢ Bulletin des Sciences Mathématiques,’” Tomo x1v., Nov., 1890.

“ Nieuw Archicf voor Wiskunde,’’ Deol xvir., Stuk 1 and 2.

t¢Atti delln Reale Accademia dei Lincei—Rondiconti,” Vol. vi., Fasc. 4, 6,
and 7 ; Roma, 1890.

¢ Bollettino delle Pubblicazioni Italiane, ricevute per Diritto di Stampa,’” Nos.
116, 117, and 118.

¢¢ Sitzungsberichte der Koniglich-Preussischon Akadomie der Wissenschaften zu
Berlin,”’ xx.~x1.

¢ Acta Mathematica,” xm., 1 and 2.
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¢ Momorias do la Sociedad Cientifica—Antonio Alzate,” Tomo 1r., Nos, 11
and 12. '

¢“ Jornal de Scicncing Mathcmaticas e Astronomicas,’” Vel. 1x., No. 6.

Pamphlots by A. Voss:—* Ucher die mit einer bilincaren Form vertauschbaren
bilinearen Formon,’’ 8vo; ¢ Ueber die conjugirte Transformation einer bilincaron
Form in sich solbst,”” 8vo; ¢ Usber eincn Satz aus dor Thoorie der Determi.
nanton,’’ 8vo; ¢ Uobor dic cogredionten Transformationen oiner bilinearen Form
in sich selbst,” 4to.

On the Stalility of @ Plane Plute under Thrusts i its own Plane,
with Applications to the * Buckling ” of the Sides of a Ship.

By G. . Bryax,
[ Read Dice. 11th, 1890.]

Introduction. .

1. The problems discussed in this paper aro the annlogues for n
planc rectangular or circular plate of the well-known investigations
of tho stability of a thin wire or shaft, due in tho first place to
Euler, and since developed by Greeunhill. I have employed the
cnergy criterion of stability, tho use of which I have already illus-
trated in this connexion in two papers published in the Praceedmgs
of the Cambridge Philosophical Socicty.* '

The caso of n plate supported on equidistant parallel ribs will be
considcred more fully, on account of the practical use of such struc-
tures in the construction of ships.

Suppose a planc elastic plate iy submitted to edgo tractions in its
own planc which produce compression of its middle surface, and let
cvery point; of that surface rcceive a displacement normal to the
plane, such displacements being chosen in accordance with the pre-
scribed boundary conditions. If this displacemcnt be everywhere of
the first order of small quantitics, the surface of the plate will
thercby become extended by small quantitics of the second order,

* Camb, Fhil. I'roc., Vol. v, pp. 109, 286.



